Microscopie à champs proche: et application

Size: px
Start display at page:

Download "Microscopie à champs proche: et application"

Transcription

1 Microscopie à champs proche: Théorie et application STM, effet tunnel et applications AFM, interactions et applications im2np, Giens 2010

2 Optical microscopy: resolution limit resolution limit: d min = λ 2* NA λ lentille avec ouverture numerique NA

3 Scanning probe microscopy: resolution limit resolution limit: atomic length scale problems: - mechanical stability - tip-sample interaction current (STM), force (AFM), - control tip sample distance to a few Å topography

4 Implementation PtIr wire for Scanning Tunneling Microscopy (STM) microfabricated silicon beam for Atomic Force Microscopy (AFM) Bohr-radius a 0 = 5,29 * m tip height: 10-5 m table tennis ball r ~ 5 * 10-2 m Mont Cervin height: 4477 m/m 10 9 length = 450 µm / width = 45 µm thickness = 1.5 µm E = N/m 2 tip height = 12 µm / radius: 10 nm

5 What is imaged in STM?

6 Scanning tunneling microscope (STM) typical values: current 10 pa...10 na voltage mv...several V distance 0.5 nm exponential dependence on distance s: x xyz piezo scanner y topography information z controller I exp(-αs), α 2 Å -1 tip U atomic resolution sample + desired value G. Binnig and H. Rohrer, Helv. Phys. Acta 55, 726 (1982) Nobel Prize 1986

7 Tunnelling barrier Le PASSE-MURAILLE Sculpture de Jean MARAIS Julian Chen: Introduction to STM, Oxford University Press

8 Tunnelling barrier Julian Chen: Introduction to STM, Oxford University Press

9 Tunnelling process IT deρt ( E + ev ) ρs ( E) T( E, ev ) E E F F ev ρ s, ρ t T LDOS of sample and tip barrier transmission

10 Tunnelling spectroscopy IT deρt ( E + ev ) ρs ( E) T( E, ev ) E E F F ev ρ s, ρ t T LDOS of sample and tip barrier transmission

11 STM imaging of a surface state M.F. Crommie et al., Nature 363, 524 (1993)

12 Nanostructuration: : STM M. Abel, D. Catalin, S. Clair, M. Koudia, O. Ourdjini, R. Pawlak, M. Mossoyan, and L. Porte

13 BDBA on KCl: : Motivation dehydration - nh 2 O STM results: BDBA on Ag(111) Zwaneveld N. et al., JACS 190, 6678 (2008)

14 BDBA on Ag (100) spontaneous polarization tip induced polymerization 4.0nm 12nm 6.0nm 12nm

15 organometallic π - conjugated network iron-phthalocyanines on Ag + Fer + Fer 12nm 6.0nm

16 Properties for molecular electronics S=1 on each iron atom 2.0nm spin-polarized conductivity molecular magnet

17 What is imaged in AFM? L. Gross et al., Science 325, 1110 (2009)

18 Beam Deflection L. Howald et al., Appl. Phys. Lett. 63, 117 (1993)

19 Experimental setup for noncontact AFM excitation amplitude controller frequency demodulation f 0 distance controller Lock-In amplifier Kelvin controller topography bias voltage see poster by Jérémy BOULOC, PLL up to 100 MHz more details: U. Zerweck, Ch. Loppacher et al. Phys. Rev. B 71, (2005)

20 Forces R Nano- Tip α d S d L Van der Waals forces: (F.O. Goodman und N. Garcia, Phys. Rev. B 43, 4728 (91)) electrostatic forces: (S. Hudlet et al., Euro. Phys. J. 25, (98)) chemical forces: attractive: binding and adhesion forces repulsive: Pauli and nuclear repulsion Literature: J. Israelachvili: Intermolecular and Surface Forces, Academic Press (1985) D. Tabor: Gases, liquids and solids, Cambridge University Press (1979)

21 Separation of interactions I force oscillation amplitude 3-30 nm distance U sample = -U CPD

22 Separation of interactions II f VdW = f0 ka 12d L HR 2d L A 0-10 f [Hz] U sample = -U CPD distance [nm] M. Guggisberg, Ch. Loppacher et al., Phys. Rev. B 61, (2000)

23 Calculation of forces f 0 U 0 d S ds f chem = exp( 2 ) 2 exp( ) ka πaλ λf λ F F 2U = 0 d S d S F exp( 2 ) exp( ) chem λf λf λf 0 f chem [Hz] ,0-0,2-0,4 F [nn] distance [nm] M. Guggisberg, Ch. Loppacher et al., Phys. Rev. B 61, (2000)

24 Single molecular switch Cu-tetra(3,5 di-t-butylphenyl)porphyrine 25 nm Calculations: H. Tang and C. Joachim, CEMES/CNRS, Toulouse, France (MM2) Ch. Loppacher et al., Phys. Rev. Lett. 90, (2003)

25 Single molecular switch Cu-tetra(3,5 di-t-butylphenyl)porphyrine E = 83zJ = 0.6eV 25 nm Calculations: H. Tang and C. Joachim, CEMES/CNRS, Toulouse, France (MM2) Ch. Loppacher et al., Phys. Rev. Lett. 90, (2003)

26 Atom recognition surface Si(111) 7x7 avec des atomes de plomb et étain Y. Sugimoto et al., Nature 446 (2007) 64

27 Electrostatic forces: Kelvin Force Microscopy topography (10µm) 2 topography (500nm) 2 F el U ext φ 2 U mod surface potential 800 U CPD ~ 900mV U DC Oscillating force C ( ) π z U DC φ e U mod cos( 2 f mod t ) 1 C + π z U 2 mod cos( 4 f mod t ) 4 vibration at f mod and 2f mod number of points U cpd [V] U. Zerweck, Ch. Loppacher et al., Phys. Rev. B. 71: (2005)

28 Nanostructuration: : AFM F. Bocquet, L. Nony, and Ch. Loppacher electronic properties of single molecules and interfaces single charge, molecular dipole KBr Ag(111) «tunable» insulating and wide-gap surfaces quantitative understanding

29 BDBA on KCl: : Experiments R. Pawlak et al., J. Phys. Chem. C, in press ad hoc model: Flat-lying configuration impossible, tilt around long axis necessary (steric hindrance) lattice constant: a = 5.2 Å; b = 10.0 Å

30 BDBA on KCl: : Calculations BDBA unit cell (SIESTA code, GGA functional, PBE type) y 4 H-bonds/mol: 1eV (0.25 ev/ H-bond/mol.) Theoretical lattice constant: a = 4.99 Å; b = Å calculations: V. Oison, M. Sassi, and J.-M. Debierre cf: Rodriguez-Cuamatzi P. et al., Acta Cryst. E60, o1315 (2004)

31 BDBA on KCl: : Calculations calculations: V. Oison, M. Sassi, and J.-M. Debierre cf: Rodriguez-Cuamatzi P. et al., Acta Cryst. E60, o1315 (2004)

32 BDBA on HOPG: Experiments (700x700)nm 2, f= -1Hz (25x25)nm 2, f=-12hz identical structure on HOPG (first ML) as on KCl

33 Measurement of local charges L. Gross et al., Science 324, 1428 (2009)

34 Measurement of local charges L. Gross et al., Science 324, 1428 (2009)

35 Imaging ionic surfaces: Model F. Bocquet et al., PRB 78, (2008)

36 Imaging ionic surfaces: Forces and simulations Forces L. Nony et al., PRB 74, (2006) KPFM simulation F. Bocquet et al., PRB 78, (2008)

37 Imaging ionic surfaces: Model II L. Nony et al., PRL 103, (2009) atomistic calculations by A. Foster, Tampere and Helsinki University, Finland

38 Imaging ionic surfaces: Model II topography LCPD LCPD, constant height L. Nony et al., PRL 103, (2009)

39 Influence of Molecular Organization on φ ZnPcCl8 on Ag(111) first phase: P1 intermediate : P2 end phase : P3 ZnPcCl8 Image 10 nm x 10 nm time or annealinig evolution with time: sequential formation of hydrogen bonds M. Koudia et al., J. Phys. Chem. B 110, (2006) M. Abel et al., ChemPhysChem 7, 82 (2006)

40 Influence of Molecular Organization on φ ZnPcCl 8 on Ag(111) P1 P2 Kelvin DFT electronic structure calculations using SIESTA P. Milde, Ch. Loppacher et al., Nanotechnology 19, (2008)

41 Influence of Molecular Orientation on φ 5,15-bis(2,6 -bis(3,3-dimethyl-1- butyloxy)phenyl)porphyrin M. Nikiforov, Ch. Loppacher et al., Nano Letters (2008)

42 Influence of Molecular Orientation on φ M. Nikiforov, Ch. Loppacher et al., Nano Letters (2008)

43 Optical properties of adsorbed molecules PTCDA on KCl < 1 monolayer > 1 monolayer sublimation > 1 monolayer optical properties change PTCDA/KCl R/R λ(nm) quadratic herringbone T. Dienel, Ch. Loppacher et al., Advanced Materials, 20, 959 (2008)

44 Optical properties of adsorbed molecules PTCDA on KCl < 1 monolayer > 1 monolayer dissipation [010] [100] PTCDA/KCl commensurate 2x2 overlayer! quadratic herringbone T. Dienel, Ch. Loppacher et al., Advanced Materials, 20, 959 (2008)

45 Conclusion what is imaged in STM? formation of covalent network separation and calculation of forces single charge manipulation image simulation

46 merci pour votre attention!

STM and AFM Tutorial. Katie Mitchell January 20, 2010

STM and AFM Tutorial. Katie Mitchell January 20, 2010 STM and AFM Tutorial Katie Mitchell January 20, 2010 Overview Scanning Probe Microscopes Scanning Tunneling Microscopy (STM) Atomic Force Microscopy (AFM) Contact AFM Non-contact AFM RHK UHV350 AFM/STM

More information

7/3/2014. Introduction to Atomic Force Microscope. Introduction to Scanning Force Microscope. Invention of Atomic Force Microscope (AFM)

7/3/2014. Introduction to Atomic Force Microscope. Introduction to Scanning Force Microscope. Invention of Atomic Force Microscope (AFM) Introduction to Atomic Force Microscope Introduction to Scanning Force Microscope Not that kind of atomic Tien Ming Chuang ( 莊 天 明 ) Institute of Physics, Academia Sinica Tien Ming Chuang ( 莊 天 明 ) Institute

More information

Lecture 4 Scanning Probe Microscopy (SPM)

Lecture 4 Scanning Probe Microscopy (SPM) Lecture 4 Scanning Probe Microscopy (SPM) General components of SPM; Tip --- the probe; Cantilever --- the indicator of the tip; Tip-sample interaction --- the feedback system; Scanner --- piezoelectric

More information

Lecture 6 Scanning Tunneling Microscopy (STM) General components of STM; Tunneling current; Feedback system; Tip --- the probe.

Lecture 6 Scanning Tunneling Microscopy (STM) General components of STM; Tunneling current; Feedback system; Tip --- the probe. Lecture 6 Scanning Tunneling Microscopy (STM) General components of STM; Tunneling current; Feedback system; Tip --- the probe. Brief Overview of STM Inventors of STM The Nobel Prize in Physics 1986 Nobel

More information

Microscopie à force atomique: Le mode noncontact

Microscopie à force atomique: Le mode noncontact Microscopie à force atomique: Le mode noncontact Clemens Barth barth@crmcn.univ-mrs.fr CRMCN-CNRS, Campus de Lumny, Case 913, 13288 Marseille Cedex09, France La Londe les Maures (France) -- 20-21/03/2007

More information

1 Introduction. 1.1 Historical Perspective

1 Introduction. 1.1 Historical Perspective j1 1 Introduction 1.1 Historical Perspective The invention of scanning probe microscopy is considered one of the major advances in materials science since 1950 [1, 2]. Scanning probe microscopy includes

More information

INTRODUCTION TO SCANNING TUNNELING MICROSCOPY

INTRODUCTION TO SCANNING TUNNELING MICROSCOPY INTRODUCTION TO SCANNING TUNNELING MICROSCOPY SECOND EDITION C. JULIAN CHEN Department of Applied Physics and Applied Mathematics, Columbia University, New York OXJORD UNIVERSITY PRESS Contents Preface

More information

- particle with kinetic energy E strikes a barrier with height U 0 > E and width L. - classically the particle cannot overcome the barrier

- particle with kinetic energy E strikes a barrier with height U 0 > E and width L. - classically the particle cannot overcome the barrier Tunnel Effect: - particle with kinetic energy E strikes a barrier with height U 0 > E and width L - classically the particle cannot overcome the barrier - quantum mechanically the particle can penetrated

More information

SCANNING PROBE MICROSCOPY NANOS-E3 SCHOOL 29/09/2015 An introduction to surface microscopy probes

SCANNING PROBE MICROSCOPY NANOS-E3 SCHOOL 29/09/2015 An introduction to surface microscopy probes SCANNING PROBE MICROSCOPY NANOS-E3 SCHOOL 29/09/2015 An introduction to surface microscopy probes SPM is ubiquitous in modern research Physics Nanotechnology/chemistry Nature Nanotechnology 10, 156 160

More information

Scanning Tunneling Microscopy: Fundamentals and Applications

Scanning Tunneling Microscopy: Fundamentals and Applications McGill University, Montreal, March 30 th 2007 Scanning Tunneling Microscopy: Fundamentals and Applications Federico Rosei Canada Research Chair in Nanostructured Organic and Inorganic Materials Énergie,

More information

Scanning Probe Microscopy

Scanning Probe Microscopy Ernst Meyer Hans Josef Hug Roland Bennewitz Scanning Probe Microscopy The Lab on a Tip With 117 Figures Mß Springer Contents 1 Introduction to Scanning Probe Microscopy f f.1 Overview 2 f.2 Basic Concepts

More information

Scanning Near-Field Optical Microscopy for Measuring Materials Properties at the Nanoscale

Scanning Near-Field Optical Microscopy for Measuring Materials Properties at the Nanoscale Scanning Near-Field Optical Microscopy for Measuring Materials Properties at the Nanoscale Outline Background Research Design Detection of Near-Field Signal Submonolayer Chemical Sensitivity Conclusions

More information

Basic principles and mechanisms of NSOM; Different scanning modes and systems of NSOM; General applications and advantages of NSOM.

Basic principles and mechanisms of NSOM; Different scanning modes and systems of NSOM; General applications and advantages of NSOM. Lecture 16: Near-field Scanning Optical Microscopy (NSOM) Background of NSOM; Basic principles and mechanisms of NSOM; Basic components of a NSOM; Different scanning modes and systems of NSOM; General

More information

Spin-flip excitation spectroscopy with STM excitation of allowed transition adds an inelastic contribution (group of Andreas Heinrich, IBM Almaden)

Spin-flip excitation spectroscopy with STM excitation of allowed transition adds an inelastic contribution (group of Andreas Heinrich, IBM Almaden) Magnetism at the atomic scale by Scanning Probe Techniques Kirsten von Bergmann Institute of Applied Physics Magnetism with SPM Spin-polarized scanning tunneling microscopy SP-STM density of states of

More information

Atomic Force Microscopy. Long Phan Nanotechnology Summer Series May 15, 2013

Atomic Force Microscopy. Long Phan Nanotechnology Summer Series May 15, 2013 Atomic Force Microscopy Long Phan Nanotechnology Summer Series May 15, 2013 1 World s Smallest Movie 2 Outline What is AFM? How does AFM Work? 3 Modes: Contact mode Non contact mode Tapping mode Imaging

More information

ATOMIC FORCE MICROSCOPY

ATOMIC FORCE MICROSCOPY ATOMIC FORCE MICROSCOPY Introduction The atomic force microscope, or AFM, is a member of the family of instruments known as scanning probe microscopes. The AFM operates under a completely different principle

More information

From apertureless near-field optical microscopy to infrared near-field night vision

From apertureless near-field optical microscopy to infrared near-field night vision From apertureless near-field optical microscopy to infrared near-field night vision Yannick DE WILDE ESPCI Laboratoire d Optique Physique UPR A0005-CNRS, PARIS dewilde@optique.espci.fr From apertureless

More information

SPM 150 Aarhus with KolibriSensor

SPM 150 Aarhus with KolibriSensor Customied Systems and Solutions Nanostructures and Thin Film Deposition Surface Analysis and Preparation Components Surface Science Applications SPM 150 Aarhus with KolibriSensor Atomic resolution NC-AFM

More information

The influence of graphene curvature on hydrogen adsorption. Sarah Goler

The influence of graphene curvature on hydrogen adsorption. Sarah Goler The influence of graphene curvature on hydrogen adsorption Sarah Goler Laboratorio NEST, Istituto Nanoscienze CNR and Scuola Normale Superiore, Piazza San Silvestro 12, 56127 Pisa, Italy Center for Nanotechnology

More information

Scanning probe microscopy AFM, STM. Near field Scanning Optical Microscopy(NSOM) Scanning probe fabrication

Scanning probe microscopy AFM, STM. Near field Scanning Optical Microscopy(NSOM) Scanning probe fabrication Scanning probe microscopy AFM, STM Near field Scanning Optical Microscopy(NSOM) Scanning probe fabrication Scanning Probe Microscopy 1986 Binning and Rohrer shared Nobel Prize in Physics for invention.stm

More information

STM, LEED and Mass spectrometry

STM, LEED and Mass spectrometry STM, LEED and Mass spectrometry R. Schloderer, S. Griessl, J. Freund, M. Edelwirth, W.M. Heckl Introduction TDS UHV technique Preparation STM LEED QMS Concept of new UHV chamber Conclusion P. Cole, M.

More information

Tecniche a scansione di sonda per nanoscopia e nanomanipolazione 2: AFM e derivati

Tecniche a scansione di sonda per nanoscopia e nanomanipolazione 2: AFM e derivati LS Scienza dei Materiali - a.a. 2008/09 Fisica delle Nanotecnologie part 5.2 Version 7, Nov 2008 Francesco Fuso, tel 0502214305, 0502214293 - fuso@df.unipi.it http://www.df.unipi.it/~fuso/dida Tecniche

More information

5. Scanning Near-Field Optical Microscopy 5.1. Resolution of conventional optical microscopy

5. Scanning Near-Field Optical Microscopy 5.1. Resolution of conventional optical microscopy 5. Scanning Near-Field Optical Microscopy 5.1. Resolution of conventional optical microscopy Resolution of optical microscope is limited by diffraction. Light going through an aperture makes diffraction

More information

Surface Analysis with STM and AFM

Surface Analysis with STM and AFM Sergei N. Magonov, Myung-Hwan Whangbo Surface Analysis with STM and AFM Experimental and Theoretical Aspects of Image Analysis VCH Weinheim New York Basel Cambridge Tokyo Preface V 1 Introduction 1 1.1

More information

Usage of Carbon Nanotubes in Scanning Probe Microscopes as Probe. Keywords: Carbon Nanotube, Scanning Probe Microscope

Usage of Carbon Nanotubes in Scanning Probe Microscopes as Probe. Keywords: Carbon Nanotube, Scanning Probe Microscope International Journal of Arts and Sciences 3(1): 18-26 (2009) CD-ROM. ISSN: 1944-6934 InternationalJournal.org Usage of Carbon Nanotubes in Scanning Probe Microscopes as Probe Bedri Onur Kucukyildirim,

More information

Nanoelectronics 09. Atsufumi Hirohata Department of Electronics. Quick Review over the Last Lecture

Nanoelectronics 09. Atsufumi Hirohata Department of Electronics. Quick Review over the Last Lecture Nanoelectronics 09 Atsufumi Hirohata Department of Electronics 12:00 Wednesday, 4/February/2015 (P/L 006) Quick Review over the Last Lecture ( Field effect transistor (FET) ): ( Drain ) current increases

More information

It has long been a goal to achieve higher spatial resolution in optical imaging and

It has long been a goal to achieve higher spatial resolution in optical imaging and Nano-optical Imaging using Scattering Scanning Near-field Optical Microscopy Fehmi Yasin, Advisor: Dr. Markus Raschke, Post-doc: Dr. Gregory Andreev, Graduate Student: Benjamin Pollard Department of Physics,

More information

NEAR FIELD OPTICAL MICROSCOPY AND SPECTROSCOPY WITH STM AND AFM PROBES

NEAR FIELD OPTICAL MICROSCOPY AND SPECTROSCOPY WITH STM AND AFM PROBES Vol. 93 (1997) A CTA PHYSICA POLONICA A No. 2 Proceedings of the 1st International Symposium on Scanning Probe Spectroscopy and Related Methods, Poznań 1997 NEAR FIELD OPTICAL MICROSCOPY AND SPECTROSCOPY

More information

Laboratorio Regionale LiCryL CNR-INFM

Laboratorio Regionale LiCryL CNR-INFM Laboratorio Regionale LiCryL CNR-INFM c/o Physics Department - University of Calabria, Ponte P. Bucci, Cubo 33B, 87036 Rende (CS) Italy UNIVERSITÀ DELLA CALABRIA Dipartimento di FISICA Researchers Dr.

More information

AFM tip characterization by Kelvin probe force microscopy - Supporting information -

AFM tip characterization by Kelvin probe force microscopy - Supporting information - AFM tip characterization by Kelvin probe force microscopy - Supporting information - C. Barth 1, T. Hynninen,4, M. Bieletzki, C. R. Henry 1, A. S. Foster,4, F. Esch and U. Heiz 1 Centre Interdisciplinaire

More information

Piezoelectric Scanners

Piezoelectric Scanners Piezoelectric Scanners Piezoelectric materials are ceramics that change dimensions in response to an applied voltage and conversely, they develop an electrical potential in response to mechanical pressure.

More information

What is Nanophysics: Survey of Course Topics. Branislav K. Nikolić

What is Nanophysics: Survey of Course Topics. Branislav K. Nikolić What is Nanophysics: Survey of Course Topics Branislav K. Nikolić Department of Physics and Astronomy, University of Delaware, Newark, DE 19716, U.S.A. http://wiki.physics.udel.edu/phys824 Definition of

More information

(Nano)materials characterization

(Nano)materials characterization (Nano)materials characterization MTX9100 Nanomaterials Lecture 8 OUTLINE 1 -What SEM and AFM are good for? - What is the Atomic Force Microscopes Contribution to Nanotechnology? - What is Spectroscopy?

More information

How To Image A Magnetic Microscope

How To Image A Magnetic Microscope Agustina Asenjo Dpto. Propiedades Opticas, Magnéticas y de Transporte Instituto de Ciencia de Materiales de Madrid- CSIC Introducción: Esquema MFM frente a otras técnicas de observación de dominios. Fundamentos

More information

Tecniche a scansione di sonda per nanoscopia e nanomanipolazione: STM, AFM e derivati

Tecniche a scansione di sonda per nanoscopia e nanomanipolazione: STM, AFM e derivati LS Scienza dei Materiali - a.a. 2006/07 Fisica delle Nanotecnologie part 5.1 Version 5a, Nov 2006 Francesco Fuso, tel 0502214305, 0502214293 - fuso@df.unipi.it http://www.df.unipi.it/~fuso/dida Tecniche

More information

On the way to a multi-task near field optical microscope: Simultaneous STM/SNOM and PSTM imaging

On the way to a multi-task near field optical microscope: Simultaneous STM/SNOM and PSTM imaging A Microsc. Microanal. Microstruct. 5 (1994) 399 AUGUST/OCTOBER/DECEMBER 1994, PAGE 399 Classification Physics Abstracts 42.30. d On the way to a multitask near field optical microscope: Simultaneous STM/SNOM

More information

Nanoceanal Spectroscopy of Vibrariums and Electariums

Nanoceanal Spectroscopy of Vibrariums and Electariums FEM-Simulationen von Feldverteilungen im elektrischen Rasterkraft-Mikroskop Falk Müller 100 nm 2,93 nm 0 nm Experimental set-up Results Results on gold Application on silicon Numerical umerical simulations

More information

Nano Optics: Overview of Research Activities. Sergey I. Bozhevolnyi SENSE, University of Southern Denmark, Odense, DENMARK

Nano Optics: Overview of Research Activities. Sergey I. Bozhevolnyi SENSE, University of Southern Denmark, Odense, DENMARK Nano Optics: Overview of Research Activities SENSE, University of Southern Denmark, Odense, DENMARK Optical characterization techniques: Leakage Radiation Microscopy Scanning Near-Field Optical Microscopy

More information

The Application of Density Functional Theory in Materials Science

The Application of Density Functional Theory in Materials Science The Application of Density Functional Theory in Materials Science Slide 1 Outline Atomistic Modelling Group at MUL Density Functional Theory Numerical Details HPC Cluster at the MU Leoben Applications

More information

Modern Construction Materials Prof. Ravindra Gettu Department of Civil Engineering Indian Institute of Technology, Madras

Modern Construction Materials Prof. Ravindra Gettu Department of Civil Engineering Indian Institute of Technology, Madras Modern Construction Materials Prof. Ravindra Gettu Department of Civil Engineering Indian Institute of Technology, Madras Module - 2 Lecture - 2 Part 2 of 2 Review of Atomic Bonding II We will continue

More information

Atomic Force Microscopy. July, 2011 R. C. Decker and S. Qazi

Atomic Force Microscopy. July, 2011 R. C. Decker and S. Qazi Atomic Force Microscopy July, 2011 R. C. Decker and S. Qazi Learning through Visualization Visualization of physical phenomena can confirm hypothesis Observation provides opportunities for study without

More information

Matter, Materials, Crystal Structure and Bonding. Chris J. Pickard

Matter, Materials, Crystal Structure and Bonding. Chris J. Pickard Matter, Materials, Crystal Structure and Bonding Chris J. Pickard Why should a theorist care? Where the atoms are determines what they do Where the atoms can be determines what we can do Overview of Structure

More information

Molecular Dynamics Simulations

Molecular Dynamics Simulations Molecular Dynamics Simulations Yaoquan Tu Division of Theoretical Chemistry and Biology, Royal Institute of Technology (KTH) 2011-06 1 Outline I. Introduction II. Molecular Mechanics Force Field III. Molecular

More information

Single Defect Center Scanning Near-Field Optical Microscopy on Graphene

Single Defect Center Scanning Near-Field Optical Microscopy on Graphene 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 Single Defect Center Scanning Near-Field Optical Microscopy on Graphene J. Tisler, T. Oeckinghaus, R. Stöhr, R. Kolesov, F. Reinhard and J. Wrachtrup 3. Institute

More information

Surface-state engineering for interconnects on H-passivated Si(100)

Surface-state engineering for interconnects on H-passivated Si(100) Surface-state engineering for interconnects on H-passivated Si(100) Roberto Robles, Mikaël Kepenekian, Christian Joaquim, Nicolás Lorente International Workshop on Nanopackaging Grenoble, June 27th 28th,

More information

Sensors & Instruments for station. returned samples. Chun Chia Tan

Sensors & Instruments for station. returned samples. Chun Chia Tan Sensors & Instruments for station based materials characterization of returned samples Chun Chia Tan 04/01/2009 Outline Introduction to materials characterization General overview of the equipment used

More information

CREOL, College of Optics & Photonics, University of Central Florida

CREOL, College of Optics & Photonics, University of Central Florida OSE6650 - Optical Properties of Nanostructured Materials Optical Properties of Nanostructured Materials Fall 2013 Class 3 slide 1 Challenge: excite and detect the near field Thus far: Nanostructured materials

More information

Nano-Microscopy: Lecture 1. Pavel Zinin HIGP, University of Hawaii, Honolulu, USA

Nano-Microscopy: Lecture 1. Pavel Zinin HIGP, University of Hawaii, Honolulu, USA GG 711: Advanced Techniques in Geophysics and Materials Science Nano-Microscopy: Lecture 1 Scanning Tunneling and Atomic Force Microscopies Principles Pavel Zinin HIGP, University of Hawaii, Honolulu,

More information

CHAPTER 6 Chemical Bonding

CHAPTER 6 Chemical Bonding CHAPTER 6 Chemical Bonding SECTION 1 Introduction to Chemical Bonding OBJECTIVES 1. Define Chemical bond. 2. Explain why most atoms form chemical bonds. 3. Describe ionic and covalent bonding.. 4. Explain

More information

Agilent 5500 AFM. Data Sheet. Features and Benefits

Agilent 5500 AFM. Data Sheet. Features and Benefits Agilent 5500 AFM Data Sheet Figure 1. STM image of HOPG showing atomic structure. Scan size: 4 nm. Features and Benefits Exceptional environmental and temperature control Superior scanning in fluids, gases,

More information

Type of Chemical Bonds

Type of Chemical Bonds Type of Chemical Bonds Covalent bond Polar Covalent bond Ionic bond Hydrogen bond Metallic bond Van der Waals bonds. Covalent Bonds Covalent bond: bond in which one or more pairs of electrons are shared

More information

Multi-mode Atomic Force Microscope (with High Voltage Piezo Force Microscope and +/- 8000 Oe Variable Field module.)

Multi-mode Atomic Force Microscope (with High Voltage Piezo Force Microscope and +/- 8000 Oe Variable Field module.) Multi-mode Atomic Force Microscope (with High Voltage Piezo Force Microscope and +/- 8000 Oe Variable Field module.) Main specifications of the proposed instrument: 1 Instrument Resolution: 1.1 The instrument

More information

POLAR COVALENT BONDS Ionic compounds form repeating. Covalent compounds form distinct. Consider adding to NaCl(s) vs. H 2 O(s):

POLAR COVALENT BONDS Ionic compounds form repeating. Covalent compounds form distinct. Consider adding to NaCl(s) vs. H 2 O(s): POLAR COVALENT BONDS Ionic compounds form repeating. Covalent compounds form distinct. Consider adding to NaCl(s) vs. H 2 O(s): Sometimes when atoms of two different elements form a bond by sharing an

More information

Indiana's Academic Standards 2010 ICP Indiana's Academic Standards 2016 ICP. map) that describe the relationship acceleration, velocity and distance.

Indiana's Academic Standards 2010 ICP Indiana's Academic Standards 2016 ICP. map) that describe the relationship acceleration, velocity and distance. .1.1 Measure the motion of objects to understand.1.1 Develop graphical, the relationships among distance, velocity and mathematical, and pictorial acceleration. Develop deeper understanding through representations

More information

Bonding in Elements and Compounds. Covalent

Bonding in Elements and Compounds. Covalent Bonding in Elements and Compounds Structure of solids, liquids and gases Types of bonding between atoms and molecules Ionic Covalent Metallic Many compounds between metals & nonmetals (salts), e.g. Na,

More information

Non-Covalent Bonds (Weak Bond)

Non-Covalent Bonds (Weak Bond) Non-Covalent Bonds (Weak Bond) Weak bonds are those forces of attraction that, in biological situations, do not take a large amount of energy to break. For example, hydrogen bonds are broken by energies

More information

FOR TEACHERS ONLY. The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION PHYSICAL SETTING/CHEMISTRY

FOR TEACHERS ONLY. The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION PHYSICAL SETTING/CHEMISTRY FOR TEACHERS ONLY PS CH The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION PHYSICAL SETTING/CHEMISTRY Wednesday, January 29, 2003 9:15 a.m. to 12:15 p.m., only SCORING KEY AND RATING

More information

Scanning Near Field Optical Microscopy: Principle, Instrumentation and Applications

Scanning Near Field Optical Microscopy: Principle, Instrumentation and Applications Scanning Near Field Optical Microscopy: Principle, Instrumentation and Applications Saulius Marcinkevičius Optics, ICT, KTH 1 Outline Optical near field. Principle of scanning near field optical microscope

More information

CHAPTER 10: INTERMOLECULAR FORCES: THE UNIQUENESS OF WATER Problems: 10.2, 10.6,10.15-10.33, 10.35-10.40, 10.56-10.60, 10.101-10.

CHAPTER 10: INTERMOLECULAR FORCES: THE UNIQUENESS OF WATER Problems: 10.2, 10.6,10.15-10.33, 10.35-10.40, 10.56-10.60, 10.101-10. CHAPTER 10: INTERMOLECULAR FORCES: THE UNIQUENESS OF WATER Problems: 10.2, 10.6,10.15-10.33, 10.35-10.40, 10.56-10.60, 10.101-10.102 10.1 INTERACTIONS BETWEEN IONS Ion-ion Interactions and Lattice Energy

More information

Near-field scanning optical microscopy (SNOM)

Near-field scanning optical microscopy (SNOM) Adviser: dr. Maja Remškar Institut Jožef Stefan January 2010 1 2 3 4 5 6 Fluorescence Raman and surface enhanced Raman 7 Conventional optical microscopy-limited resolution Two broad classes of techniques

More information

Microscopy: Principles and Advances

Microscopy: Principles and Advances Microscopy: Principles and Advances Chandrashekhar V. Kulkarni University of Central Lancashire, Preston, United kingdom May, 2014 University of Ljubljana Academic Background 2005-2008: PhD-Chemical Biology

More information

X-Rays and Magnetism From Fundamentals to Nanoscale Dynamics

X-Rays and Magnetism From Fundamentals to Nanoscale Dynamics X-Rays and Magnetism From Fundamentals to Nanoscale Dynamics Joachim Stöhr Stanford Synchrotron Radiation Laboratory X-rays have come a long way 1895 1993 10 cm 10 µm 100 nm Collaborators: SSRL Stanford:

More information

What is a weak hydrogen bond?

What is a weak hydrogen bond? What is a weak hydrogen bond? Gautam R. Desiraju School of Chemistry University of yderabad yderabad 500 046, India gautam_desiraju@yahoo.com http://202.41.85.161/~grd/ What is a hydrogen bond? Under certain

More information

Atomic Force Microscope and Magnetic Force Microscope Background Information

Atomic Force Microscope and Magnetic Force Microscope Background Information Atomic Force Microscope and Magnetic Force Microscope Background Information Lego Building Instructions There are several places to find the building instructions for building the Lego models of atomic

More information

Scanning Probe Investigations Of Magnetic Thin Films And Nanostructures

Scanning Probe Investigations Of Magnetic Thin Films And Nanostructures Scanning Probe Investigations Of Magnetic Thin Films And Nanostructures by Jonathan Fetting Reviewers: Prof. Dr. G. Reiss Prof. Dr. D. Anselmetti Department of Physics University of Bielefeld October 2012

More information

Modification of Graphene Films by Laser-Generated High Energy Particles

Modification of Graphene Films by Laser-Generated High Energy Particles Modification of Graphene Films by Laser-Generated High Energy Particles Elena Stolyarova (Polyakova), Ph.D. ATF Program Advisory and ATF Users Meeting April 2-3, 2009, Berkner Hall, Room B, BNL Department

More information

A METHOD OF PRECISE CALIBRATION FOR PIEZOELECTRICAL ACTUATORS

A METHOD OF PRECISE CALIBRATION FOR PIEZOELECTRICAL ACTUATORS Uludağ Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi, Cilt 9, Sayı, 24 A METHOD OF PRECISE CALIBRATION FOR PIEZOELECTRICAL ACTUATORS Timur CANEL * Yüksel BEKTÖRE ** Abstract: Piezoelectrical actuators

More information

Chapter 10 Liquids & Solids

Chapter 10 Liquids & Solids 1 Chapter 10 Liquids & Solids * 10.1 Polar Covalent Bonds & Dipole Moments - van der Waals constant for water (a = 5.28 L 2 atm/mol 2 ) vs O 2 (a = 1.36 L 2 atm/mol 2 ) -- water is polar (draw diagram)

More information

Electronic transport properties of nano-scale Si films: an ab initio study

Electronic transport properties of nano-scale Si films: an ab initio study Electronic transport properties of nano-scale Si films: an ab initio study Jesse Maassen, Youqi Ke, Ferdows Zahid and Hong Guo Department of Physics, McGill University, Montreal, Canada Motivation (of

More information

Adsorption and Catalysis

Adsorption and Catalysis Adsorption and Catalysis Dr. King Lun Yeung Department of Chemical Engineering Hong Kong University of Science and Technology CENG 511 Lecture 3 Adsorption versus Absorption H H H H H H H H H Adsorption

More information

Microscopy. MICROSCOPY Light Electron Tunnelling Atomic Force RESOLVE: => INCREASE CONTRAST BIODIVERSITY I BIOL1051 MAJOR FUNCTIONS OF MICROSCOPES

Microscopy. MICROSCOPY Light Electron Tunnelling Atomic Force RESOLVE: => INCREASE CONTRAST BIODIVERSITY I BIOL1051 MAJOR FUNCTIONS OF MICROSCOPES BIODIVERSITY I BIOL1051 Microscopy Professor Marc C. Lavoie marc.lavoie@cavehill.uwi.edu MAJOR FUNCTIONS OF MICROSCOPES MAGNIFY RESOLVE: => INCREASE CONTRAST Microscopy 1. Eyepieces 2. Diopter adjustment

More information

Keysight Technologies How to Choose your MAC Lever. Technical Overview

Keysight Technologies How to Choose your MAC Lever. Technical Overview Keysight Technologies How to Choose your MAC Lever Technical Overview Introduction Atomic force microscopy (AFM) is a sub-nanometer scale imaging and measurement tool that can be used to determine a sample

More information

Calibration of AFM with virtual standards; robust, versatile and accurate. Richard Koops VSL Dutch Metrology Institute Delft

Calibration of AFM with virtual standards; robust, versatile and accurate. Richard Koops VSL Dutch Metrology Institute Delft Calibration of AFM with virtual standards; robust, versatile and accurate Richard Koops VSL Dutch Metrology Institute Delft 19-11-2015 VSL Dutch Metrology Institute VSL is the national metrology institute

More information

Chapter 2. Atomic Structure and Interatomic Bonding

Chapter 2. Atomic Structure and Interatomic Bonding Chapter 2. Atomic Structure and Interatomic Bonding Interatomic Bonding Bonding forces and energies Primary interatomic bonds Secondary bonding Molecules Bonding Forces and Energies Considering the interaction

More information

Force Spectroscopy with the Atomic Force Microscope

Force Spectroscopy with the Atomic Force Microscope Force Spectroscopy with the Atomic Force Microscope Application Note Wenhai Han, Agilent Technologies F. Michael Serry Figure 1. In Force spectroscopy raster-scanning is disabled temporarily or indefinitely

More information

Preface Light Microscopy X-ray Diffraction Methods

Preface Light Microscopy X-ray Diffraction Methods Preface xi 1 Light Microscopy 1 1.1 Optical Principles 1 1.1.1 Image Formation 1 1.1.2 Resolution 3 1.1.3 Depth of Field 5 1.1.4 Aberrations 6 1.2 Instrumentation 8 1.2.1 Illumination System 9 1.2.2 Objective

More information

Which substance contains positive ions immersed in a sea of mobile electrons? A) O2(s) B) Cu(s) C) CuO(s) D) SiO2(s)

Which substance contains positive ions immersed in a sea of mobile electrons? A) O2(s) B) Cu(s) C) CuO(s) D) SiO2(s) BONDING MIDTERM REVIEW 7546-1 - Page 1 1) Which substance contains positive ions immersed in a sea of mobile electrons? A) O2(s) B) Cu(s) C) CuO(s) D) SiO2(s) 2) The bond between hydrogen and oxygen in

More information

2038-20. Conference: From DNA-Inspired Physics to Physics-Inspired Biology. 1-5 June 2009. How Proteins Find Their Targets on DNA

2038-20. Conference: From DNA-Inspired Physics to Physics-Inspired Biology. 1-5 June 2009. How Proteins Find Their Targets on DNA 2038-20 Conference: From DNA-Inspired Physics to Physics-Inspired Biology 1-5 June 2009 How Proteins Find Their Targets on DNA Anatoly B. KOLOMEISKY Rice University, Department of Chemistry Houston TX

More information

Chem 112 Intermolecular Forces Chang From the book (10, 12, 14, 16, 18, 20,84,92,94,102,104, 108, 112, 114, 118 and 134)

Chem 112 Intermolecular Forces Chang From the book (10, 12, 14, 16, 18, 20,84,92,94,102,104, 108, 112, 114, 118 and 134) Chem 112 Intermolecular Forces Chang From the book (10, 12, 14, 16, 18, 20,84,92,94,102,104, 108, 112, 114, 118 and 134) 1. Helium atoms do not combine to form He 2 molecules, What is the strongest attractive

More information

Subject Area(s) Biology. Associated Unit Engineering Nature: DNA Visualization and Manipulation. Associated Lesson Imaging the DNA Structure

Subject Area(s) Biology. Associated Unit Engineering Nature: DNA Visualization and Manipulation. Associated Lesson Imaging the DNA Structure Subject Area(s) Biology Associated Unit Engineering Nature: DNA Visualization and Manipulation Associated Lesson Imaging the DNA Structure Activity Title Inside the DNA Header Image 1 ADA Description:

More information

New magnetism of 3d monolayers grown with oxygen surfactant: Experiment vs. ab initio calculations

New magnetism of 3d monolayers grown with oxygen surfactant: Experiment vs. ab initio calculations New magnetism of 3d monolayers grown with oxygen surfactant: Experiment vs. ab initio calculations 1. Growth and structure 2. Magnetism and MAE 3. Induced magnetism at oxygen Klaus Baberschke Institut

More information

Mechanical and electrical investigations of thin polymer films by variabletemperature force microscopy

Mechanical and electrical investigations of thin polymer films by variabletemperature force microscopy Mechanical and electrical investigations of thin polymer films by variabletemperature force microscopy Dissertation zur Erlangung des Doktorgrades Dr. rer. nat. der Fakultät für Naturwissenschaften der

More information

Use the BET (after Brunauer, Emmett and Teller) equation is used to give specific surface area from the adsorption

Use the BET (after Brunauer, Emmett and Teller) equation is used to give specific surface area from the adsorption Number of moles of N 2 in 0.129dm 3 = 0.129/22.4 = 5.76 X 10-3 moles of N 2 gas Module 8 : Surface Chemistry Objectives Lecture 37 : Surface Characterization Techniques After studying this lecture, you

More information

Hydrogen Bonds in Water-Methanol Mixture

Hydrogen Bonds in Water-Methanol Mixture Bulg. J. Phys. 34 (2007) 103 107 Hydrogen Bonds in Water-Methanol Mixture G.M. Georgiev, K. Vasilev, K. Gyamchev Faculty of Physics, University of Sofia 5J.Bourchier Blvd., 1164 Sofia, Bulgaria Received

More information

Rubén Pérez SPM Theory & Nanomechanics Group Departamento de Física Teórica de la Materia Condensada http://www.uam.es/spmth

Rubén Pérez SPM Theory & Nanomechanics Group Departamento de Física Teórica de la Materia Condensada http://www.uam.es/spmth Probing nanostructures with forces and currents: From atomic-scale contrast on graphene and carbon nanotubes to heterofullerene synthesis with planar aromatic precursors Rubén Pérez SPM Theory & Nanomechanics

More information

10.7 Kinetic Molecular Theory. 10.7 Kinetic Molecular Theory. Kinetic Molecular Theory. Kinetic Molecular Theory. Kinetic Molecular Theory

10.7 Kinetic Molecular Theory. 10.7 Kinetic Molecular Theory. Kinetic Molecular Theory. Kinetic Molecular Theory. Kinetic Molecular Theory The first scheduled quiz will be given next Tuesday during Lecture. It will last 5 minutes. Bring pencil, calculator, and your book. The coverage will be pp 364-44, i.e. Sections 0.0 through.4. 0.7 Theory

More information

Intermolecular Forces

Intermolecular Forces Intermolecular Forces: Introduction Intermolecular Forces Forces between separate molecules and dissolved ions (not bonds) Van der Waals Forces 15% as strong as covalent or ionic bonds Chapter 11 Intermolecular

More information

Nano-Spectroscopy. Solutions AFM-Raman, TERS, NSOM Chemical imaging at the nanoscale

Nano-Spectroscopy. Solutions AFM-Raman, TERS, NSOM Chemical imaging at the nanoscale Nano-Spectroscopy Solutions AFM-Raman, TERS, NSOM Chemical imaging at the nanoscale Since its introduction in the early 80 s, Scanning Probe Microscopy (SPM) has quickly made nanoscale imaging an affordable

More information

Microscopic Techniques

Microscopic Techniques Microscopic Techniques Outline 1. Optical microscopy Conventional light microscopy, Fluorescence microscopy, confocal/multiphoton microscopy and Stimulated emission depletion microscopy 2. Scanning probe

More information

Outline. Self-assembled monolayer (SAM) formation and growth. Metal nanoparticles (NP) anchoring on SAM

Outline. Self-assembled monolayer (SAM) formation and growth. Metal nanoparticles (NP) anchoring on SAM From functional nanostructured surfaces to innovative optical biosensors Giacomo Dacarro Dipartimento di Fisica A.Volta Dipartimento di Chimica Generale Università degli Studi di Pavia Dalla scienza dei

More information

Defects Introduction. Bonding + Structure + Defects. Properties

Defects Introduction. Bonding + Structure + Defects. Properties Defects Introduction Bonding + Structure + Defects Properties The processing determines the defects Composition Bonding type Structure of Crystalline Processing factors Defects Microstructure Types of

More information

Electron spectroscopy Lecture 1-21. Kai M. Siegbahn (1918 - ) Nobel Price 1981 High resolution Electron Spectroscopy

Electron spectroscopy Lecture 1-21. Kai M. Siegbahn (1918 - ) Nobel Price 1981 High resolution Electron Spectroscopy Electron spectroscopy Lecture 1-21 Kai M. Siegbahn (1918 - ) Nobel Price 1981 High resolution Electron Spectroscopy 653: Electron Spectroscopy urse structure cture 1. Introduction to electron spectroscopies

More information

Atomic Force Microscope Physics Assignment

Atomic Force Microscope Physics Assignment Atomic Force Microscope Physics Assignment Group Members: İbrahim Mert DARICI Syed Arslan Afzal HASHMI Ali ZAREI Sudhakar Murthy MOLLI Materials Processing 2006 PHYSICS ASSIGNMENT 1 Content 1 Introduction...

More information

What is molecular dynamics (MD) simulation and how does it work?

What is molecular dynamics (MD) simulation and how does it work? What is molecular dynamics (MD) simulation and how does it work? A lecture for CHM425/525 Fall 2011 The underlying physical laws necessary for the mathematical theory of a large part of physics and the

More information

MISCIBILITY AND INTERACTIONS IN CHITOSAN AND POLYACRYLAMIDE MIXTURES

MISCIBILITY AND INTERACTIONS IN CHITOSAN AND POLYACRYLAMIDE MIXTURES MISCIBILITY AND INTERACTIONS IN CHITOSAN AND POLYACRYLAMIDE MIXTURES Katarzyna Lewandowska Faculty of Chemistry Nicolaus Copernicus University, ul. Gagarina 7, 87-100 Toruń, Poland e-mail: reol@chem.umk.pl

More information

Lecture 3: Optical Properties of Bulk and Nano. 5 nm

Lecture 3: Optical Properties of Bulk and Nano. 5 nm Lecture 3: Optical Properties of Bulk and Nano 5 nm The Previous Lecture Origin frequency dependence of χ in real materials Lorentz model (harmonic oscillator model) 0 e - n( ) n' n '' n ' = 1 + Nucleus

More information

Section Activity #1: Fill out the following table for biology s most common elements assuming that each atom is neutrally charged.

Section Activity #1: Fill out the following table for biology s most common elements assuming that each atom is neutrally charged. LS1a Fall 2014 Section Week #1 I. Valence Electrons and Bonding The number of valence (outer shell) electrons in an atom determines how many bonds it can form. Knowing the number of valence electrons present

More information

High flexibility of DNA on short length scales probed by atomic force microscopy

High flexibility of DNA on short length scales probed by atomic force microscopy High flexibility of DNA on short length scales probed by atomic force microscopy Wiggins P. A. et al. Nature Nanotechnology (2006) presented by Anja Schwäger 23.01.2008 Outline Theory/Background Elasticity

More information

Compact mobilized and low-cost scanning tunneling microscope for educational use

Compact mobilized and low-cost scanning tunneling microscope for educational use A. Compact mobilized and low-cost scanning tunneling microscope for educational use Eli Flaxer AFEKA - Tel-Aviv Academic College of Engineering, 69107 Tel-Aviv, Israel. We developed a mobile, compact and

More information

School of Mathematics and Physics Performance Management Matrix Rolling 3-year targets 1. Experienced Lecturer/Senior Lecturer/Reader

School of Mathematics and Physics Performance Management Matrix Rolling 3-year targets 1. Experienced Lecturer/Senior Lecturer/Reader School of Mathematics and Physics Performance Management Matrix Rolling 3-year targets 1 Output measures per 3-year period Publications Lecturer (up to 3 years postprobation) 3 outputs per year (Physics

More information