Contamination Transport from Wafer to Lens

Size: px
Start display at page:

Download "Contamination Transport from Wafer to Lens"

Transcription

1 Contamination Transport from Wafer to Lens Immersion Lithography Symposium August 4, 2004 Greg Nellis, Roxann Engelstad, Edward Lovell, Alex Wei, Mohamed El-Morsi Computational Mechanics Center, University of Wisconsin, Madison, WI Chris Van Peski International SEMATECH Research supported by International SEMATECH and DARPA/ARL Computational Mechanics Center Slide 1

2 Lens Contamination by Resist Material Some resist material may migrate to lens Most resist material is carried away with fluid Dispense Lens Recover Chuck Soluble resist material is released into immersion fluid Device Wafer Computational Mechanics Center Slide 2

3 Presentation Outline Immersion Symposium Objective: Preliminary assessment of the potential impact of resist leaching and fluid contamination on lens lifetime. Contamination transport model Estimating model parameters Parallel flow simulation results: Aligned flow Stationary wafer Opposed flow Fluid cleanliness Recirculating flow simulations Computational Mechanics Center Slide 3

4 Mass Transfer Governing Equation (2-D) 2 2 c c c c f u + f v = f D + 2 f D 2 ρ ρ ρ ρ x y y x mass transport by bulk motion mass transport by diffusion c is the local concentration of the contaminant D is the diffusion coefficient u and v are the velocity components in the x- and y- directions Computational Mechanics Center Slide 4

5 Contamination Transport Model Material is transported against concentration gradients by diffusion (D) Material is transported in direction of velocity by bulk fluid motion L L f = u w τ h Chuck Soluble resist material is released into immersion fluid (m, τ) Velocity distribution ( P, u w, µ, ρ) Computational Mechanics Center Slide 5

6 Amount of Contaminants Released (m ) Hinsberg et al. 1 measured ppm of contaminants in a 0.5 ml droplet placed on a resist layer for 2 min. based on the droplet area and contaminant mass: m = 1000 ng/cm 2 Other estimates at ISMT place upper bound of contaminants at 60 mg/cm 3 through a 150 nm resist layer complete depletion would result in: m = 900 ng/cm 2 Reasonable upper bound on m is 1000 ng/cm 2 1. W. Hinsberg et al., Liquid Immersion Lithography for 193 nm: Resist-Liquid Interactions Status and Update, presented at the 2 nd Immersion Lithography Workshop, IBM Almaden, July 11, Computational Mechanics Center Slide 6

7 Time Required to Release Contaminant (τ) Time required for a wafer to move across a 4.0 cm lens at 0.5 m/s is less than 100 ms. Hinsberg et al. 1 measured contaminant concentration after 2 minutes and reported that release was essentially complete As τ becomes much less than 100 ms, the results become insensitive to τ Reasonable lower bound on τ is 10 ms Computational Mechanics Center Slide 7

8 Diffusion Coefficient (D) Immersion Symposium Reasonable upper bound on D is 1e-8 m 2 /s Computational Mechanics Center Slide 8

9 Simulation Parameters Immersion Symposium Wafer velocity Parameter Symbol Nominal Value Reasonable Range u w Fluid viscosity µ Driving pressure difference Gap height Gap length Fluid density Diffusion coefficient P Material released m Time required for release h L ρ D τ 0.5 m/s -0.5 to 0.5 m/s Pa-s 200 Pa* 1.0 mm 4.0 cm 997 kg/m 3 1e-8 m 2 /s 1000 ng/cm 2 10 ms - 0 to 2000 Pa e-8 to 1e-9 m 2 /s 10 to 1000 ng/cm 2 10 to 1000 ms * note that 200 Pa corresponds to a bulk velocity of 0.5 m/s with no wafer motion or a flow rate of nominally 500 ml/min Computational Mechanics Center Slide 9

10 Contamination Deposited on Lens ( ) & = ρ c mlens x f D y y= h y x average mass flux on lens: maximum mass flux on lens: L c m& lens = ρ f D dx y 0 y= h ( ) m& lens, max = MAX m& lens x from 0 to L Computational Mechanics Center Slide 10

11 Aligned Flow Simulation Immersion Symposium Uncontaminated liquid enters: c x=0 = 0 Lens is clean : c y=h = 0 Chuck Mass flux over release zone: c m ρ D = y No mass flux over depleted wafer: c ρ D = 0 y f f τ y= 0 y= 0 Computational Mechanics Center Slide 11

12 Aligned Flow Simulation at Nominal Conditions concentration very thin layer of contamination confined to the wafer surface maximum flux on lens and average flux on lens are small over its entire length Computational Mechanics Center Slide 12

13 Parametric Study Aligned Flow m & as P lens, max as u w m & lens, max note 10 Pa corresponds to ~ m/s or 25 ml/min Computational Mechanics Center Slide 13

14 Impact of Contamination Buildup Primary effect: loss of transmission through optical system The mass per area (m ) required to affect a given loss of transmission (floss) is approximately: m = 0.14MW floss 3 r NA α MW = molecular weight r = size α = absorption coefficient N A = Avogadro s number Computational Mechanics Center Slide 14

15 Impact of Contamination Buildup The simulation results can be used to predict the allowable operating time (optime) assuming that all flux reaching the lens eventually sticks to it: MW floss optime = r N α m& A convenient way of presenting the simulation results is as a Figure of Merit: Figure of Merit = A 3 optimer α 0.14 = MW floss N m& A Computational Mechanics Center Slide 15

16 Reduced Operating Time Immersion Symposium acceptable Example: r = 10 Angstrom MW = 134 kg/kgmol, α = 10 micron -1 floss = 0.05 optime = 1 year Required Figure of Merit = 5e-14 kgmol-m 2 -s/kg unacceptable Computational Mechanics Center Slide 16

17 Stationary Wafer Simulations wafer stops suddenly mass flux of contamination persists for some time how much driving pressure is required to prevent it from reaching lens? Computational Mechanics Center Slide 17

18 Stationary Wafer Simulations ~ 20 Pa required (0.05 m/s bulk velocity 50 ml/min) acceptable unacceptable Computational Mechanics Center Slide 18

19 Opposed Configuration Immersion Symposium Dispense Recover y r Chuck ( 0, ) c x= y > y = r y r 0 ( ) ( = 0, < r ) h c( x L y yr ) v( y) dy v y c x y y dy y r = < = h y, r ( ) ( =, > ) v y c x L y y dy h y r ( ) v y dy r Computational Mechanics Center Slide 19

20 Opposed Flow Results at Nominal Conditions concentration thicker layer of contamination concentration boundary layer near lens Computational Mechanics Center Slide 20

21 Parametric Study Opposed Flow m & as P lens as u w m & lens Note that 2000 Pa corresponds to approximately 5 m/s or 5000 ml/min Computational Mechanics Center Slide 21

22 Parametric Study Aligned & Opposed Flow aligned flow opposed flow Computational Mechanics Center Slide 22

23 Opposed Flow Reduced Operating Time Computational Mechanics Center Slide 23

24 Opposed Flow Effect of m and τ nominal conditions used for model Immersion Symposium Computational Mechanics Center Slide 24

25 Effect of Fluid Cleanliness Immersion Symposium Contaminated liquid enters: c x=0 = c fluid Lens is clean : cy=h = 0 Chuck No mass flux from wafer: c D y = Computational Mechanics Center Slide 25 y 0 = 0

26 Effect of Fluid Contamination Immersion Symposium Computational Mechanics Center Slide 26

27 Effect of Fluid Contamination Immersion Symposium acceptable unacceptable Example: r = 2 Angstrom MW = 50 kg/kgmol, α = 5 micron -1 floss = 0.10 optime = 1 year Figure of Merit = 2.5e-16 kgmol-m 2 -s/kg Computational Mechanics Center Slide 27

28 Recirculating Flow Experimental Evidence 2.0 mm Gap m/s jet Dispense port Lens view from below Computational Mechanics Center Slide 28

29 Recirculating Flow Immersion Symposium recover dispense recover lens recirculating region on recover-side of dispense port may shield lens recirculating region on lens-side of dispense port may contaminate lens Computational Mechanics Center Slide 29

30 Recirculating Flow Simulation Immersion Symposium 10.0 mm 0.5 mm x 0 Pa 0 Pa 0.6 m/s 1.0 mm L flux L flux can be changed either through τ or u w Computational Mechanics Center Slide 30

31 Recirculating Flow Simulation Immersion Symposium housing can be designed to provide protection for lens given u w and τ Computational Mechanics Center Slide 31

32 Summary Immersion Symposium Characteristics of the contamination released into immersion fluid has been bounded: 1000 ng/cm 2 of contamination 10 ms release time 1e-8 m 2 /s diffusion coefficient Simulations of contamination transport were developed to predict mass flux on lens (average and maximum) Mass flux used to predict a Figure of Merit: 3 optimer α MW floss Computational Mechanics Center Slide 32

33 Summary Immersion Symposium Aligned flow simulations show that small velocities or driving pressures keep contamination at acceptable levels Opposed flow simulations show that large driving pressures may be required to control contamination due to recirculation Simulations show that fluid must be very clean to prevent significant accumulation Recirculating regions will likely exist in a practical dispense/recover system regions prior to the dispense may protect it regions beyond the dispense will accelerate contamination Computational Mechanics Center Slide 33

Fluid Mechanics: Static s Kinematics Dynamics Fluid

Fluid Mechanics: Static s Kinematics Dynamics Fluid Fluid Mechanics: Fluid mechanics may be defined as that branch of engineering science that deals with the behavior of fluid under the condition of rest and motion Fluid mechanics may be divided into three

More information

Fluids and Solids: Fundamentals

Fluids and Solids: Fundamentals Fluids and Solids: Fundamentals We normally recognize three states of matter: solid; liquid and gas. However, liquid and gas are both fluids: in contrast to solids they lack the ability to resist deformation.

More information

NUMERICAL ANALYSIS OF THE EFFECTS OF WIND ON BUILDING STRUCTURES

NUMERICAL ANALYSIS OF THE EFFECTS OF WIND ON BUILDING STRUCTURES Vol. XX 2012 No. 4 28 34 J. ŠIMIČEK O. HUBOVÁ NUMERICAL ANALYSIS OF THE EFFECTS OF WIND ON BUILDING STRUCTURES Jozef ŠIMIČEK email: jozef.simicek@stuba.sk Research field: Statics and Dynamics Fluids mechanics

More information

Dimensional Analysis

Dimensional Analysis Dimensional Analysis An Important Example from Fluid Mechanics: Viscous Shear Forces V d t / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / Ƭ = F/A = μ V/d More generally, the viscous

More information

Battery Thermal Management System Design Modeling

Battery Thermal Management System Design Modeling Battery Thermal Management System Design Modeling Gi-Heon Kim, Ph.D Ahmad Pesaran, Ph.D (ahmad_pesaran@nrel.gov) National Renewable Energy Laboratory, Golden, Colorado, U.S.A. EVS October -8, 8, 006 Yokohama,

More information

XI / PHYSICS FLUIDS IN MOTION 11/PA

XI / PHYSICS FLUIDS IN MOTION 11/PA Viscosity It is the property of a liquid due to which it flows in the form of layers and each layer opposes the motion of its adjacent layer. Cause of viscosity Consider two neighboring liquid layers A

More information

Journal bearings/sliding bearings

Journal bearings/sliding bearings Journal bearings/sliding bearings Operating conditions: Advantages: - Vibration damping, impact damping, noise damping - not sensitive for vibrations, low operating noise level - dust tight (if lubricated

More information

CE 3500 Fluid Mechanics / Fall 2014 / City College of New York

CE 3500 Fluid Mechanics / Fall 2014 / City College of New York 1 Drag Coefficient The force ( F ) of the wind blowing against a building is given by F=C D ρu 2 A/2, where U is the wind speed, ρ is density of the air, A the cross-sectional area of the building, and

More information

CFD Based Air Flow and Contamination Modeling of Subway Stations

CFD Based Air Flow and Contamination Modeling of Subway Stations CFD Based Air Flow and Contamination Modeling of Subway Stations Greg Byrne Center for Nonlinear Science, Georgia Institute of Technology Fernando Camelli Center for Computational Fluid Dynamics, George

More information

Diffusion and Fluid Flow

Diffusion and Fluid Flow Diffusion and Fluid Flow What determines the diffusion coefficient? What determines fluid flow? 1. Diffusion: Diffusion refers to the transport of substance against a concentration gradient. ΔS>0 Mass

More information

1. Fluids Mechanics and Fluid Properties. 1.1 Objectives of this section. 1.2 Fluids

1. Fluids Mechanics and Fluid Properties. 1.1 Objectives of this section. 1.2 Fluids 1. Fluids Mechanics and Fluid Properties What is fluid mechanics? As its name suggests it is the branch of applied mechanics concerned with the statics and dynamics of fluids - both liquids and gases.

More information

Natural Convection. Buoyancy force

Natural Convection. Buoyancy force Natural Convection In natural convection, the fluid motion occurs by natural means such as buoyancy. Since the fluid velocity associated with natural convection is relatively low, the heat transfer coefficient

More information

Differential Relations for Fluid Flow. Acceleration field of a fluid. The differential equation of mass conservation

Differential Relations for Fluid Flow. Acceleration field of a fluid. The differential equation of mass conservation Differential Relations for Fluid Flow In this approach, we apply our four basic conservation laws to an infinitesimally small control volume. The differential approach provides point by point details of

More information

CBE 6333, R. Levicky 1 Review of Fluid Mechanics Terminology

CBE 6333, R. Levicky 1 Review of Fluid Mechanics Terminology CBE 6333, R. Levicky 1 Review of Fluid Mechanics Terminology The Continuum Hypothesis: We will regard macroscopic behavior of fluids as if the fluids are perfectly continuous in structure. In reality,

More information

The Viscosity of Fluids

The Viscosity of Fluids Experiment #11 The Viscosity of Fluids References: 1. Your first year physics textbook. 2. D. Tabor, Gases, Liquids and Solids: and Other States of Matter (Cambridge Press, 1991). 3. J.R. Van Wazer et

More information

Basic Principles in Microfluidics

Basic Principles in Microfluidics Basic Principles in Microfluidics 1 Newton s Second Law for Fluidics Newton s 2 nd Law (F= ma) : Time rate of change of momentum of a system equal to net force acting on system!f = dp dt Sum of forces

More information

FLUID DYNAMICS. Intrinsic properties of fluids. Fluids behavior under various conditions

FLUID DYNAMICS. Intrinsic properties of fluids. Fluids behavior under various conditions FLUID DYNAMICS Intrinsic properties of fluids Fluids behavior under various conditions Methods by which we can manipulate and utilize the fluids to produce desired results TYPES OF FLUID FLOW Laminar or

More information

CE 6303 MECHANICS OF FLUIDS L T P C QUESTION BANK PART - A

CE 6303 MECHANICS OF FLUIDS L T P C QUESTION BANK PART - A CE 6303 MECHANICS OF FLUIDS L T P C QUESTION BANK 3 0 0 3 UNIT I FLUID PROPERTIES AND FLUID STATICS PART - A 1. Define fluid and fluid mechanics. 2. Define real and ideal fluids. 3. Define mass density

More information

Frost Damage of Roof Tiles in Relatively Warm Areas in Japan

Frost Damage of Roof Tiles in Relatively Warm Areas in Japan Frost Damage of Roof Tiles in Relatively Warm Areas in Japan Influence of Surface Finish on Water Penetration Chiemi IBA Hokkaido Research Organization, Japan Shuichi HOKOI Kyoto University, Japan INTRODUCTION

More information

Thermal diffusivity and conductivity - an introduction to theory and practice

Thermal diffusivity and conductivity - an introduction to theory and practice Thermal diffusivity and conductivity - an introduction to theory and practice Utrecht, 02 October 2014 Dr. Hans-W. Marx Linseis Messgeräte GmbH Vielitzer Str. 43 D-95100 Selb / GERMANY www.linseis.com

More information

Vacuum Technology. Kinetic Theory of Gas. Dr. Philip D. Rack

Vacuum Technology. Kinetic Theory of Gas. Dr. Philip D. Rack Kinetic Theory of Gas Assistant Professor Department of Materials Science and Engineering University of Tennessee 603 Dougherty Engineering Building Knoxville, TN 3793-00 Phone: (865) 974-5344 Fax (865)

More information

Lecture 9, Thermal Notes, 3.054

Lecture 9, Thermal Notes, 3.054 Lecture 9, Thermal Notes, 3.054 Thermal Properties of Foams Closed cell foams widely used for thermal insulation Only materials with lower conductivity are aerogels (tend to be brittle and weak) and vacuum

More information

Longer lifetime for hydraulic oil

Longer lifetime for hydraulic oil Longer lifetime for hydraulic oil In many applications hydraulic oils and lubricating oils are exchanged with new oil after only some thousand hours of operation. Changing the oil causes high costs and

More information

OUTCOME 3 TUTORIAL 5 DIMENSIONAL ANALYSIS

OUTCOME 3 TUTORIAL 5 DIMENSIONAL ANALYSIS Unit 41: Fluid Mechanics Unit code: T/601/1445 QCF Level: 4 Credit value: 15 OUTCOME 3 TUTORIAL 5 DIMENSIONAL ANALYSIS 3 Be able to determine the behavioural characteristics and parameters of real fluid

More information

Swissmetro travels at high speeds through a tunnel at low pressure. It will therefore undergo friction that can be due to:

Swissmetro travels at high speeds through a tunnel at low pressure. It will therefore undergo friction that can be due to: I. OBJECTIVE OF THE EXPERIMENT. Swissmetro travels at high speeds through a tunnel at low pressure. It will therefore undergo friction that can be due to: 1) Viscosity of gas (cf. "Viscosity of gas" experiment)

More information

Column Design. Gavin Duffy School of Electrical Engineering Systems DIT, Kevin Street

Column Design. Gavin Duffy School of Electrical Engineering Systems DIT, Kevin Street Column Design Gavin Duffy School of Electrical Engineering Systems DIT, Kevin Street Learning Outcomes After this lecture you should be able to. Explain why the ratio of vapour and liquid velocities is

More information

Turbulence, Heat and Mass Transfer (THMT 09) Poiseuille flow of liquid methane in nanoscopic graphite channels by molecular dynamics simulation

Turbulence, Heat and Mass Transfer (THMT 09) Poiseuille flow of liquid methane in nanoscopic graphite channels by molecular dynamics simulation Turbulence, Heat and Mass Transfer (THMT 09) Poiseuille flow of liquid methane in nanoscopic graphite channels by molecular dynamics simulation Sapienza Università di Roma, September 14, 2009 M. T. HORSCH,

More information

1 The basic equations of fluid dynamics

1 The basic equations of fluid dynamics 1 The basic equations of fluid dynamics The main task in fluid dynamics is to find the velocity field describing the flow in a given domain. To do this, one uses the basic equations of fluid flow, which

More information

LASER MELTED STEEL FREE SURFACE FORMATION

LASER MELTED STEEL FREE SURFACE FORMATION METALLURGY AND FOUNDRY ENGINEERING Vol. 33, 2007, No. 1 Aleksander Siwek * LASER MELTED STEEL FREE SURFACE FORMATION 1. INTRODUCTION Many phisical phenomena happen on the surface of worked object in the

More information

Practice Problems on Boundary Layers. Answer(s): D = 107 N D = 152 N. C. Wassgren, Purdue University Page 1 of 17 Last Updated: 2010 Nov 22

Practice Problems on Boundary Layers. Answer(s): D = 107 N D = 152 N. C. Wassgren, Purdue University Page 1 of 17 Last Updated: 2010 Nov 22 BL_01 A thin flat plate 55 by 110 cm is immersed in a 6 m/s stream of SAE 10 oil at 20 C. Compute the total skin friction drag if the stream is parallel to (a) the long side and (b) the short side. D =

More information

TWO FILM THEORY. Ref: ceeserver.cee.cornell.edu

TWO FILM THEORY. Ref: ceeserver.cee.cornell.edu TWO FILM THEORY Ref: ceeserver.cee.cornell.edu Gas transfer rates If either phase concentration can not be predicted by Henry's law then there will be a transfer of mass across the interface until equilibrium

More information

4. Introduction to Heat & Mass Transfer

4. Introduction to Heat & Mass Transfer 4. Introduction to Heat & Mass Transfer This section will cover the following concepts: A rudimentary introduction to mass transfer. Mass transfer from a molecular point of view. Fundamental similarity

More information

AS COMPETITION PAPER 2008

AS COMPETITION PAPER 2008 AS COMPETITION PAPER 28 Name School Town & County Total Mark/5 Time Allowed: One hour Attempt as many questions as you can. Write your answers on this question paper. Marks allocated for each question

More information

The Viscosity of Fluids

The Viscosity of Fluids Experiment #11 The Viscosity of Fluids References: 1. Your first year physics textbook. 2. D. Tabor, Gases, Liquids and Solids: and Other States of Matter (Cambridge Press, 1991). 3. J.R. Van Wazer et

More information

CE 204 FLUID MECHANICS

CE 204 FLUID MECHANICS CE 204 FLUID MECHANICS Onur AKAY Assistant Professor Okan University Department of Civil Engineering Akfırat Campus 34959 Tuzla-Istanbul/TURKEY Phone: +90-216-677-1630 ext.1974 Fax: +90-216-677-1486 E-mail:

More information

Experiment 3 Pipe Friction

Experiment 3 Pipe Friction EML 316L Experiment 3 Pipe Friction Laboratory Manual Mechanical and Materials Engineering Department College of Engineering FLORIDA INTERNATIONAL UNIVERSITY Nomenclature Symbol Description Unit A cross-sectional

More information

SURFACE TENSION. Definition

SURFACE TENSION. Definition SURFACE TENSION Definition In the fall a fisherman s boat is often surrounded by fallen leaves that are lying on the water. The boat floats, because it is partially immersed in the water and the resulting

More information

Molecular simulation of fluid dynamics on the nanoscale

Molecular simulation of fluid dynamics on the nanoscale VI. International Conference on Computational Fluid Dynamics Molecular simulation of fluid dynamics on the nanoscale St. Petersburg, July 16, 2010 M. Horsch, Y.-Tz. Hsiang, Z. Liu, S. K. Miroshnichenko,

More information

FALEX Four-Ball Extreme Pressure Test Machine

FALEX Four-Ball Extreme Pressure Test Machine FALEX Four-Ball Extreme Pressure Test Machine The Four-Ball EP Test measures a lubricant s extreme pressure properties under High Hertzian contact in pure sliding, or pure rolling, motion. The test is

More information

Rheological Properties of Topical Formulations

Rheological Properties of Topical Formulations Rheological Properties of Topical Formulations Hemi Nae, PhD Hydan Technologies, Inc. Key Words Complex Modulus, Creep/Recovery, Dilatant Flow, Dynamic Viscosity, Flow, Flow Curve, Flow Models, Frequency

More information

Solution for Homework #1

Solution for Homework #1 Solution for Homework #1 Chapter 2: Multiple Choice Questions (2.5, 2.6, 2.8, 2.11) 2.5 Which of the following bond types are classified as primary bonds (more than one)? (a) covalent bonding, (b) hydrogen

More information

Lecture 24 - Surface tension, viscous flow, thermodynamics

Lecture 24 - Surface tension, viscous flow, thermodynamics Lecture 24 - Surface tension, viscous flow, thermodynamics Surface tension, surface energy The atoms at the surface of a solid or liquid are not happy. Their bonding is less ideal than the bonding of atoms

More information

Development of New Inkjet Head Applying MEMS Technology and Thin Film Actuator

Development of New Inkjet Head Applying MEMS Technology and Thin Film Actuator Development of New Inkjet Head Applying MEMS Technology and Thin Film Actuator Kenji MAWATARI, Koich SAMESHIMA, Mitsuyoshi MIYAI, Shinya MATSUDA Abstract We developed a new inkjet head by applying MEMS

More information

VISCOSITY OF A LIQUID. To determine the viscosity of a lubricating oil. Time permitting, the temperature variation of viscosity can also be studied.

VISCOSITY OF A LIQUID. To determine the viscosity of a lubricating oil. Time permitting, the temperature variation of viscosity can also be studied. VISCOSITY OF A LIQUID August 19, 004 OBJECTIVE: EQUIPMENT: To determine the viscosity of a lubricating oil. Time permitting, the temperature variation of viscosity can also be studied. Viscosity apparatus

More information

Head Loss in Pipe Flow ME 123: Mechanical Engineering Laboratory II: Fluids

Head Loss in Pipe Flow ME 123: Mechanical Engineering Laboratory II: Fluids Head Loss in Pipe Flow ME 123: Mechanical Engineering Laboratory II: Fluids Dr. J. M. Meyers Dr. D. G. Fletcher Dr. Y. Dubief 1. Introduction Last lab you investigated flow loss in a pipe due to the roughness

More information

The Theory of HPLC. Gradient HPLC

The Theory of HPLC. Gradient HPLC The Theory of HPLC Gradient HPLC i Wherever you see this symbol, it is important to access the on-line course as there is interactive material that cannot be fully shown in this reference manual. Aims

More information

VISUAL PHYSICS School of Physics University of Sydney Australia. Why do cars need different oils in hot and cold countries?

VISUAL PHYSICS School of Physics University of Sydney Australia. Why do cars need different oils in hot and cold countries? VISUAL PHYSICS School of Physics University of Sydney Australia FLUID FLOW VISCOSITY POISEUILLE'S LAW? Why do cars need different oils in hot and cold countries? Why does the engine runs more freely as

More information

Ch 2 Properties of Fluids - II. Ideal Fluids. Real Fluids. Viscosity (1) Viscosity (3) Viscosity (2)

Ch 2 Properties of Fluids - II. Ideal Fluids. Real Fluids. Viscosity (1) Viscosity (3) Viscosity (2) Ch 2 Properties of Fluids - II Ideal Fluids 1 Prepared for CEE 3500 CEE Fluid Mechanics by Gilberto E. Urroz, August 2005 2 Ideal fluid: a fluid with no friction Also referred to as an inviscid (zero viscosity)

More information

Silicon-On-Glass MEMS. Design. Handbook

Silicon-On-Glass MEMS. Design. Handbook Silicon-On-Glass MEMS Design Handbook A Process Module for a Multi-User Service Program A Michigan Nanofabrication Facility process at the University of Michigan March 2007 TABLE OF CONTENTS Chapter 1...

More information

When the fluid velocity is zero, called the hydrostatic condition, the pressure variation is due only to the weight of the fluid.

When the fluid velocity is zero, called the hydrostatic condition, the pressure variation is due only to the weight of the fluid. Fluid Statics When the fluid velocity is zero, called the hydrostatic condition, the pressure variation is due only to the weight of the fluid. Consider a small wedge of fluid at rest of size Δx, Δz, Δs

More information

How To Calculate Thermal Resistance On A Pb (Plastipo)

How To Calculate Thermal Resistance On A Pb (Plastipo) VISHAY BEYSCHLAG Resistive Products 1. INTRODUCTION Thermal management is becoming more important as the density of electronic components in modern printed circuit boards (PCBs), as well as the applied

More information

Thermal Simulation of a Power Electronics Cold Plate with a Parametric Design Study

Thermal Simulation of a Power Electronics Cold Plate with a Parametric Design Study EVS28 KINTEX, Korea, May 3-6, 2015 Thermal Simulation of a Power Electronics Cold Plate with a Parametric Design Study Boris Marovic Mentor Graphics (Deutschland) GmbH, Germany, boris_marovic@mentor.com

More information

Pressure drop in pipes...

Pressure drop in pipes... Pressure drop in pipes... PRESSURE DROP CALCULATIONS Pressure drop or head loss, occurs in all piping systems because of elevation changes, turbulence caused by abrupt changes in direction, and friction

More information

Coupling Forced Convection in Air Gaps with Heat and Moisture Transfer inside Constructions

Coupling Forced Convection in Air Gaps with Heat and Moisture Transfer inside Constructions Coupling Forced Convection in Air Gaps with Heat and Moisture Transfer inside Constructions M. Bianchi Janetti 1, F. Ochs 1 and R. Pfluger 1 1 University of Innsbruck, Unit for Energy Efficient Buildings,

More information

Physics 101 Hour Exam 3 December 1, 2014

Physics 101 Hour Exam 3 December 1, 2014 Physics 101 Hour Exam 3 December 1, 2014 Last Name: First Name ID Discussion Section: Discussion TA Name: Instructions Turn off your cell phone and put it away. Calculators cannot be shared. Please keep

More information

Optimal Drying of Flooded Brickwork Masonry

Optimal Drying of Flooded Brickwork Masonry Optimal Drying of Flooded Brickwork Masonry John Grunewald, Dr.-Ing., Research Professor, Dresden University of Technology, Institute of Building Climatology, Germany grunewald@ibk.arch.tu-dresden.de,

More information

Resistance in the Mechanical System. Overview

Resistance in the Mechanical System. Overview Overview 1. What is resistance? A force that opposes motion 2. In the mechanical system, what are two common forms of resistance? friction and drag 3. What is friction? resistance that is produced when

More information

Adaptation of General Purpose CFD Code for Fusion MHD Applications*

Adaptation of General Purpose CFD Code for Fusion MHD Applications* Adaptation of General Purpose CFD Code for Fusion MHD Applications* Andrei Khodak Princeton Plasma Physics Laboratory P.O. Box 451 Princeton, NJ, 08540 USA akhodak@pppl.gov Abstract Analysis of many fusion

More information

Ocean Tracers. From Particles to sediment Thermohaline Circulation Past present and future ocean and climate. Only 4 hours left.

Ocean Tracers. From Particles to sediment Thermohaline Circulation Past present and future ocean and climate. Only 4 hours left. Ocean Tracers Basic facts and principles (Size, depth, S, T,, f, water masses, surface circulation, deep circulation, observing tools, ) Seawater not just water (Salt composition, Sources, sinks,, mixing

More information

Lecture 5 Hemodynamics. Description of fluid flow. The equation of continuity

Lecture 5 Hemodynamics. Description of fluid flow. The equation of continuity 1 Lecture 5 Hemodynamics Description of fluid flow Hydrodynamics is the part of physics, which studies the motion of fluids. It is based on the laws of mechanics. Hemodynamics studies the motion of blood

More information

Corrugated Tubular Heat Exchangers

Corrugated Tubular Heat Exchangers Corrugated Tubular Heat Exchangers HEAT EXCHANGERS for the 21st CENTURY Corrugated Tubular Heat Exchangers (CTHE) Corrugated Tube Heat Exchangers are shell and tube heat exchangers which use corrugated

More information

du u U 0 U dy y b 0 b

du u U 0 U dy y b 0 b BASIC CONCEPTS/DEFINITIONS OF FLUID MECHANICS (by Marios M. Fyrillas) 1. Density (πυκνότητα) Symbol: 3 Units of measure: kg / m Equation: m ( m mass, V volume) V. Pressure (πίεση) Alternative definition:

More information

Forces. Definition Friction Falling Objects Projectiles Newton s Laws of Motion Momentum Universal Forces Fluid Pressure Hydraulics Buoyancy

Forces. Definition Friction Falling Objects Projectiles Newton s Laws of Motion Momentum Universal Forces Fluid Pressure Hydraulics Buoyancy Forces Definition Friction Falling Objects Projectiles Newton s Laws of Motion Momentum Universal Forces Fluid Pressure Hydraulics Buoyancy Definition of Force Force = a push or pull that causes a change

More information

Basics of vehicle aerodynamics

Basics of vehicle aerodynamics Basics of vehicle aerodynamics Prof. Tamás Lajos Budapest University of Technology and Economics Department of Fluid Mechanics University of Rome La Sapienza 2002 Influence of flow characteristics on the

More information

Eco Pelmet Modelling and Assessment. CFD Based Study. Report Number 610.14351-R1D1. 13 January 2015

Eco Pelmet Modelling and Assessment. CFD Based Study. Report Number 610.14351-R1D1. 13 January 2015 EcoPelmet Pty Ltd c/- Geoff Hesford Engineering 45 Market Street FREMANTLE WA 6160 Version: Page 2 PREPARED BY: ABN 29 001 584 612 2 Lincoln Street Lane Cove NSW 2066 Australia (PO Box 176 Lane Cove NSW

More information

Ravi Kumar Singh*, K. B. Sahu**, Thakur Debasis Mishra***

Ravi Kumar Singh*, K. B. Sahu**, Thakur Debasis Mishra*** Ravi Kumar Singh, K. B. Sahu, Thakur Debasis Mishra / International Journal of Engineering Research and Applications (IJERA) ISSN: 48-96 www.ijera.com Vol. 3, Issue 3, May-Jun 3, pp.766-77 Analysis of

More information

Notes on Polymer Rheology Outline

Notes on Polymer Rheology Outline 1 Why is rheology important? Examples of its importance Summary of important variables Description of the flow equations Flow regimes - laminar vs. turbulent - Reynolds number - definition of viscosity

More information

Introduction to COMSOL. The Navier-Stokes Equations

Introduction to COMSOL. The Navier-Stokes Equations Flow Between Parallel Plates Modified from the COMSOL ChE Library module rev 10/13/08 Modified by Robert P. Hesketh, Chemical Engineering, Rowan University Fall 2008 Introduction to COMSOL The following

More information

Harvard wet deposition scheme for GMI

Harvard wet deposition scheme for GMI 1 Harvard wet deposition scheme for GMI by D.J. Jacob, H. Liu,.Mari, and R.M. Yantosca Harvard University Atmospheric hemistry Modeling Group Februrary 2000 revised: March 2000 (with many useful comments

More information

EUV lithography NXE platform performance overview

EUV lithography NXE platform performance overview EUV lithography NXE platform performance overview Rudy Peeters 2014 SPIE Advanced Lithography, San Jose CA, 9048-54 Slide 2 Contents Roadmap NXE:3100 NXE:3300B Summary and acknowledgements ASML EUV technology

More information

Active Alignment for Cameras in Mobile Devices and Automotive Applications

Active Alignment for Cameras in Mobile Devices and Automotive Applications Active Alignment for Cameras in Mobile Devices and Automotive Applications Dr. Karl Bitzer Product Management DELO Industrial Adhesives DELO Allee 1 86949 Windach - Germany www.delo.de karl.bitzer@delo.de

More information

Basic Equations, Boundary Conditions and Dimensionless Parameters

Basic Equations, Boundary Conditions and Dimensionless Parameters Chapter 2 Basic Equations, Boundary Conditions and Dimensionless Parameters In the foregoing chapter, many basic concepts related to the present investigation and the associated literature survey were

More information

Wafer Placement Repeatibility and Robot Speed Improvements for Bonded Wafer Pairs Used in 3D Integration

Wafer Placement Repeatibility and Robot Speed Improvements for Bonded Wafer Pairs Used in 3D Integration Wafer Placement Repeatibility and Robot Speed Improvements for Bonded Wafer Pairs Used in 3D Integration Andrew C. Rudack 3D Interconnect Metrology and Standards SEMATECH Albany, NY andy.rudack@sematech.org

More information

THERMAL STRATIFICATION IN A HOT WATER TANK ESTABLISHED BY HEAT LOSS FROM THE TANK

THERMAL STRATIFICATION IN A HOT WATER TANK ESTABLISHED BY HEAT LOSS FROM THE TANK THERMAL STRATIFICATION IN A HOT WATER TANK ESTABLISHED BY HEAT LOSS FROM THE TANK J. Fan and S. Furbo Abstract Department of Civil Engineering, Technical University of Denmark, Brovej, Building 118, DK-28

More information

RMF TANDEM 900 OFF-LINE FILTER SYSTEMS

RMF TANDEM 900 OFF-LINE FILTER SYSTEMS RMF TANDEM 900 OFF-LINE FILTER SYSTEMS RMF Tandem 900 Off-line filter Systems can be applied to every imaginable industrial application where hydraulic or lubrication systems are present. An integrated

More information

Millikan Oil Drop Experiment Matthew Norton, Jurasits Christopher, Heyduck William, Nick Chumbley. Norton 0

Millikan Oil Drop Experiment Matthew Norton, Jurasits Christopher, Heyduck William, Nick Chumbley. Norton 0 Millikan Oil Drop Experiment Matthew Norton, Jurasits Christopher, Heyduck William, Nick Chumbley Norton 0 Norton 1 Abstract The charge of an electron can be experimentally measured by observing an oil

More information

Cymer s Light Source Development for EUV Lithography. Bob Akins, Chairman & CEO

Cymer s Light Source Development for EUV Lithography. Bob Akins, Chairman & CEO Cymer s Light Source Development for EUV Lithography Bob Akins, Chairman & CEO Outline Introduction EUVL critical issues EUV sources Cymer Source Development Overview Power scaling Technology Outlook January

More information

Energy Transport. Focus on heat transfer. Heat Transfer Mechanisms: Conduction Radiation Convection (mass movement of fluids)

Energy Transport. Focus on heat transfer. Heat Transfer Mechanisms: Conduction Radiation Convection (mass movement of fluids) Energy Transport Focus on heat transfer Heat Transfer Mechanisms: Conduction Radiation Convection (mass movement of fluids) Conduction Conduction heat transfer occurs only when there is physical contact

More information

A NODAL MODEL FOR DISPLACEMENT VENTILATION AND CHILLED CEILING SYSTEMS IN OFFICE SPACES

A NODAL MODEL FOR DISPLACEMENT VENTILATION AND CHILLED CEILING SYSTEMS IN OFFICE SPACES A NODAL MODEL FOR DISPLACEMENT VENTILATION AND CHILLED CEILING SYSTEMS IN OFFICE SPACES Simon J. Rees and Philip Haves School of Mechanical & Aerospace Engineering, Oklahoma State University, Stillwater,

More information

Electrochemical Hydrodynamics Modeling Approach for a Copper Electrowinning Cell

Electrochemical Hydrodynamics Modeling Approach for a Copper Electrowinning Cell Int. J. Electrochem. Sci., 8 (2013) 12333-12347 International Journal of ELECTROCHEMICAL SCIENCE www.electrochemsci.org Electrochemical Hydrodynamics Modeling Approach for a Copper Electrowinning Cell

More information

oil liquid water water liquid Answer, Key Homework 2 David McIntyre 1

oil liquid water water liquid Answer, Key Homework 2 David McIntyre 1 Answer, Key Homework 2 David McIntyre 1 This print-out should have 14 questions, check that it is complete. Multiple-choice questions may continue on the next column or page: find all choices before making

More information

A Common Engine Platform for Engine LES Development and Validation

A Common Engine Platform for Engine LES Development and Validation A Common Engine Platform for Engine LES Development and Validation Volker Sick, D. Reuss, P. Abraham, A. Alharbi, O. Almagri, & H. Chen University of Michigan, Ann Arbor, MI, USA Chris Rutland & Y. Zhang,

More information

How To Increase Areal Density For A Year

How To Increase Areal Density For A Year R. Fontana¹, G. Decad¹, S. Hetzler² ¹IBM Systems Technology Group, ²IBM Research Division 20 September 2012 Technology Roadmap Comparisons for TAPE, HDD, and NAND Flash: Implications for Data Storage Applications

More information

Fluid Dynamics and the Navier-Stokes Equation

Fluid Dynamics and the Navier-Stokes Equation Fluid Dynamics and the Navier-Stokes Equation CMSC498A: Spring 12 Semester By: Steven Dobek 5/17/2012 Introduction I began this project through a desire to simulate smoke and fire through the use of programming

More information

PHYSICS FUNDAMENTALS-Viscosity and flow

PHYSICS FUNDAMENTALS-Viscosity and flow PHYSICS FUNDAMENTALS-Viscosity and flow The origin of viscosity When a force is applied to a solid, it will yield slightly, and then resist further movement. However, when we apply force to a fluid, it

More information

CFD SIMULATION OF SDHW STORAGE TANK WITH AND WITHOUT HEATER

CFD SIMULATION OF SDHW STORAGE TANK WITH AND WITHOUT HEATER International Journal of Advancements in Research & Technology, Volume 1, Issue2, July-2012 1 CFD SIMULATION OF SDHW STORAGE TANK WITH AND WITHOUT HEATER ABSTRACT (1) Mr. Mainak Bhaumik M.E. (Thermal Engg.)

More information

CHAPTER 15 FORCE, MASS AND ACCELERATION

CHAPTER 15 FORCE, MASS AND ACCELERATION CHAPTER 5 FORCE, MASS AND ACCELERATION EXERCISE 83, Page 9. A car initially at rest accelerates uniformly to a speed of 55 km/h in 4 s. Determine the accelerating force required if the mass of the car

More information

Theoretical and Experimental Investigation of Heat Transfer Characteristics through a Rectangular Microchannel Heat Sink

Theoretical and Experimental Investigation of Heat Transfer Characteristics through a Rectangular Microchannel Heat Sink Theoretical and Experimental Investigation of Heat Transfer Characteristics through a Rectangular Microchannel Heat Sink Dr. B. S. Gawali 1, V. B. Swami 2, S. D. Thakre 3 Professor Dr., Department of Mechanical

More information

AN EXPERIMENTAL STUDY OF EXERGY IN A CORRUGATED PLATE HEAT EXCHANGER

AN EXPERIMENTAL STUDY OF EXERGY IN A CORRUGATED PLATE HEAT EXCHANGER International Journal of Mechanical Engineering and Technology (IJMET) Volume 6, Issue 11, Nov 2015, pp. 16-22, Article ID: IJMET_06_11_002 Available online at http://www.iaeme.com/ijmet/issues.asp?jtype=ijmet&vtype=6&itype=11

More information

FLUID MECHANICS IM0235 DIFFERENTIAL EQUATIONS - CB0235 2014_1

FLUID MECHANICS IM0235 DIFFERENTIAL EQUATIONS - CB0235 2014_1 COURSE CODE INTENSITY PRE-REQUISITE CO-REQUISITE CREDITS ACTUALIZATION DATE FLUID MECHANICS IM0235 3 LECTURE HOURS PER WEEK 48 HOURS CLASSROOM ON 16 WEEKS, 32 HOURS LABORATORY, 112 HOURS OF INDEPENDENT

More information

Removal of Liquid Water Droplets in Gas Channels of Proton Exchange Membrane Fuel Cell

Removal of Liquid Water Droplets in Gas Channels of Proton Exchange Membrane Fuel Cell 第 五 届 全 球 华 人 航 空 科 技 研 讨 会 Removal of Liquid Water Droplets in Gas Channels of Proton Exchange Membrane Fuel Cell Chin-Hsiang Cheng 1,*, Wei-Shan Han 1, Chun-I Lee 2, Huan-Ruei Shiu 2 1 Department of

More information

Six Trends in Robotics in the Life Sciences

Six Trends in Robotics in the Life Sciences Parker Hannifin Electromechanical Dvision N. A. 1140 Sandy Hill Road Irwin, PA 1564203049 724-861-6903 www.parkermotion.com Six Trends in Robotics in the Life Sciences By Mike Szesterniak Big Impact in

More information

Vatten(byggnad) VVR145 Vatten. 2. Vätskors egenskaper (1.1, 4.1 och 2.8) (Föreläsningsanteckningar)

Vatten(byggnad) VVR145 Vatten. 2. Vätskors egenskaper (1.1, 4.1 och 2.8) (Föreläsningsanteckningar) Vatten(byggnad) Vätskors egenskaper (1) Hydrostatik (3) Grundläggande ekvationer (5) Rörströmning (4) 2. Vätskors egenskaper (1.1, 4.1 och 2.8) (Föreläsningsanteckningar) Vätska som kontinuerligt medium

More information

Exam 2 is at 7 pm tomorrow Conflict is at 5:15 pm in 151 Loomis

Exam 2 is at 7 pm tomorrow Conflict is at 5:15 pm in 151 Loomis * By request, but I m not vouching for these since I didn t write them Exam 2 is at 7 pm tomorrow Conflict is at 5:15 pm in 151 Loomis There are extra office hours today & tomorrow Lots of practice exams

More information

AN EFFECT OF GRID QUALITY ON THE RESULTS OF NUMERICAL SIMULATIONS OF THE FLUID FLOW FIELD IN AN AGITATED VESSEL

AN EFFECT OF GRID QUALITY ON THE RESULTS OF NUMERICAL SIMULATIONS OF THE FLUID FLOW FIELD IN AN AGITATED VESSEL 14 th European Conference on Mixing Warszawa, 10-13 September 2012 AN EFFECT OF GRID QUALITY ON THE RESULTS OF NUMERICAL SIMULATIONS OF THE FLUID FLOW FIELD IN AN AGITATED VESSEL Joanna Karcz, Lukasz Kacperski

More information

Stability of Evaporating Polymer Films. For: Dr. Roger Bonnecaze Surface Phenomena (ChE 385M)

Stability of Evaporating Polymer Films. For: Dr. Roger Bonnecaze Surface Phenomena (ChE 385M) Stability of Evaporating Polymer Films For: Dr. Roger Bonnecaze Surface Phenomena (ChE 385M) Submitted by: Ted Moore 4 May 2000 Motivation This problem was selected because the writer observed a dependence

More information

Effect of Dissolved CO 2 in De-ionized Water in Reducing Wafer Damage During Megasonic Cleaning in MegPie. Arizona 85721, USA. Arizona 85721, USA

Effect of Dissolved CO 2 in De-ionized Water in Reducing Wafer Damage During Megasonic Cleaning in MegPie. Arizona 85721, USA. Arizona 85721, USA Effect of Dissolved CO 2 in De-ionized Water in Reducing Wafer Damage During Megasonic Cleaning in MegPie S. Kumari a, M. Keswani a, S. Singh b, M. Beck c, E. Liebscher c, L. Q. Toan d and S. Raghavan

More information

Section 16: Neutral Axis and Parallel Axis Theorem 16-1

Section 16: Neutral Axis and Parallel Axis Theorem 16-1 Section 16: Neutral Axis and Parallel Axis Theorem 16-1 Geometry of deformation We will consider the deformation of an ideal, isotropic prismatic beam the cross section is symmetric about y-axis All parts

More information

Customer Training Material. Lecture 2. Introduction to. Methodology ANSYS FLUENT. ANSYS, Inc. Proprietary 2010 ANSYS, Inc. All rights reserved.

Customer Training Material. Lecture 2. Introduction to. Methodology ANSYS FLUENT. ANSYS, Inc. Proprietary 2010 ANSYS, Inc. All rights reserved. Lecture 2 Introduction to CFD Methodology Introduction to ANSYS FLUENT L2-1 What is CFD? Computational Fluid Dynamics (CFD) is the science of predicting fluid flow, heat and mass transfer, chemical reactions,

More information