7 Testing of Transformers

Similar documents
Digital Energy ITI. Instrument Transformer Basic Technical Information and Application

DIRECT CURRENT GENERATORS

Application Note. So You Need to Measure Some Inductors?

DC GENERATOR THEORY. LIST the three conditions necessary to induce a voltage into a conductor.

Full representation of the real transformer

W03 Analysis of DC Circuits. Yrd. Doç. Dr. Aytaç Gören

Lab 14: 3-phase alternator.

2. A conductor of length 2m moves at 4m/s at 30 to a uniform magnetic field of 0.1T. Which one of the following gives the e.m.f. generated?

1. The diagram below represents magnetic lines of force within a region of space.

SYNCHRONOUS MACHINES

Direct Current Motors

Series and Parallel Circuits

BSNL TTA Question Paper-Instruments and Measurement Specialization 2007

Chapter 16. Current Transformer Design. Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.

Equipment: Power Supply, DAI, Transformer (8341), Variable resistance (8311), Variable inductance (8321), Variable capacitance (8331)

8 Speed control of Induction Machines

GUIDE FOR TESTING POWER TRANSFORMERS

First Year (Electrical & Electronics Engineering)

VOLTAGE REGULATOR AND PARALLEL OPERATION

CT Analyzer: Coming to the Rescue. Introduction. Equivalent Circuit. Construction. Classification of a CT. Tony Porrelli, OMICRON, UK

13 ELECTRIC MOTORS Basic Relations

Power measurement in balanced 3 phase circuits and power factor improvement. 1 Power in Single Phase Circuits. Experiment no 1

Power Quality Paper #3

Experiment NO.3 Series and parallel connection

Power Supplies. 1.0 Power Supply Basics. Module

Lab 8: DC generators: shunt, series, and compounded.

Line Reactors and AC Drives

Current Transformers. Bonneville Power Administration. Steve Laslo For the Hands On Relay School (3-12) Revision 1.1. February 21,

Diode Applications. by Kenneth A. Kuhn Sept. 1, This note illustrates some common applications of diodes.

Transformer Calculations

Principles and Working of DC and AC machines

Induction Motor Theory

DC MOTOR ANALYSIS & TROUBLESHOOTING

Basic Electrical Technology Dr. L. Umanand Department of Electrical Engineering Indian Institute of Science, Bangalore. Lecture phase System 4

Edmund Li. Where is defined as the mutual inductance between and and has the SI units of Henries (H).

How To Understand And Understand The Electrical Power System

Generator Stator Protection, under/over voltage, under /over frequency and unbalanced loading. Ramandeep Kaur Aujla S.NO

CATHODIC PROTECTION TRANSFORMER RECTIFIER (CPTR)

DIMENSIONING OF CURRENT TRANSFORMERS FOR PROTECTON APPLICATION

Basics of Electricity

Equipment: Power Supply, DAI, Variable resistance (8311), Variable inductance (8321)

= V peak 2 = 0.707V peak

Motor Fundamentals. DC Motor

Experiment #5, Series and Parallel Circuits, Kirchhoff s Laws

Circuits with inductors and alternating currents. Chapter 20 #45, 46, 47, 49

STUDY GUIDE: ELECTRICITY AND MAGNETISM

Outline. Systems and Signals 214 / 244 & Energy Systems 244 / 344. Ideal Inductor. Ideal Inductor (cont... )

NO LOAD & BLOCK ROTOR TEST ON THREE PHASE INDUCTION MOTOR

Chapter 13: Electric Circuits

PRE COMMISSIONING TESTS ON EQUIPMENT AT 33/11 KV SUB STATIONS

Modeling of Transmission Lines

DHANALAKSHMI COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING EE ELECTRICAL MACHINES II UNIT-I SYNCHRONOUS GENERATOR

Eðlisfræði 2, vor 2007

PROPER SELECTION OF CONTROL CIRCUIT TRANSFORMERS WHITE PAPER BULLETIN 1497, 1497A, AND 1497B

People s Physics Book

Three phase circuits

Voltage Drop (Single-Phase)

Tuning Up DC Motors and Generators for Commutation and Performance

7CURRENT TRANSFORMERS

The Charging System. Section 5. Charging System. Charging System. The charging system has two essential functions:

Transformer Design & Design Parameters

Unit 6 Transformers. Lead-in. Basic principles. Task 1. Task 2. What applications of transformers do you know?

EE 221 Circuits II. Chapter 13 Magnetically Coupled Circuits

AP Physics Electricity and Magnetism #4 Electrical Circuits, Kirchoff s Rules

Understanding the Alternator

Transformer circuit calculations

INSTRUMENTATION AND CONTROL TUTORIAL 3 SIGNAL PROCESSORS AND RECEIVERS

The DC Motor/Generator Commutation Mystery. Commutation and Brushes. DC Machine Basics

Basic Principles of. Electricity. Basic Principles of Electricity. by Prof. Dr. Osman SEVAİOĞLU Electrical and Electronics Engineering Department

6 ELECTRICAL PARAMETERS

How To Understand And Understand The Theory Of Electricity

Chapter 24. Three-Phase Voltage Generation

Chapter 7 Direct-Current Circuits

PHYSICS 111 LABORATORY Experiment #3 Current, Voltage and Resistance in Series and Parallel Circuits

Fig. 1 Analogue Multimeter Fig.2 Digital Multimeter

Chapter 11. Inductors ISU EE. C.Y. Lee

Current, Resistance and Electromotive Force. Young and Freedman Chapter 25

AC generator theory. Resources and methods for learning about these subjects (list a few here, in preparation for your research):

Chapter 12: Three Phase Circuits

CHAPTER 28 ELECTRIC CIRCUITS

EDEXCEL NATIONAL CERTIFICATE/DIPLOMA UNIT 5 - ELECTRICAL AND ELECTRONIC PRINCIPLES NQF LEVEL 3 OUTCOME 4 - ALTERNATING CURRENT

EE301 Lesson 14 Reading: , , and

Basic Load Tap Changer Operation

THE BREADBOARD; DC POWER SUPPLY; RESISTANCE OF METERS; NODE VOLTAGES AND EQUIVALENT RESISTANCE; THÉVENIN EQUIVALENT CIRCUIT

COMPUTER AIDED ELECTRICAL DRAWING (CAED) 10EE65

PS-6.2 Explain the factors that determine potential and kinetic energy and the transformation of one to the other.

High voltage power supply (1 to 20 KV)

Short Circuit Current Calculations

NATIONAL CERTIFICATE (VOCATIONAL)

Prof. Krishna Vasudevan, Prof. G. Sridhara Rao, Prof. P. Sasidhara Rao

Planar versus conventional transformer

ABB ! CAUTION. Type COQ Negative Sequence Generator Relay. (50/60 Hertz) J. Instruction Leaflet

Properties of electrical signals

Equipment: Power Supply, DAI, Synchronous motor (8241), Electrodynamometer (8960), Tachometer, Timing belt.

SECTION 4 ELECTRIC MOTORS UNIT 17: TYPES OF ELECTRIC MOTORS

Equipment: Power Supply, DAI, Universal motor (8254), Electrodynamometer (8960), timing belt.

7. What is the current in a circuit if 15 coulombs of electric charge move past a given point in 3 seconds? (1) 5 A (3) 18 A (2) 12 A (4) 45 A

AC Power. by Prof. Dr. Osman SEVAİOĞLU Electrical and Electronics Engineering Department

Science and Reactor Fundamentals Electrical CNSC Technical Training Group. Table of Contents

Transcription:

7 Testing of Transformers The structure of the circuit equivalent of a practical transformer is developed earlier. The performance parameters of interest can be obtained by solving that circuit for any load conditions. The equivalent circuit parameters are available to the designer of the transformers from the various expressions that he uses for designing the transformers. But for a user these are not available most of the times. Also when a transformer is rewound with different primary and secondary windings the equivalent circuit also changes. In order to get the equivalent circuit parameters test methods are heavily depended upon. From the analysis of the equivalent circuit one can determine the electrical parameters. But if the temperature rise of the transformer is required, then test method is the most dependable one. There are several tests that can be done on the transformer; however a few common ones are discussed here. 7.1 Winding resistance test This is nothing but the resistance measurement of the windings by applying a small d.c voltage to the winding and measuring the current through the same. The ratio gives the winding resistance, more commonly feasible with high voltage windings. For low voltage windings a resistance-bridge method can be used. From the d.c resistance one can get the a.c. resistance by applying skin effect corrections. 44

3 A2 S s ~ 1 a2 2 + - A2 a2 + A1 a1 A1 a1 (a)a.c.test (b)d.c.test Figure 18: Polarity Test 7.2 Polarity Test This is needed for identifying the primary and secondary phasor polarities. It is a must for poly phase connections. Both a.c. and d.c methods can be used for detecting the polarities of the induced emfs. The dot method discussed earlier is used to indicate the polarities. The transformer is connected to a low voltage a.c. source with the connections made as shown in the fig. 18(a). A supply voltage s is applied to the primary and the readings of the voltmeters 1, 2 and 3 are noted. 1 : 2 gives the turns ratio. If 3 reads 1 2 then assumed dot locations are correct (for the connection shown). The beginning and end of the primary and secondary may then be marked by A 1 A 2 and a 1 a 2 respectively. If the voltage rises from A 1 to A 2 in the primary, at any instant it does so from a 1 to a 2 in the secondary. If more secondary terminals are present due to taps taken from the windings they can be labeled as a 3, a 4, a 5, a 6. It is the voltage rising from smaller number towards larger ones in each winding. The same thing holds good if more secondaries are present. 45

Fig. 18(b) shows the d.c. method of testing the polarity. When the switch S is closed if the secondary voltage shows a positive reading, with a moving coil meter, the assumed polarity is correct. If the meter kicks back the assumed polarity is wrong. 7.3 Open Circuit Test W A Io 1 2 1 Im jxm Ic Rc (a)physical Arrangement (b)equivalent Circuit Figure 19: No Load Test As the name suggests, the secondary is kept open circuited and nominal value of the input voltage is applied to the primary winding and the input current and power are measured. In Fig. 19(a), A, W are the voltmeter, ammeter and wattmeter respectively. Let these meters read 1, I 0 and W 0 respectively.fig. 19(b) shows the equivalent circuit of the transformer under this test. The no load current at rated voltage is less than 1 percent of nominal current and hence the loss and drop that take place in primary impedance r 1 +jx l1 due to the no load current I 0 is negligible. The active component I c of the no load current I 0 46

represents the core losses and reactive current I m is the current needed for the magnetization. Thus the watt meter reading W 0 = 1 I c = P core (38) I c = W 0 (39) 1 I m = I0 2 I2 c or (40) R c = 1 I c andx m = 1 I m (41) 1 Io Figure 20: Open Circuit Characteristics The parameters measured already are in terms of the primary. Sometimes the primary voltage required may be in kilo-olts and it may not be feasible to apply nominal voltage to primary from the point of safety to personnel and equipment. If the secondary voltage is low, one can perform the test with L side energized keeping the H side open circuited. In this case the parameters that are obtained are in terms of L. These have to be referred to H side if we need the equivalent circuit referred to H side. 47

Sometimes the nominal value of high voltage itself may not be known, or in doubt, especially in a rewound transformer. In such cases an open circuit characteristics is first obtained, which is a graph showing the applied voltage as a function of the no load current. This is a non linear curve as shown in Fig. 20. This graph is obtained by noting the current drawn by transformer at different applied voltage, keeping the secondary open circuited. The usual operating point selected for operation lies at some standard voltage around the knee point of the characteristic. After this value is chosen as the nominal value the parameters are calculated as mentioned above. 7.4 Short Circuit Test The purpose of this test is to determine the series branch parameters of the equivalent circuit of Fig. 21(b). As the name suggests, in this test primary applied voltage, the current and power input are measured keeping the secondary terminals short circuited. Let these values be sc, I sc and W sc respectively. The supply voltage required to circulate rated current through the transformer is usually very small and is of the order of a few percent of the nominal voltage. The excitation current which is only 1 percent or less even at rated voltage becomes negligibly small during this test and hence is neglected. The shunt branch is thus assumed to be absent. Also I 1 = I 2 as I 0 0. Therefore W sc is the sum of the copper losses in primary and secondary put together. The reactive power consumed is that absorbed by the leakage reactance of the two windings. W sc = I 2 sc (r 1 + r 2 ) (42) Z sc = sc I sc (43) (x l1 + x l2 ) = Z 2 sc (r 1 + r 2 )2 (44) 48

A W sc (a)physical Arrangement Isc r1 jxl1 r 2 jx l2 sc (b)equivalent Circuit Figure 21: Short Circuit Test 49

If the approximate equivalent circuit is required then there is no need to separate r 1 and r 2 or x l1 and x l2. However if the exact equivalent circuit is needed then either r 1 or r 2 is determined from the resistance measurement and the other separated from the total. As for the separation of x l1 and x l2 is concerned, they are assumed to be equal. This is a fairly valid assumption for many types of transformer windings as the leakage flux paths are through air and are similar. 7.5 Load Test Load Test helps to determine the total loss that takes place, when the transformer is loaded. Unlike the tests described previously, in the present case nominal voltage is applied across the primary and rated current is drown from the secondary. Load test is used mainly 1. to determine the rated load of the machine and the temperature rise 2. to determine the voltage regulation and efficiency of the transformer. Rated load is determined by loading the transformer on a continuous basis and observing the steady state temperature rise. The losses that are generated inside the transformer on load appear as heat. This heats the transformer and the temperature of the transformer increases. The insulation of the transformer is the one to get affected by this rise in the temperature. Both paper and oil which are used for insulation in the transformer start getting degenerated and get decomposed. If the flash point of the oil is reached the transformer goes up in flames. Hence to have a reasonable life expectancy the loading of the transformer must be limited to that value which gives the maximum temperature rise tolerated by the insulation. This aspect of temperature rise cannot be guessed from the electrical equivalent circuit. Further, the losses like dielectric losses and stray load losses are not modeled in the 50

equivalent circuit and the actual loss under load condition will be in error to that extent. Many external means of removal of heat from the transformer in the form of different cooling methods give rise to different values for temperature rise of insulation. Hence these permit different levels of loading for the same transformer. Hence the only sure way of ascertaining the rating is by conducting a load test. It is rather easy to load a transformer of small ratings. As the rating increases it becomes difficult to find a load that can absorb the requisite power and a source to feed the necessary current. As the transformers come in varied transformation ratios, in many cases it becomes extremely difficult to get suitable load impedance. Further, the temperature rise of the transformer is due to the losses that take place inside the transformer. The efficiency of the transformer is above 99% even in modest sizes which means 1 percent of power handled by the transformer actually goes to heat up the machine. The remaining 99% of the power has to be dissipated in a load impedance external to the machine. This is very wasteful in terms of energy also. ( If the load is of unity power factor) Thus the actual loading of the transformer is seldom resorted to. Equivalent loss methods of loading and Phantom loading are commonly used in the case of transformers. The load is applied and held constant till the temperature rise of transformer reaches a steady value. If the final steady temperature rise is lower than the maximum permissible value, then load can be increased else it is decreased. That load current which gives the maximum permissible temperature rise is declared as the nominal or rated load current and the volt amperes are computed using the same. 51

In the equivalent loss method a short circuit test is done on the transformer. The short circuit current is so chosen that the resulting loss taking place inside the transformer is equivalent to the sum of the iron losses, full load copper losses and assumed stray load losses. By this method even though one can pump in equivalent loss inside the transformer, the actual distribution of this loss vastly differs from that taking place in reality. Therefore this test comes close to a load test but does not replace one. A W 1 2Io Io Io 1 I 2 I2 I2 I 2 A W 2 s Figure 22: Back to Back Test - Phantom Loading In Phantom loading method two identical transformers are needed. The windings are connected back to back as shown in Fig. 22. Suitable voltage is injected into the loop formed by the two secondaries such that full load current passes through them. An equiv- 52

alent current then passes through the primary also. The voltage source 1 supplies the magnetizing current and core losses for the two transformers. The second source supplies the load component of the current and losses due to the same. There is no power wasted in a load ( as a matter of fact there is no real load at all) and hence the name Phantom or virtual loading. The power absorbed by the second transformer which acts as a load is pushed back in to the mains. The two sources put together meet the core and copper losses of the two transformers. The transformers work with full flux drawing full load currents and hence are closest to the actual loading condition with a physical load. 53