Graphene: Experimental Overview

Similar documents
GRAPHENE: A NEW STAR IN MATERIAL SCIENCE

Physical Properties and Functionalization of Low-Dimensional Materials

The Raman Fingerprint of Graphene

Modification of Graphene Films by Laser-Generated High Energy Particles

Spatially separated excitons in 2D and 1D

Sub-gap conductance fluctuations in superconductor-graphene hybrid nanostructures

Graphene a material for the future

Graphene and the Quantum Spin Hall Effect

Explain the ionic bonds, covalent bonds and metallic bonds and give one example for each type of bonds.

The influence of graphene curvature on hydrogen adsorption. Sarah Goler

Usage of Carbon Nanotubes in Scanning Probe Microscopes as Probe. Keywords: Carbon Nanotube, Scanning Probe Microscope

Optical Hyperdoping: Transforming Semiconductor Band Structure for Solar Energy Harvesting

Highlights of Solid State Physics. Man of the Year Nobel Prizes

Solid State Detectors = Semi-Conductor based Detectors

X-Rays and Magnetism From Fundamentals to Nanoscale Dynamics

fotoelektron-spektroszkópia Rakyta Péter

From Landau levels to quantum Hall effects

From Fractional Quantum Hall Effect To Fractional Chern Insulator

What is Nanophysics: Survey of Course Topics. Branislav K. Nikolić

How To Grow Graphene

SUPERCONDUCTIVITY. PH 318- Introduction to superconductors 1

Physics 441/2: Transmission Electron Microscope

Contents. Goldstone Bosons in 3He-A Soft Modes Dynamics and Lie Algebra of Group G:

Lecture 6 Scanning Tunneling Microscopy (STM) General components of STM; Tunneling current; Feedback system; Tip --- the probe.

Experimental Observation of the Quantum Anomalous Hall Effect in a Magnetic Topological Insulator

Demonstration of sub-4 nm nanoimprint lithography using a template fabricated by helium ion beam lithography

Nanoelectronics 09. Atsufumi Hirohata Department of Electronics. Quick Review over the Last Lecture

STM and AFM Tutorial. Katie Mitchell January 20, 2010

Scanning Near Field Optical Microscopy: Principle, Instrumentation and Applications

Contamination. Cleanroom. Cleanroom for micro and nano fabrication. Particle Contamination and Yield in Semiconductors.

Thermal unobtainiums? The perfect thermal conductor and the perfect thermal insulator

Basic principles and mechanisms of NSOM; Different scanning modes and systems of NSOM; General applications and advantages of NSOM.

Types of Epitaxy. Homoepitaxy. Heteroepitaxy

Electron Microscopy 3. SEM. Image formation, detection, resolution, signal to noise ratio, interaction volume, contrasts

Improved Contact Formation for Large Area Solar Cells Using the Alternative Seed Layer (ASL) Process

Secondary Ion Mass Spectrometry

Spin-flip excitation spectroscopy with STM excitation of allowed transition adds an inelastic contribution (group of Andreas Heinrich, IBM Almaden)

It has long been a goal to achieve higher spatial resolution in optical imaging and

Electronic transport properties of nano-scale Si films: an ab initio study

STRUCTURAL STUDIES OF MULTIFERROIC THIN FILMS

Vacuum Evaporation Recap

Nanoparticle Deposition on Packaging Materials by the Liquid Flame Spray

h e l p s y o u C O N T R O L

TRANSPORT PROPERTIES OF GRAPHENE IN AND OUT OF THE BULK

Advanced materials & solutions for high h temperatures

Contamination Transport from Wafer to Lens

From Quantum to Matter 2006

Scanning Tunneling Microscopy: Fundamentals and Applications

SEMICONDUCTOR I: Doping, semiconductor statistics (REF: Sze, McKelvey, and Kittel)

Lecture 4 Scanning Probe Microscopy (SPM)

Atomic Force Microscopy. Long Phan Nanotechnology Summer Series May 15, 2013

Hard Condensed Matter WZI

Pulsed laser deposition of organic materials

Molecular Dynamics Simulations

XCVII Congresso Nazionale

Developments in Photoluminescence Characterisation for Silicon PV

Luminescence study of structural changes induced by laser cutting in diamond films

Conductivity of silicon can be changed several orders of magnitude by introducing impurity atoms in silicon crystal lattice.

Adsorption and Catalysis

bulk 5. Surface Analysis Why surface Analysis? Introduction Methods: XPS, AES, RBS

CHAPTER 10: INTERMOLECULAR FORCES: THE UNIQUENESS OF WATER Problems: 10.2, 10.6, , , ,

Magnetization dynamics in lanthanides new frontiers in spin-dependent band mapping at BESSY VSR

Le bruit d une impureté Kondo

CVD SILICON CARBIDE. CVD SILICON CARBIDE s attributes include:

Gravity models & condensed matter: improving interconnections

FUNDAMENTAL PROPERTIES OF SOLAR CELLS


Microscopie à force atomique: Le mode noncontact

Lecture 3: Optical Properties of Bulk and Nano. 5 nm

DNA NANOWIRES USING NANOPARTICLES ECG653 Project Report submitted by GOPI

Ion Beam Sputtering: Practical Applications to Electron Microscopy

Surface-state engineering for interconnects on H-passivated Si(100)

Lecture 3: Optical Properties of Bulk and Nano. 5 nm

20.309: Biological Instrumentation and Measurement. Heejin Choi Rumi Chunara Yuri Matsumoto

DOE Solar Energy Technologies Program Peer Review. Denver, Colorado April 17-19, 2007

Free Electron Fermi Gas (Kittel Ch. 6)

SCANNING PROBE MICROSCOPY NANOS-E3 SCHOOL 29/09/2015 An introduction to surface microscopy probes

NANO SILICON DOTS EMBEDDED SIO 2 /SIO 2 MULTILAYERS FOR PV HIGH EFFICIENCY APPLICATION

BNG 331 Cell-Tissue Material Interactions. Biomaterial Surfaces

Hall Effect Measurement in Copper (Electrical Transport Option) Prof. Richard Averitt, UC San Diego

Supporting information

Comprehensive Investigation of Sequential Plasma Activated Si/Si Bonded Interface for Nano-integration

Matter, Materials, Crystal Structure and Bonding. Chris J. Pickard

Formation of solids from solutions and melts

New magnetism of 3d monolayers grown with oxygen surfactant: Experiment vs. ab initio calculations

Basic Properties and Application Examples of PGS Graphite Sheet

Microscopie à champs proche: et application

Technology White Papers nr. 13 Paul Holister Cristina Román Vas Tim Harper

Semiconductor doping. Si solar Cell

Neuere Entwicklungen zur Herstellung optischer Schichten durch reaktive. Wolfgang Hentsch, Dr. Reinhard Fendler. FHR Anlagenbau GmbH

Total Organic Synthesis and Characterization of Graphene Nanoribbons

Transition from AMR to GMR Heads in Tape Recording

Reflection Electron Microscopy and Spectroscopy for Surface Analysis

Broadband THz Generation from Photoconductive Antenna

CHAPTER 10 Fundamentals of the Metal Oxide Semiconductor Field Effect Transistor

1 The water molecule and hydrogen bonds in water

Plate waves in phononic crystals slabs

DSD 70 Dual Channel Hall Effect Speed Sensor for Railway Applications, compliant with EN 50155

NEAR FIELD OPTICAL MICROSCOPY AND SPECTROSCOPY WITH STM AND AFM PROBES

Pressure effect on diamond nucleation in a hot-filament CVD system

Transcription:

Graphene: Experimental Overview 10 3 papers 10 2 papers Eva Y. Andrei Rutgers University Nobel Symposium Stockholm May 2010

Graphene: An Experimental overview Making graphene Gee Wizz experiments Graphene decoupled from substrate Graphene on graphite Suspended graphene

Making Graphene Exfoliation Scotch tape with graphite flakes Press Si/SiO 2 onto flakes on the tape 300 nm SiO Si Novoselev et al Science (2004) < 100 mm

Making Graphene Graphitization Epitaxial grapehene on SiC Epitaxial graohene W. A. de Heer et al (2007) C. Berger, et al J. Phys. Chem.B 108 (52) (2004) Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide K. V. Emtsev 1, et al Nature materials (2009) 2009 IEEE Epitaxial Graphene Growth on SiC Wafers D.K. Gaskill et al. 2

Making Graphene Chemical Vapor Deposition Epitaxial grapehene on metals Ir, Ru, Ni, Cu

Gee Wizz: Mechanical Young s modulus ~ 1 TPa graphene Impermeable membrane STM studies of biological assays Ultra - Filtration S. Bunch et al,nano Letters 08

Gee Wizz: Chemical Single molecule detection NO 2, NH 3, CO F Schedin et al,nature Materials 07

Gee Wizz: Optical Graphene layers change their opacity when a voltage is applied, Transmittance at Dirac point: T=1-ap =97.2% R.R. Nair et al, Science (2008). P. Blake et al, Nano Letters, 08

What is it good for? Y. M. Lin et al Science 2010 T. Mueller et al Nature Photonics 2010 TEM Imaging and dynamics of light atoms and molecules on graphene J. Meyer et al,nature 2008 (Berkeley) Bio -graphene DNA on graphene protected from break-down by enzymes. Differentiates between Single stranded and double stranded. Neuron growth enhancement Potential for Drug delivery, gene therapy Z. Tang, et al Small. (2010) (PNNA)

Electronic structure E E( k) = vf k E k y k x Dirac Point D(E) 2 1 D E) = E 2 p v ( 2 F Degeneracy = g s xg v =4 Landau Levels McLure 1956 E B 0 2 En = sgn( n) 2e vf n B D(E) Flux Degeneracy = # of flux lines n = B 0

Charge inhomogeneity (e-h puddles): x Graphene on SiO 2 SET microscopy DOS conductivity h e Martin, et.al, (2008) DV g E V gmin ~1-10V n min ~ 10 11 cm -2 (ΔE F ~30-100meV) e-h puddles z smeared Dirac point n min minimum carrier density

Graphene on SiO 2 : STM Charge inhomogeneity (e-h puddles): x di/dv (a.u.) STM topography DOS STM spectroscopy 1.0 h e 0.8 0.6 0.4 Dirac point 0.2 0.0-400 -200 0 200 Sample Bias (mv) E

Graphene on Graphite: STM STM home built Temperature T=4 (2K) Magnetic field B=13 (15T) Scan range 10-10 -10-3 m Graphite Clean Lattice matched Conductor Topography z structure Spectroscopy z Density of states B=0 Spectroscopy z Density of states B>0

STM: Graphene on Graphite di/dv (a.u.) topography B=0 spectroscopy B>0 spectroscopy Linear DOS Landau levels 0.8 0.6 0.4 skip 0.2 0.0 T 0.0-200 -100 0 100 200 Sample bias (mv)

di/dv Landau level spectroscopy G. Li, E.Y. A - Nature Physics, 3, 623 (2007) G. Li, A. Luican, E. Y. A., Phys. Rev. Lett (2009) 2.8 2.4 2.0 1-5-4-2 -1 2 3 4-3 0 10T 8T 1.6 6T 1.2 0.8 4T 2T 0T 0.4 0.0-0.2-0.1 0.0 0.1 0.2 E(meV) SiC: Miller et al Science 2009

Energy (mev) Massless Dirac Fermions G. Li, E.Y. A - Nature Physics, 3, 623 (2007) G. Li, A. Luican, E. Y. A., Phys. Rev. Lett (2009) E j = v 2e B N, N = 0, 1, 2... F 200 150 100 2 T 4 T 6 T 8 T 10 T 50 0-50 -100-150 v F = 0.8 x10 6 m/s E D = 16.6±0.5 mev -6-5 -4-3 -2-1 0 1 2 3 4 5 6 sgn(n) ( n B) 1/2

(v-v 0 )/v Graphene on graphite other results G. Li, E.Y. A - Nature Physics, 3, 623 (2007) G. Li, A. Luican, E. Y. A., Phys. Rev. Lett (2009) Electron-phonon interactions Slow down of quasiparticles 0.2 6 v F = 0.8 10 m/ s K K 0.0-0.2-0.4-0.6 e-e interactions Quasiparticle lifetime -0.8-0.6-0.4-0.2 0.0 0.2 0.4 E(eV) t qp E 1 9ps / mev Gap at Dirac point broken symmetry gap D = 2 mv F ~ 10meV skip

Quantum Hall effect in graphene on SiO 2 V g K. Novoselov et al Nature 2005 Y. Zhang et al, Nature 2005 K.S. Novoselov et al, Nature 2005

Quantum Hall Effect Number of edge modes is topological Chern number Each filled Landau level contributes g edge modes (g degeneracy) Each edge mode contributes one quantum of Hall conductance e s xy = 2 = g = g( N 4, N 1/ 2) = 2, 6 = 0, 1,.. E D(E) 14 10 6 2 0-2 s xy (e 2 /h) Single particle physics -6-10 - 14 No FQHE in graphene on SiO 2 (B< 45T) Correlation-challenge

Suspended Graphene X. Du, I. Skachako, A. Barker, E. Y. A. Nature Nanotech. 3, 491 (2008) Bolotin et al, Solid State Communications (2008) Substrate roughness Trapped charges Quench condensed ripples 2 terminal Get rid of the substrate! SiO 2 Si Hall bar L< 1 mm

Non-Suspended versus Suspended Graphene r(k ) X. Du, I. Skachko, A. Barker, E. Y. A. Nature Nanotech. 3, 491 (2008) 20 r = 1 s 20 4K Non-suspended 10 ballistic 100K 200K 250K r (k ) 10 suspended Ballistic 0-0.5 0.0 0.5 0-0.5 0.0 0.5 n(10 12 cm -2 ) n(10 12 )cm -2

Non-Suspended versus Suspended Graphene X. Du, I. Skachako, A. Barker, E. Y. A. Nature Nanotech. 3, 491 (2008) Non suspended s ~ n, l mfp << L sample n min ~ 10 11 cm -2 m ~ 10 4 cm 2 / V s 20 4K Suspended s ~ n 1/2, l mfp ~ L sample n min ~ 10 9 10 10 cm -2 m ~ 10 5-10 6 - cm 2 / V s r (k ) 10 suspended Ballistic Ballistic transport Approaching Dirac point 0-0.5 0.0 0.5 n(10 12 )cm -2

Suspended Graphene and QHE Bolotin et al, Solid State Communications (2008) 1mm Hall bar (6 lead) V d =0 V s =V H. s xy (e 2 /h) 0-2 -4-6 actually 6 2 s xy Hall conductivity expect hope fraction s 2 e s xy = 2, 6,.. = 4( N 1 ) 2 2 e Hall angle = 90 o -6-4 -2 0 The Hall-bar Standard No contact resistance Separates s xy and r xx Activation gaps works for large samples NOT for small samples Suspended Graphene: No QHE in Hall bar configuration

G(e 2 /h) QHE in 2-terminal measurement V s =V H V d =0 2 lead Hall angle = 90 o X. Du et al. Nature Nanotechnology (08) 14 c W ~ 3L D. Abanin, L. Levitov, PRB (08) 10 6 2 1T 2T 3T 4T 5T 6T 8T 10T 12T -14-10 -6-2 0

G (e 2 /h) FQHE in 2-terminal measurement X. Du, I. Skachko, F. Duerr, A. Luican, EYA, Nature 462, 192 (2009) 2 1 2T 6T 8T 12T = FQHE 0-2 -1 0-1/3 FQHE in graphene Seen already at 2T Persists up to 20K (in 12T) Bolotin et al (Columbia) Nature 462 (2009) Geim & Novoselov (Manchester)

G G(e 2 /h) 2 /h) Suspended Graphene: two terminal measurement X. Du, I. Skachko, F. Duerr, A. Luican, EYA, Nature 462, 192 (2009) 2 1 1 12T 2T 40K 20K 6T 10K 8T 4K 12T 1.2K = FQHE 1/3 0 FQHE in graphene Seen already at 2T Persists up to 20K (in 12T) -2-1 0-1 1/3 0-1/3 D ( 12T)~ 4.4K Bolotin et al (Columbia) Nature 462 (2009) D ( 12T)~ 0K Geim & Novoselov (Manchester) D. Abanin, et al, PRB (2010)

Ground state of neutral graphene in field Alicea & Fisher (2006) Normura & Macdonald, (2006) Abanin, Lee, & Levitov, (2007); Spin first D Spin > D valley Valley first D Spin < D valley Alicea & Fisher (2006) Gusynin & Sharpov (2006) = 1 valley split =+1 =+1 = 1 spin split =1 valley split Zhang et al (07) tilted field expt = 0 = = 0 = B B =0 conducting Abanin et al (07) e x e x =0 insulating Checkelsky, et al (08) Conductor QH edge states QH edge states bulk edge bulk edge Insulator

R ( ) Magnetically induced insulating phase R max ( ) X. Du, I. Skachko, F. Duerr, A. Luican, EYA, Nature 462, 192 (2009) 10 10 1T 2T 10 9 3T 4T 5T 4.2K 10 8 6T 8T 10T 12T 10 7 10 6 10 5 <0.1 B>1T -0.3-0.2-0.1 0.0 0.1 0.2 0.3 R max ~ R e ( T*/ T ) 1/ 2 T*(4T)~ 100K 0 10 8 12T 10T 8T 10 7 6T 10 6 10 5 10 4 5T 3T 2T 1T 0.1 0.2 0.3 0.4 0.5 T -1/2 Insulating phase Spin polarized bulk + broken edges Correlated electron state: bulk antiferromagnet+no edge states CDW or SDW

Supended CVD Graphene membrane Energy (mv) with: A. Reina, J. Kong (MIT) R. R. Nair, K. Novoselov, A. Geim (Manchester) SEM 50 mm optical micrograph STM- Landau levels 200 100 B=3 T 4.4 K 0 v F =1.16x10 6 m/s -100-2 -1 0 1 2 n 1/2

Twisted graphene Twist between top layers z Moiré pattern θ=3 θ=0 θ=4 θ=6 θ=10 Period of superstructure : a0 2.46 Å Lopes dos Santos et al PRL 99, 256802 (2007).

STM topography: Moiré pattern Moiré on graphite superstructure surface G. Li, et al Nature Physics (2010) superstructure L=7.5nm q=.79 o x4 x250 M1 G M2 Boundary of area with superstructure G

di/dv (a.u.) Spectroscopy Moiré pattern Van on Hove graphite surface singularities G. Li, et al Nature Physics (2010) M 2 2.0 M 1 1.5 M 2 G 1.0 G 0.5 0.0 M 1-200 0 200 sample bias (mv) G M 2 M 1 Two peak structure only in twisted region

Electronic dispersion of twisted layers PRL 99, 256802 (2007). ΔE DK 2K sin( q / 2) DK = S. Shallcross, et al 2009 G. Mele PRB 2010 Bistrizer, MacDonald 2010

Van Hove singularities G. Li et al. Nature Physics 6, p109 (2010) ΔE Density ΔE of states Twisted graphene develops strong Van Hove singularities

Van Hove singularities di/dv (a.u.) G. Li et al. Nature Physics 6, p109 (2010) ΔE Density ΔE of states 2.0 D=90 mev, q=.79 o 1.5 1.0 0.5 0.0-0.2-0.1 0.0 0.1 0.2 sample bias (ev)

Van Hove singularities G. Li et al. Nature Physics 6, p109 (2010) ΔE Density ΔE of states Twist engineering of electronic DOS

Summary di/dv (a.u.) di/dv (a.u.) di/dv (a.u.) G (e 2 /h) Gee Wizz Mechanical ultra-strong, impermeable Chemical ultra-sensitive nose Optical gate controlled transmittance Graphene on graphite Honeycomb structure Dirac fermions Linear Density of states Well defined Dirac point Direct observation of Landau levels 0.8 0.6 0.4 0.2 0.0 0.0 T -200-100 0 100 200 Sample bias (mv) 1.0 0.8 0.6 0.4 0.2 0.0 m 0 H = 4 T T=4.36 K D: (140,116) spi20182 D = 2. mev -200-100 0 100 200 sample bias (mv) Suspended graphene 2 2T 6T 8T 12T Exfoliated membranes Ballistic transport on micron length scales Fractional quantum Hall effect 1 0-2 -1-1/3 0 SKIP CVD membranes Twist control of electronic properties 2.0 1.5 1.0 0.5 0.0-0.2-0.1 0.0 0.1 0.2 sample bias (ev)

Thanks Xu Du Ivan Skachko Guohong Li Adina Luican Anthony Barker Patrick Stanger Fabian Duerr Justin Meyerson Collaborators: MIT: J. Kong, A. Reina Manchester: A. Geim, K. Novoselov, R. Nair Porto: J. los Santos BU: A.H. Castro Neto Princeton: D. Abanin MIT: L. Levitov