From the discovery to the control of THz spin currents Marco Battiato

Similar documents
Magnetization dynamics in lanthanides new frontiers in spin-dependent band mapping at BESSY VSR

Element-resolved Ultrafast Magnetization Dynamics in Ferromagnetic Alloys and Multilayers

Solid-State Dynamics and Education

Temperature dependences of the electron phonon coupling, electron heat capacity and thermal conductivity in Ni under femtosecond laser irradiation

X-Rays and Magnetism From Fundamentals to Nanoscale Dynamics

the role of angular momentum

Magnetism and Magnetic Materials K. Inomata

Broadband THz Generation from Photoconductive Antenna

Pump-probe experiments with ultra-short temporal resolution

HEAT TRANSFER IN FEMTOSECOND LASER PROCESSING OF METAL

arxiv: v1 [cond-mat.mes-hall] 17 Aug 2007

Designing and Manufacturing Femtoseconds Ultra-broadband Lasers: Proven, Hands-free Reliability

International workshop on the Spectroscopy and Coherent Scattering Endstation and associated instrumentation at the European XFEL

Numeric modeling of synchronous laser pulsing and voltage pulsing field evaporation

Solid State Detectors = Semi-Conductor based Detectors

Exciton dissociation in solar cells:

Free Electron Fermi Gas (Kittel Ch. 6)

Magnetic dynamics driven by spin current

Nuclear Physics. Nuclear Physics comprises the study of:

Hard Condensed Matter WZI

Atomic Structure Ron Robertson

Imaging of Spin Dynamics in Closure Domain and Vortex Structures. J. P. Park, P. Eames, D. M. Engebretson, J. Berezovsky, and P. A.

Spin-flip excitation spectroscopy with STM excitation of allowed transition adds an inelastic contribution (group of Andreas Heinrich, IBM Almaden)

Implementation of a T-MOKE setup for transient studies of magnetic materials at the HELIOS XUV photon source

Laser Based Micro and Nanoscale Manufacturing and Materials Processing

ESRF Upgrade Phase II: le nuove opportunitá per le linee da magnete curvante

Spin Hall Magnetoresistive Noise

Composite Electromagnetic Wave Absorber Made of Permalloy or Sendust and Effect of Sendust Particle Size on Absorption Characteristics

Electron Orbits. Binding Energy. centrifugal force: electrostatic force: stability criterion: kinetic energy of the electron on its orbit:

ULTRAFAST LASERS: Free electron lasers thrive from synergy with ultrafast laser systems


Chapter 5: Diffusion. 5.1 Steady-State Diffusion

University of Pécs in ELI

Thresholds for femtosecond laser-induced breakdown in bulk transparent solids and water

Introduction OLEDs OTFTs OPVC Summary. Organic Electronics. Felix Buth. Walter Schottky Institut, TU München. Joint Advanced Student School 2008

Scanning Near Field Optical Microscopy: Principle, Instrumentation and Applications

High power picosecond lasers enable higher efficiency solar cells.

Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed page of such transmission.

Real-world applications of intense light matter interaction beyond the scope of classical micromachining.

Experimental Observation of the Quantum Anomalous Hall Effect in a Magnetic Topological Insulator

TIME OF COMPLETION NAME SOLUTION DEPARTMENT OF NATURAL SCIENCES. PHYS 3650, Exam 2 Section 1 Version 1 October 31, 2005 Total Weight: 100 points

SUPERCONDUCTIVITY. PH 318- Introduction to superconductors 1

Physical Properties and Functionalization of Low-Dimensional Materials

Development of certified reference material of thin film for thermal diffusivity

Electron Paramagnetic (Spin) Resonance


Ultrafast Optical Characterization of Novel Mid-Infrared Nanoscale Structures

Basic Principles of Magnetic Resonance

Coherent orbital waves in the photo-induced insulator metal dynamics of a magnetoresistive manganite

Insertion Devices Lecture 4 Permanent Magnet Undulators. Jim Clarke ASTeC Daresbury Laboratory

Transition from AMR to GMR Heads in Tape Recording

Effect of UV-wavelength on Hardening Process of PECVD Glasses

Lecture 3: Optical Properties of Bulk and Nano. 5 nm

Chapter 5. Second Edition ( 2001 McGraw-Hill) 5.6 Doped GaAs. Solution

Nuclear Magnetic Resonance (NMR) Spectroscopy

The Phenomenon of Photoelectric Emission:

Chapter 15: Transformer design

Unit 1, Lesson 03: Answers to Homework 1, 0, +1 2, 1, 0, +1, +2 1, 0, +1 2, 1, 0, +1, +2 3, 2, 1, 0, +1, +2, +3. n = 3 l = 2 m l = -2 m s = -½

Fluid Mechanics: Static s Kinematics Dynamics Fluid

Graphene a material for the future

Interfacial thermal resistance of Au/SiO 2 produced by sputtering method

Optical Hyperdoping: Transforming Semiconductor Band Structure for Solar Energy Harvesting

Lecture 3: Optical Properties of Bulk and Nano. 5 nm

PHYSICAL METHODS, INSTRUMENTS AND MEASUREMENTS Vol. IV Femtosecond Measurements Combined With Near-Field Optical Microscopy - Artyom A.

Sample Exercise 6.1 Concepts of Wavelength and Frequency

Chapter 8. Low energy ion scattering study of Fe 4 N on Cu(100)

Coating Thickness and Composition Analysis by Micro-EDXRF

Secondary Ion Mass Spectrometry

Influence of Solder Reaction Across Solder Joints

It has long been a goal to achieve higher spatial resolution in optical imaging and

Femtosecond laser-induced silicon surface morphology in water confinement

New magnetism of 3d monolayers grown with oxygen surfactant: Experiment vs. ab initio calculations

>

Laserbearbeitung von dünnen Schichten auf Rolle-zu-Rolle-Anlagen

Gamma Ray Detection at RIA

Laser-induced surface phonons and their excitation of nanostructures

Perfect Fluids: From Nano to Tera

Lecture 9, Thermal Notes, 3.054

Review of the isotope effect in the hydrogen spectrum

Experimental study of atomic Bose-Einstein condensates with internal degrees of freedom

Diffusione e perfusione in risonanza magnetica. E. Pagani, M. Filippi

Masses in Atomic Units

Does Quantum Mechanics Make Sense? Size

ZETA POTENTIAL ANALYSIS OF NANOPARTICLES

Short overview of TEUFEL-project

How To Understand Light And Color

Microstructuring of resist double layers by a femtosecond laser ablation and UV lithography hybrid process

PHOTOELECTRIC EFFECT AND DUAL NATURE OF MATTER AND RADIATIONS

Surface-state engineering for interconnects on H-passivated Si(100)

Surface plasmon nanophotonics: optics below the diffraction limit

Six-state, three-level, six-fold ferromagnetic wire system

Pathways of Li + ion mobility in superionic perovskites by ab initio simulations

Calculating particle properties of a wave

Ultrahigh-efficiency solar cells based on nanophotonic design

Photons. ConcepTest ) red light 2) yellow light 3) green light 4) blue light 5) all have the same energy. Which has more energy, a photon of:

Polarization Dependence in X-ray Spectroscopy and Scattering. S P Collins et al Diamond Light Source UK

Acousto-optic modulator

Multi-scale modelling of plasma-material interactions

This paper is also taken for the relevant Examination for the Associateship. For Second Year Physics Students Wednesday, 4th June 2008: 14:00 to 16:00

Transcription:

From the discovery to the control of THz spin currents Marco Battiato Institute of Solid State Physics Technical University, Vienna

Ultrafast demagnetization 1996: Discovery of ultrafast demagnetization [1] MO probe Ni Al Pump pulse [1] E. Beaurepaire et al., Phys. Rev. Lett. 76, 4250 (1996).

Ultrafast demagnetization 1ns Modern technology R&D 1ps 1fs

Ultrafast demagnetization 1ns Modern technology R&D 1ps Ultrafast magnetization dynamics 1fs

Ultrafast demagnetization Einstein - de Haas effect

Ultrafast demagnetization Angular momentum Phonons, orbital momentum, Spin system Some other system

Ultrafast demagnetization Spin system Angular momentum Ultrafast dissipation channel Phonons, orbital momentum, Some other system

Superdiffusive spin transport M. Battiato, K. Carva, P.M. Oppeneer, Phys. Rev. Lett. 105, 027203 (2010)

Femtosecond electron transport Dos E

Femtosecond electron transport Dos E

Femtosecond electron transport Dos E

Femtosecond electron transport v Dos E E

Femtosecond electron transport v Dos E E

Femtosecond electron transport v Dos E v 1nm/fs E

Femtosecond electron transport τ Dos E E v 1nm/fs τ tens of fs

Femtosecond electron transport τ tens of nm in tens of fs E Dos E v 1nm/fs τ tens of fs λ tens of nm

Electron cascade Dos E

Electron cascade Scattering with: phonon/impurity/defect electron Dos E

Electron cascade Scattering with phonon/impurity/defect Dos E

Electron cascade Scattering with another electron Dos E

Superdiffusive spin transport Boltzmann equation n(r,k,t) Transport Scattering Analytical integration n(z,e,t) M. Battiato, K. Carva, P.M. Oppeneer, Phys. Rev. Lett. 105, 027203 (2010)

Superdiffusive spin transport M. Battiato, K. Carva, P.M. Oppeneer, Phys. Rev. Lett. 105, 027203 (2010)

Why superdiffusion? Ballistic diffusion τ -> λ -> 15 nm Standard diffusion τ -> 0 λ -> 0 v -> v 1nm/fs τ 20 fs λ 20 nm New kinematic description required!

Superdiffusive spin transport E Dos

V. Zhukov, et al, Phys. Rev. B 73, 125105 (2006) Superdiffusive spin transport Energy (ev) Energy (ev)

Superdiffusive spin transport Ni Al Net spin current

Superdiffusive spin transport Ni Al 15nm [1] C. Stamm et al., Nature Mater. 6, 740 (2007).

Superdiffusive spin transport Ni Al M. Battiato, K. Carva, P.M. Oppeneer, Phys. Rev. Lett. 105, 027203 (2010)

Superdiffusive spin transport Ni Al M. Battiato, K. Carva, P.M. Oppeneer, Phys. Rev. Lett. 105, 027203 (2010)

Superdiffusive spin transport Ni Al M. Battiato, K. Carva, P.M. Oppeneer, Phys. Rev. Lett. 105, 027203 (2010)

Superdiffusive spin transport M. Battiato, K. Carva, P.M. Oppeneer, Phys. Rev. Lett. 105, 027203 (2010)

Ultrafast demagnetization in buried layers A. Eschenlor, MB et al, Nature Mater 12, 332 (2013).

Ultrafast demagnetization in buried layers Au capped Ni reference A. Eschenlor, MB et al, Nature Mater 12, 332 (2013).

Ultrafast demagnetization in buried layers Ni Al

Ultrafast demagnetization in buried layers Au Ni Al

Ultrafast demagnetization in buried layers Ni / Al Au / Ni / Al 4.0 mj/cm 2 absorbed fluence 4.8 mj/cm 2 absorbed fluence 4.0 mj/cm 2 absorbed fluence 6.3 mj/cm 2 absorbed fluence

Ultrafast magnetization increase Ni Fe Ru 1) Antiparallel 2) Parallel

Ultrafast magnetization increase [7] Element specific probe [8] D. Rudolf et al., Nat. Commun. 3, 1038 (2012)

Ultrafast magnetization increase 1) Antiparallel

Ultrafast magnetization increase 2) Parallel

Ultrafast magnetization increase 2) Parallel

Ultrafast magnetization increase 1) Antiparallel 2) Parallel

Ultrafast magnetization increase 1) Antiparallel 2) Parallel

Ultrafast magnetization increase 1) Antiparallel 2) Parallel D. Rudolf, MB et al. Nature Comm. 3, 1037 (2012).

THz spin currents shaping and contactless detection Direct control of temporal shape of THz spin current Ultrafast spin Ampere-meter Broadband THz emitter (covering the gap 5-10 THz) T. Kampfrath, MB et al. Nature Nonotech. 8, 256 (2013).

Verified predictions Ultrafast demagnetization in metals only Saturation of demagnetization at high fluences Timescale of demagnetization Experimentally observed spin transfer Only driver? Demagnetization of thin metals on insulators predicted to be negligible

Conclusions and outlook Microscopical mechanism of the ultrafast demagnetization Possibility of transport of spin information in the fs timescale Opens the route to fs spinelectronics

Thanks to K. Carva P. Maldonado P. M. Oppeneer D. Rudolf C. La-O-Vorakiat R. Adam J. M. Shaw E. Turgut A. Eschenlohr N. Pontius T. Kachel K. Holldack S. Mathias P. Grychtol H. T. Nembach T. J. Silva M. Aeschlimann R. Mitzner A. Föhlisch C. Stamm H. C. Kapteyn M. M. Murnane C. M. Schneider Thank you for your attention