Canine Cancer Genomics

Similar documents
MUTATION, DNA REPAIR AND CANCER

G E N OM I C S S E RV I C ES

Focusing on results not data comprehensive data analysis for targeted next generation sequencing

What is Cancer? Cancer is a genetic disease: Cancer typically involves a change in gene expression/function:

Lecture 3: Mutations

Breast cancer and the role of low penetrance alleles: a focus on ATM gene

Single-Cell DNA Sequencing with the C 1. Single-Cell Auto Prep System. Reveal hidden populations and genetic diversity within complex samples

Genetics Module B, Anchor 3

Test Information Sheet

Human Genome Organization: An Update. Genome Organization: An Update

Targeted. sequencing solutions. Accurate, scalable, fast TARGETED

Go where the biology takes you. Genome Analyzer IIx Genome Analyzer IIe

Just the Facts: A Basic Introduction to the Science Underlying NCBI Resources

Test Information Sheet

1 Mutation and Genetic Change

Contents. molecular biology techniques. - Mutations in Factor II. - Mutations in MTHFR gene. - Breast cencer genes. - p53 and breast cancer

Next Generation Sequencing: Technology, Mapping, and Analysis

Advances in RainDance Sequence Enrichment Technology and Applications in Cancer Research. March 17, 2011 Rendez-Vous Séquençage

Using Illumina BaseSpace Apps to Analyze RNA Sequencing Data

LESSON 3.5 WORKBOOK. How do cancer cells evolve? Workbook Lesson 3.5

Genomes and SNPs in Malaria and Sickle Cell Anemia

Frequently Asked Questions Next Generation Sequencing

Next generation DNA sequencing technologies. theory & prac-ce

Shouguo Gao Ph. D Department of Physics and Comprehensive Diabetes Center

Next Generation Sequencing

Data Analysis for Ion Torrent Sequencing

Delivering the power of the world s most successful genomics platform

The Power of Next-Generation Sequencing in Your Hands On the Path towards Diagnostics

Single-Cell Whole Genome Sequencing on the C1 System: a Performance Evaluation

AP BIOLOGY 2010 SCORING GUIDELINES (Form B)

Mutations: 2 general ways to alter DNA. Mutations. What is a mutation? Mutations are rare. Changes in a single DNA base. Change a single DNA base

Introduction to NGS data analysis

Oncology Insights Enabled by Knowledge Base-Guided Panel Design and the Seamless Workflow of the GeneReader NGS System

Genomic Analysis of Mature B-cell Malignancies

LECTURE 6 Gene Mutation (Chapter )

DNA Replication & Protein Synthesis. This isn t a baaaaaaaddd chapter!!!

Bioinformatics Resources at a Glance

Leading Genomics. Diagnostic. Discove. Collab. harma. Shanghai Cambridge, MA Reykjavik

The Human Genome Project. From genome to health From human genome to other genomes and to gene function Structural Genomics initiative

Evolution (18%) 11 Items Sample Test Prep Questions

Overview of testing for Lynch syndrome/hnpcc

Umm AL Qura University MUTATIONS. Dr Neda M Bogari

Structure and Function of DNA

Applications of comprehensive clinical genomic analysis in solid tumors: obstacles and opportunities

PROVIDER POLICIES & PROCEDURES

Algorithms in Computational Biology (236522) spring 2007 Lecture #1

New Technologies for Sensitive, Low-Input RNA-Seq. Clontech Laboratories, Inc.

An example of bioinformatics application on plant breeding projects in Rijk Zwaan

Dal germinale al somatico nella identificazione di tumori ereditari

mygenomatix - secure cloud for NGS analysis

BioBoot Camp Genetics

Core Facility Genomics

Evolution, Natural Selection, and Adaptation

RNAseq / ChipSeq / Methylseq and personalized genomics

Services. Updated 05/31/2016

RETRIEVING SEQUENCE INFORMATION. Nucleotide sequence databases. Database search. Sequence alignment and comparison

The sequence of bases on the mrna is a code that determines the sequence of amino acids in the polypeptide being synthesized:

Genetic information (DNA) determines structure of proteins DNA RNA proteins cell structure enzymes control cell chemistry ( metabolism )

Attacking the Biobank Bottleneck

Hereditary Breast Cancer Panels. High Risk Hereditary Breast Cancer Panel Hereditary Breast/Ovarian/Endometrial Cancer Panel

Next Generation Sequencing: Adjusting to Big Data. Daniel Nicorici, Dr.Tech. Statistikot Suomen Lääketeollisuudessa

Chapter 5: Organization and Expression of Immunoglobulin Genes

Introduction To Epigenetic Regulation: How Can The Epigenomics Core Services Help Your Research? Maria (Ken) Figueroa, M.D. Core Scientific Director

SeqScape Software Version 2.5 Comprehensive Analysis Solution for Resequencing Applications

Cancer: Cells Behaving Badly

History of DNA Sequencing & Current Applications

Activity 7.21 Transcription factors

13.4 Gene Regulation and Expression

NEIGE. diagnosis In oncogenetics. Nicolas Sévenet 02 juillet

6/10/2015. Hereditary Predisposition for Breast Cancer: Looking at BRCA1/BRCA2 Testing & Beyond. Hereditary Cancers. BRCA1 and BRCA2 Review

Common Cancers & Hereditary Syndromes

Genomic Medicine The Future of Cancer Care. Shayma Master Kazmi, M.D. Medical Oncology/Hematology Cancer Treatment Centers of America

Molecular Diagnostics in Thyroid Cancer

Special report. Chronic Lymphocytic Leukemia (CLL) Genomic Biology 3020 April 20, 2006

Transcription and Translation of DNA

From DNA to Protein. Proteins. Chapter 13. Prokaryotes and Eukaryotes. The Path From Genes to Proteins. All proteins consist of polypeptide chains

Genetics Lecture Notes Lectures 1 2

Cystic Fibrosis Webquest Sarah Follenweider, The English High School 2009 Summer Research Internship Program

Genetic Testing for Lynch Syndrome/Colorectal Cancer and Polyposis Syndromes

7.012 Quiz 3 practice

FAQs: Gene drives - - What is a gene drive?

CHROMOSOMES Dr. Fern Tsien, Dept. of Genetics, LSUHSC, NO, LA

Worksheet - COMPARATIVE MAPPING 1

ALCHEMIST (Adjuvant Lung Cancer Enrichment Marker Identification and Sequencing Trials)

Gene mutation and molecular medicine Chapter 15

CHAPTER 2: UNDERSTANDING CANCER

Cancer Genomics: What Does It Mean for You?

Genetic Testing for Susceptibility to Breast and Ovarian Cancer (BRCA1 and BRCA 2)

SICKLE CELL ANEMIA & THE HEMOGLOBIN GENE TEACHER S GUIDE

Lesson 3 Reading Material: Oncogenes and Tumor Suppressor Genes

Clonetics Conditionally Immortalized Human Cells. Relevant Cells for High Throughput Screening

Psychoonkology, Sept lifestyle factors and epigenetics

Summary Genes and Variation Evolution as Genetic Change. Name Class Date

Robert Bristow MD PhD FRCPC

Ion AmpliSeq Technology

Nazneen Aziz, PhD. Director, Molecular Medicine Transformation Program Office

Protein Synthesis. Page 41 Page 44 Page 47 Page 42 Page 45 Page 48 Page 43 Page 46 Page 49. Page 41. DNA RNA Protein. Vocabulary

Overview of Eukaryotic Gene Prediction

Principles of Evolution - Origin of Species

Nuevas tecnologías basadas en biomarcadores para oncología

Transcription:

Canine Cancer Genomics Heidi G. Parker, PhD Staff Scientist Cancer Genetics Branch National Human Genome Research Institute National Institutes of Health

Dogs in Genetics 78.2 million dogs owned in U.S. ~35% of 131 million U.S. households have dogs Dogs live with and are exposed to the same environment as their human owners Dogs receive preventative and diagnostic healthcare Dogs live to old age Population structure well suited to genetic studies

Cancer is the #1 Cause of Disease Associated Death in Dogs More than 1 in 4 dogs will develop cancer in their lifetime Many cancers show strong breed predisposition: Cancer Breed Relative Risk Gastric Carcinoma Chow Chow 10-20 Hemangiosarcoma Golden Retriever 12.4 Lymphoma Boxer 4.5 Mammary Carcinoma Doberman Pinscher 3.2 Mast Cell Tumor Boxer 16.7 Pancreatic Carcinoma Airedale 16.9 Osteosarcoma Giant breeds 60.1 Bladder Cancer Scottish Terrier 19

Canine TCC of the Bladder Transitional cell carcinoma of the bladder accounts for 2% of all canine tumors Affects up to 20,000 dogs each year Scottish terriers are 19 times more likely to get TCC than the average dog (Shetland sheepdogs and West Highland white terriers have a 5x increased risk)

RNAseq of Canine TCC Survey sequence of 4 tumors (2 ST, 1 WHWT, 1 SSD), and 2 normal bladder urothelial tissues. Sequenced complete transcriptome using Illumina Hiseq with paired end libraries Increase information base: Identify transcripts that are not annotated Find genes that are expressed in only tumor or only normal bladders Identify somatic mutations Initiator Codon Missense - SIFT Deleterious Stop Lost Coding Frameshift Splice Donor Splice Acceptor Stop Gained

Frequency Conservation Across 8 Species Mutation in Canine BRAF is Identical to Dog PRALINE Consistency Human BRAFV600E Canine InvTCC BRAF Mutation: V595E ----------------------------------------------------------------------- ********************* * * ******************************************************************************************-*-- *********************************************** *** *** *** ***** ************* ******************************------------*******-* * ******************** *** ****-- ****-*** *************************************************************************************************************************************************************************************************************************************************************************************************************************** ------------------- ********************* * * ******************************************************************************************-*-- *********************************************** *** *** *** ***** ************* ******************************------------*******-* *----------------------------------------******************** *** ****-- ****-*** *************************************************************************************************************************************************************************************************************************************************************************************************************************** - ------------------- ********************* * * ******************************************************************************************-*-- *********************************************** *** *** *** ***** ************* ******************************------------*******-* *----------------------------------------******************** *** ****-- ****-*** *************************************************************************************************************************************************************************************************************************************************************************************************************************** - -- ********************* ----*--- --------------------------* ******************************************************************************************-*-- *********************************************** *** *** *** ***** ************* ****************************** *******-* * ******************** *** **** ****-*** *************************************************************************************************************************************************************************************************************************************************************************************************************************** - -- ********************* ----*----------------------------- * ******************************************************************************************-*-- *********************************************** *** *** *** - ***** ************* ****************************** *******-* * ******************** *** **** ******* *************************************************************************************************************************************************************************************************************************************************************************************************************************** - ---------------------------------------------------------------------------------------------------********************* * * ******************************************************************************************* *********************************************** *** *** *** ***** ************* ******************************------------*******-* * ******************** *** ****-- ****-*** *************************************************************************************************************************************************************************************************************************************************************************************************************************** - ----- -- - ********************* * * ******************************************************************************************-*-- *********************************************** *** *** *** ***** ************* ******************************------------******* * * ******************** *** ****-- ****-*** *************************************************************************************************************************************************************************************************************************************************************************************************************************** ----------------------------------------------------------------- ********************* * * ******************************************************************************************-*-- *********************************************** *** *** *** ***** ************* ******************************------------*******-* * ******************** *** ****-- ****-*** *************************************************************************************************************************************************************************************************************************************************************************************************************************** - ********************* * * ******************************************************************************************* *********************************************** *** *** *** ***** ************* ****************************** ******* * * ******************** *** **** ******* *************************************************************************************************************************************************************************************************************************************************************************************************************************** Unconserved 0 Conserved 35000 30000 25000 20000 15000 10000 5000 0 Human BRAF Somatic Mutation Frequency Canonical Human BRAF Mutation: V600E 0 100 200 300 400 500 600 700 Amino Acid Number

The BRAF Mutation Activates the MAPK Pathway By Phosphorylating MEK K9TCC-Sh K9TCC-An K9TCC-AxA K9TCC-Nk BRAFV595E - - - + + + + + + + + + Vemurafenib (1µM) - + + - + + - + + - + + Time (hrs) 2 24 2 24 2 24 2 24 pmek MEK Actin

Percent Growth of Control BRAF Inhibitor Vemurafenib Reduces Cell Growth in Cells with BRAFV595E 120 K9TCC-Sh K9TCC-AxA K9TCC-Nk K9TCC-An 100 80 60 40 20 0 0 0.001 0.01 0.1 1 10 Concentration of Vemurafenib (µm)

Next Generation Sequencing Can Identify the Mutation in <1 Allele per 1000 Normalized Adenine Bases per 10,000 Reads 10000 1000 100 1:1 Allelic Ratio 1:10 Allelic Ratio 1:100 Allelic Ratio 1:1000 Allelic Ratio Urine Sample Only Positive by AmpliSeq Tumor Sample Only Positive by Ampli-Seq Sample Negative by Ampli-Seq 10 1 0.1 8296260 8296280 8296300 8296320 8296340 8296360 8296380 Base Position

Additional RNAseq in TCC Completed 22 tumors and 8 normal bladder urothelial tissues. Sequenced transcriptome using Illumina Hiseq with paired end libraries Analyses underway: Identify somatic mutations: Filter out mutations found in normal tissues and the multi-breed database Analyze expression patterns Compare BRAF+ and tumors: identify alternate drivers, additional players, compare gene set with human tumors

Canine Transmissible Venereal Tumor (CTVT) Survival Strategies of an Ancient Clonally Transmissible Canine Tumor

Canine Transmissible Venereal Tumor (CTVT) Clonally transmissible parasite - single founder tumor spreads from dog to dog via sexual transfer of malignant cells World s oldest known continuously propagating somatic cell lineage thousands of years, endemic across the globe Transmitted during months-long period of evasion of host immune defenses, later eliminated All CTVT tumors have shared origins in the single founder tumor - strong genetic identity with one another, markedly distinct from their transient host Can the CTVT genome reveal biological mechanisms that Strakova underlie and Murchison, the tumor s BMC Vet Res dogged 2014 perseverance in canids around the globe?

CTVT has Propagated and Evolved for Thousands of Years CTVT Founder Most Recent Common Ancestor Tumor Modern Tumor *Murchison, et al. Science, 2014 CTVT 79T* Brazil CTVT 24T* Australia

The CTVT Genome = An Ancient Canid Genome + Somatic Mutations Host Contamination Somatic Drivers of Clonal Transmissibility Lineage-Specific Mutations Inherited Alleles from Founder Somatic Mutations Systematic Errors Germline Genome of CTVT Founder Canid CTVT 79T CTVT 24T

Nearly All Canine Variation is Present in Panel of 186 Diverse Canids Modern Breed Ancient Breed Outbred Canid Wild Canid 28.01 Million SNVs Our catalog encompasses 99.57% of SNVs vast majority of genetic variation in modern canids. Therefore: 1) Shared CTVT variants found in catalog are likely inherited 12.62 Million alleles Indels from the founder canid 99.55% of Indels 2) Shared CTVT variants not found in catalog are likely enriched for somatic mutations 31,613 SVs 95.63% of SVs

Canine Variation Catalog Segregates Founder Alleles from CTVT Somatic Mutations CTVT Founder CTVT 79T Inherited Alleles from CTVT Founder YES CTVT 24T High- Quality Shared CTVT Variants Found in Ostrander Lab Canid WGS Catalog? NO Somatic Mutations Raw Variants SNV = 8,623,150 Indel = 3,683,400 SV = 1,531,180 HQ + Shared SNV = 3,728,916 Indel = 1,435,051 SV = 8,903 Somatic Candidates SNV = 910,376 Indel = 113,026 SV = 7,338

All steps of antigen presentation are disrupted in CTVT cells, preventing nonself recognition by host T-cells

Somatic Mutations Disrupt All Aspects of Somatic Cell Participation in Immunosurveillance CTVT is perfectly adapted to its niche as a transmissible allograft Unique evolutionary pressures + Thousands of years = Functionally overlapping somatic mutations enable evasion of host immunosurveillance

Ancient CTVT Mutations Have a Plausible Role in Establishment of Clonal Transmissibility CASP3 CDKN2A/B TAP2 Immunosurveillance and Cell Cycle Genes with Ancient Somatic Mutations Translocation in first intron Deletion Damaging missense, SV Executioner caspase convergence point of intrinsic and extrinsic apoptosis pathways Tumor suppressor prohibits G1 to S phase transition in the cell cycle Peptide transporter essential for loading of MHC class I self-antigen presentation TP53 Translocation in first intron Tumor suppressor cell cycle regulator, apoptosis initiator, DNA repair mediator Ancient LOH events: founder inherited allele homozygosity fraction >0.85, somatic mutation homozygosity fraction <0.5 Ancient somatic mutations: homozygous mutations within those regions

The CTVT Genome is Highly Rearranged Normal Canine FISH CTVT FISH (Cape Verde) CTVT FISH (Italy) Murchison, et al. Science, 2014

Disarrayed Genomic Architecture at Base-Pair Resolution 7,338 high-quality SVs shared by both tumors 2,329 disrupt at least one exon 247 potential gene fusions Decker, Davis et al., Submitted Somatic mutations may have contributed to genome instability ATM, BRCA1, BRCA2, MRE11A, MLH1, PMS1, RAD21, TP53

CTVT-Specific Genome Assembly Requisite for annotation and future population and expression studies. Obtained fresh frozen samples 150x coverage (Illumina 250bp paired end) PacBio anchoring backbone (10kb-40kb reads) Optical mapping using BioNano IRYS Expression / annotation using total RNA

Conclusions from CTVT Our canid variation catalog enables segregation of CTVT founder inherited alleles from somatic drivers of clonal transmissibility CTVT is exquisitely adapted to its transmissible allograft niche, with overlapping mutations at every step of somatic cell participation in immunosurveillance Identification of some early somatic mutations points to genes that may have contributed to establishing clonal transmissibility Understanding CTVT biology may shed light on host-tumor interactions in human cancers Sequencing underway for a new CTVT tumor with plans for novel assembly instead of alignment.

Summary Dogs acquire multiple forms of cancer through natural means as a course of aging, interaction with the environment, and/or inheritance Analysis of TCC somatic mutations reveal a driver in canine tumors that is identical to a human driver but in an unexpected place The tumor parasite, CTVT, can provide data regarding how cancers to escape immune detection.

Acknowledgements CGCGB-NHGRI: Elaine Ostrander Brennan Decker, Brian Davis Purdue Comparative Oncology: Debbie Knapp, Deepika Dhawan, Patty Bonney NISC-NHGRI: Jim Mullikin