Lecture Notes on Elasticity of Substitution

Similar documents
Lecture Notes on Elasticity of Substitution

Lecture 2. Marginal Functions, Average Functions, Elasticity, the Marginal Principle, and Constrained Optimization

Microeconomic Theory: Basic Math Concepts

Definition and Properties of the Production Function: Lecture

Walrasian Demand. u(x) where B(p, w) = {x R n + : p x w}.

Math 120 Final Exam Practice Problems, Form: A

Name. Final Exam, Economics 210A, December 2011 Here are some remarks to help you with answering the questions.

Constrained optimization.

1 Calculus of Several Variables

Maximum Likelihood Estimation

TOPIC 4: DERIVATIVES

Microeconomics Sept. 16, 2010 NOTES ON CALCULUS AND UTILITY FUNCTIONS

More Quadratic Equations

Metric Spaces. Chapter Metrics

Review of Fundamental Mathematics

Increasing for all. Convex for all. ( ) Increasing for all (remember that the log function is only defined for ). ( ) Concave for all.

or, put slightly differently, the profit maximizing condition is for marginal revenue to equal marginal cost:

Practice with Proofs

1 Lecture: Integration of rational functions by decomposition

Cost Minimization and the Cost Function

Numerical Analysis Lecture Notes

5 Numerical Differentiation

Constrained Optimisation

Advanced Microeconomics

Multi-variable Calculus and Optimization

Solutions to Homework 10

Department of Mathematics, Indian Institute of Technology, Kharagpur Assignment 2-3, Probability and Statistics, March Due:-March 25, 2015.

MATH 425, PRACTICE FINAL EXAM SOLUTIONS.

Critical points of once continuously differentiable functions are important because they are the only points that can be local maxima or minima.

3.2. Solving quadratic equations. Introduction. Prerequisites. Learning Outcomes. Learning Style

The Envelope Theorem 1

Vector and Matrix Norms

John Kennan University of Wisconsin-Madison October, 1998

Homework # 3 Solutions

2.1 Increasing, Decreasing, and Piecewise Functions; Applications

Economics 121b: Intermediate Microeconomics Problem Set 2 1/20/10

5.3 Improper Integrals Involving Rational and Exponential Functions

Economics 2020a / HBS 4010 / HKS API-111 FALL 2010 Solutions to Practice Problems for Lectures 1 to 4

MULTIVARIATE PROBABILITY DISTRIBUTIONS

6.4 Logarithmic Equations and Inequalities

Consumer Theory. The consumer s problem

Lecture 3 : The Natural Exponential Function: f(x) = exp(x) = e x. y = exp(x) if and only if x = ln(y)

Continued Fractions and the Euclidean Algorithm

Cartesian Products and Relations

Chapter 27: Taxation. 27.1: Introduction. 27.2: The Two Prices with a Tax. 27.2: The Pre-Tax Position

Solving Quadratic Equations

CHAPTER FIVE. Solutions for Section 5.1. Skill Refresher. Exercises

Second Order Linear Nonhomogeneous Differential Equations; Method of Undetermined Coefficients. y + p(t) y + q(t) y = g(t), g(t) 0.

Conductance, the Normalized Laplacian, and Cheeger s Inequality

The Point-Slope Form

The Cobb-Douglas Production Function

c 2008 Je rey A. Miron We have described the constraints that a consumer faces, i.e., discussed the budget constraint.

5.1 Radical Notation and Rational Exponents

This unit will lay the groundwork for later units where the students will extend this knowledge to quadratic and exponential functions.

Scalar Valued Functions of Several Variables; the Gradient Vector

FINAL EXAM SECTIONS AND OBJECTIVES FOR COLLEGE ALGEBRA

Tastes and Indifference Curves

Online Appendix to Stochastic Imitative Game Dynamics with Committed Agents

U = x x x 1 4. What are the equilibrium relative prices of the three goods? traders has members who are best off?

MATHEMATICS FOR ENGINEERING BASIC ALGEBRA

Chapter 4 Online Appendix: The Mathematics of Utility Functions

The Method of Partial Fractions Math 121 Calculus II Spring 2015

Answer Key for California State Standards: Algebra I

CHAPTER SIX IRREDUCIBILITY AND FACTORIZATION 1. BASIC DIVISIBILITY THEORY

5.1 Derivatives and Graphs

100. In general, we can define this as if b x = a then x = log b

Math 55: Discrete Mathematics

Examples of Functions

1 Maximizing pro ts when marginal costs are increasing

Consumer Theory: The Mathematical Core

Mechanics 1: Conservation of Energy and Momentum

Mathematics Course 111: Algebra I Part IV: Vector Spaces

Economics of Insurance

1 The EOQ and Extensions

Productioin OVERVIEW. WSG5 7/7/03 4:35 PM Page 63. Copyright 2003 by Academic Press. All rights of reproduction in any form reserved.

PYTHAGOREAN TRIPLES KEITH CONRAD

1 Sufficient statistics

Algebra II End of Course Exam Answer Key Segment I. Scientific Calculator Only

constraint. Let us penalize ourselves for making the constraint too big. We end up with a

PRACTICE FINAL. Problem 1. Find the dimensions of the isosceles triangle with largest area that can be inscribed in a circle of radius 10cm.

Deriving Demand Functions - Examples 1

15 Kuhn -Tucker conditions

Economics 326: Duality and the Slutsky Decomposition. Ethan Kaplan

Notes from Week 1: Algorithms for sequential prediction

CORRELATED TO THE SOUTH CAROLINA COLLEGE AND CAREER-READY FOUNDATIONS IN ALGEBRA

Moreover, under the risk neutral measure, it must be the case that (5) r t = µ t.

Utility. M. Utku Ünver Micro Theory. M. Utku Ünver Micro Theory Utility 1 / 15

Section 1.3 P 1 = 1 2. = P n = 1 P 3 = Continuing in this fashion, it should seem reasonable that, for any n = 1, 2, 3,..., =

Real Roots of Univariate Polynomials with Real Coefficients

A power series about x = a is the series of the form

MPE Review Section III: Logarithmic & Exponential Functions

An Introduction to Partial Differential Equations

Sample Midterm Solutions

Chapter 4 One Dimensional Kinematics

ECE302 Spring 2006 HW5 Solutions February 21,

Chapter 7 - Roots, Radicals, and Complex Numbers

Polynomial and Rational Functions

88 CHAPTER 2. VECTOR FUNCTIONS. . First, we need to compute T (s). a By definition, r (s) T (s) = 1 a sin s a. sin s a, cos s a

a. all of the above b. none of the above c. B, C, D, and F d. C, D, F e. C only f. C and F

Understanding Basic Calculus

Transcription:

Lecture Notes on Elasticity of Substitution Ted Bergstrom, UCSB Economics 20A October 26, 205 Today s featured guest is the elasticity of substitution. Elasticity of a function of a single variable Before we meet this guest, let us spend a bit of time with a slightly simpler notion, the elasticity of a a function of a single variable. Where f is a differentiable real-valued function of a single variable, we define the elasticity of f(x) with respect to x (at the point x) to be Another way of writing the same expression is η(x) = xf (x) f(x). () η(x) = x df(x) dx f(x) = df(x) f(x) dx. (2) x From Expression 2, we see that the elasticity of of f(x) with respect to x is the ratio of the percent change in f(x) to the corresponding percent change in x. Measuring the responsiveness of a dependent variable to an independent variable in percentage terms rather than simply as the derivative of the function has the attractive feature that this measure is invariant to the units in which the independent and the dependent variable are measured. For example, economists typically express responsiveness of demand for a good to its price by an elasticity. In this case, the percentage change in quantity is the Some economists find it tiresome to talk about negative elasticities and choose to define the price-elasticity as the absolute value of the percentage responsiveness of quantity to price.

same whether quantity is measured in tons or in ounces and the percentage change in price is the same whether price is measured in dollars, Euros, or farthings. Thus the price elasticity is a unit-free measure. For similar reasons, engineers measure the stretchability of a material by an elasticity of the length of the material with respect to the force exerted on it. The elasticity of the function f at a point of x can also be thought of as the slope of a graph that plots ln x on the horizontal axis and ln f(x) on the vertical axis. That is, suppose that we make the change of variables u = ln x and v = ln y and we rewrite the equation y = f(x) as e v = f(e u ). Taking derivatives of both sides of this equation with respect to u and applying the chain rule, we have e v dv du = eu f (e u ) (3) and hence dv du = eu f (e u ) e v = xf (x) f(x) = η(x), (4) where the second equality in Expression 4 is true because e u = x and e v = f(x). Thus dv is the derivative of ln f(x) with respect to ln x. We sometimes du express this by saying that η(x) = d ln f(x) d ln x. (5) It is interesting to consider the special case where the elasticity of f(x) with respect to x is a constant, η that does not dependent on x. In this case, integrating both sides of Equation 5, we have ln f(x) = η ln x + a (6) for some constant a. Exponentiating both sides of Equation 6, we have f(x) = cx η (7) where c = e a. Thus we see that f has constant elasticity η if and only if f is a power function of the form 7. In general, the elasticity of f with respect to x depends on the value of x. For example if f(x) = a bx, then η(x) = bx. In this case, as x ranges a bx from 0 to a/b, η(x) ranges from 0 to. 2

Elasticity of inverse functions Another useful fact about elasticities is the following. Suppose that the function f is either strictly increasing or strictly decreasing. Then there is a well defined inverse function φ, defined so that such that φ(y) = x if and only if f(x) = y. It turns out that if η(x) is the elasticity of f(x) with respect to x, then /η(x) is the elasticity of φ(y) with respect to y. Proof. Note that since the function φ is the inverse of f, we must have φ (f(x)) = x. Using the chain rule to differentiate both sides of this equation with respect to x, we see that if y = f(x), then φ (y)f (x) = and hence φ (y) = /f (x). Therefore when y = f(x), the elasticity of φ(y) with respect to y is yφ (y) φ(y) = f(x) φ(y)f (x). But since y = f(x), it must be that φ(y) = x, and so we have yφ (y) φ(y) = f(x) xf (x) = η(x). Application to monopolist s revenue function One of the most common applications of the notion of elasticity of demand is to monopoly theory, where a monopolist is selling a good and the quantity of the good that is demanded is a function D(p) of the monopolist s price p. The monopolist s revenue is R(p) = pd(p). Does the monopolist s revenue increase of decrease if he increases his price and how is this related to the price elasticity? We note that R(p) is increasing (decreasing) in price if and only if ln R(p) increases (decreases) as the log of price increases. But ln R(p) = ln p + ln D(p). Then d ln R(p) d ln p = + d ln D(p) d ln p = + η(p) where η(p) is the price elasticity of demand. So revenue is an increasing function of p if η(p) > and a decreasing function of p if η <. In the former case we say demand is inelastic and in the latter case we say demand is elastic. 3

Elasticity of substitution Now we introduce today s main event the elasticity of substitution for a function of two variables. The elasticity of substitution is most often discussed in the context of production functions, but is also very useful for describing utility functions. A firm uses two inputs (aka factors of production) to produce a single output. Total output y is given by a concave, twice differentiable function y = f(x, ). Let f i (x, ) denote the partial derivative (marginal product) of f with respect to x i. While the elasticity of a function of a single variable measures the percentage response of a dependent variable to a percentage change in the independent variable, the elasticity of substitution between two factor inputs measures the percentage response of the relative marginal products of the two factors to a percentage change in the ratio of their quantities. The elasticity of substitution between any two factors can be defined for any concave production function of several variables. But for our first crack at the story it is helpful to consider the case where there are just two inputs and the production function is homogeneous of some degree k > 0. We also assume that the production function is differentiable and strictly quasi-concave. Fact. If f(x, ) is homogeneous of some degree k and strictly quasiconcave, then the ratio of the marginal products of the two factors is determined by the ratio x / and f (x, )/f 2 (x, ) is a decreasing function of x /. Proof. If f is homogeneous of degree k, then the partial derivatives of f are homogeneous of degree k. 2 Therefore f (x, ) = x k x 2 f, and f 2 (x, ) = x k x 2 f 2,. It follows that ( f (x, ) = xk 2 f x, ) ( f 2 (x, ) x k 2 f x 2, ) (8) 2 To prove this, note that if f is homogeneous of degree k, then f(λx) = λ k f(x). Differentiate both sides of this equation with respect to x i and arrange terms to show that f i (λx) = λ k f i (x). 4

= f ( x, ) ( f x 2, ). (9) Therefore the ratio of marginal products is determined by the ratio x /. Let us define this ratio as x g = f (x, ) f 2 (x, ). Since strict quasi-concavity implies diminishing marginal rate of substitution, it must be that g is a strictly decreasing function of x /. Since g is strictly decreasing, it must be that the function g has a welldefined inverse function. Let s call this inverse function h. Let prices of the two inputs be given by the vector p = (w, ). Suppose that the firm always chooses factors so as to minimize its costs, conditional on its output level. Then it must be that at prices p, the firm uses factors in the ratio x / such that g(x / ) = f ( x, ) ( f x 2, ) = w (0) or equivalently such that x = g p p 2 = h ( w ). () Definition. Where there are two factors and a homogeneous production function, the elasticity of substitution σ(w / ) measures the responsiveness of the ratio in which factors are used to the ratio of factor prices. Thus it is the absolute value of the ratio of the percentage by which a cost-minimizing firm changes the ratio in which it uses the factors in response to a change in the ratio of factor prices to he percentage change in the ratio of factor prices. The elasticity of substitution is just the negative of the elasticity of the function h with respect to its argument w /. That is, σ( w w w ) = 2 h ( w h w ) 5 d ln h w w = 2 d ln. (2) w

As we remarked in our earlier discussion, the elasticity of an inverse function is just the inverse of the elasticity of a function. The function g defined in Equation 0 is the inverse of the function h defined in Equation and so where x w = h it must be that the elasticity σ(x / ) of the function g satisfies the equations σ(w / ) = d ln f (x, ) f 2 (x, ) Constant Elasticity of Substitution d ln x (3) A very interesting special class of production functions is those for which the elasticity of substitution is a constant σ. These have come to be known as CES production functions. This class of functions was first explored in a famous paper published in 96 by Arrow, Chenery, Minhas, and Solow []. 3 These authors prove that a production function with n inputs has constant elasticity of substitution σ between every pair of inputs if and only if the production function is either of the functional form or else of the Cobb-Douglas form ( n ) k/ρ f(x,..., x n ) = A λ i x ρ i (4) i= A n i= x λ i i (5) where A > 0, k > 0, where λ i 0 for all i, i λ i = and where ρ is a constant, possibly negative. You should be able to prove the following facts about ces functions: 3 This paper is a notable example of the interaction of theoretical advances and empirical data for understanding economic phenomena. Though in retrospect, its results seem pretty straightforward, they were a revelation at the time. Two of the authors, Arrow and Solow, went on to win Nobel prizes. 6

Fact 2. The function as in Equation 4 has a constant elasticity of substitution σ = ρ. The function in Equation 5 has constant elasticity of substitution. Fact 3. The function defined in Equation 4 is homogeneous of degree k. The function defined in Equation 5 is homogeneous of degree n i= λ i. Fact 4. A CES function as in Equation 4 is quasi-concave if and only if ρ. Such a function is concave if and only if it is quasi-concave and k. Fact 5. The elasticity of substitution of the function in Equation 4 is greater than one if and only if ρ > 0 and less than one if and only if ρ < 0. This function is readily seen to be homogeneous of degree k. It is also easy to check that the form in equation 4 has constant elasticity of substitution σ = /( ρ) between any two variables and that in equation 5 has constant elasticity σ =. The proof of the converse result that a CES function must be of one of these two forms is not very difficult, but we will not show it here. Cost functions for CES production functions In this discussion, we assume there are only two factors. These results extend in a pretty obvious way to the case of a CES function with n factors. Since f has a constant elasticity of substitution, it must be that: ln x2 x = σ ln f (x) + µ. (6) f 2 (x) where σ is the constant elasticity of substitution and µ is a constant. The cost function c(, ) corresponding to the production function f( ) is defined so that c(w, y) = min{wx f(x) = y}. (This is mathematically the same notion as the expenditure function e(, ), corresponding to the utility function u( ), where e(p, u) = min{px u(x) = u}.) Constant returns to scale implies c(p, y) = c(w, )y where c(w, ) is the cost of producing one unit. By Shepherd s Lemma the conditional factor demand for good i is given x i (w, y) = c i (w, )y where c i (w, ) is the partial derivative of c(w, ) 7

with respect to w i. Cost minimization requires that the ratio of marginal products is equal to the ratio of prices, so According to Shepherd s lemma, From Equations 6 and 8 it follows that ln f (x(w, y)) f 2 (x(w, y)) = w. (7) c 2 (w, ) c (w, ) = (w, ) x (w, ). (8) c2 (w, ) = σ ln c (w, ) w + µ (9) Rearranging terms of equation 9, we find that ln w2 w = σ ln c (w, ) + µ c 2 (w, ) σ (20) This proves the following result: Fact 6. If the production function f(x, ) has constant elasticity of substitution σ between factors and 2, then the cost function c(w, ) must have constant elasticity of substitution, /σ between the prices of factors and 2. Finding a CES cost function Suppose that f(x, ) = (λ x ρ + λ 2 x ρ 2) /ρ is a CES production function with λ + λ 2 =. Then ln Rearranging terms, we have ln f (x, ) = (ρ ) ln f 2 (x, ) x = ρ ln x + ln f (x, ) f 2 (x, ) ρ ln λ λ 2 λ λ 2. (2). (22) 8

Noting that ln( /x ) = ln(x / ), we can write this as: ln x2 x = ρ ln f (x, ) + f 2 (x, ) ρ ln λ2 λ f (x, ) λ2 = σ ln + σ ln, (23) f 2 (x, ) where σ = /( ρ) is the elasticity of substitution of f. Let c(w, )y be the corresponding cost function. We have shown that c(w, ) is a constant elasticity of substitution function with elasticity of substitution /σ. Therefore the function c must be of the form c(w, ) = (a w r + a 2 w r 2) /r. (24) We have seen that a function of this form has elasticity of substitution /( r). We have shown that the elasticity of substitution of c must also equal /σ where σ is the elasticity of substitution of the original production function. Therefore σ = r. (25) We can solve for r in terms of the parameter ρ of the original production function. From Equation 25 it follows that σ = r and hence λ r = σ = ρ = ρ ρ. We still have a bit more work to do. How are the constants a and a 2 in the cost function related to the coefficients in the production function? One way to find this out is as follows. At the wage rates, w = λ and = λ 2, the cheapest way to produce unit is to set x (λ, λ 2 ) = (λ, λ 2 ) = and the cost of producing one units is c(λ, λ 2 ) = λ + λ 2 =. (To see this, note that when one unit of each factor is used, the ratio of marginal products is equal to λ /λ 2 and total output is equal to λ + λ 2 =.) Thus, we know that c(λ, λ 2 ) = (a λ r + a 2 λ r 2) /r =. (26) 9

Calculating derivatives, we have c (λ, λ 2 ) c 2 (λ, λ 2 ) = a a 2 We also have, from Shepherd s lemma ( λ From Equations 27 and 28 it follows that λ 2 ) r (27) c (λ, λ 2 ) c 2 (λ, λ 2 ) = x (λ, λ 2 ) (λ, λ 2 ) = (28) a a 2 = ( λ λ 2 ) r (29) From Equations 26 and 29 it then follows that a = λ r and a 2 = λ r 2. From Equation 24 it follows that if the production function is f(x, ) = (λ x ρ + λ 2 x ρ ) /ρ then the cost of producing one unit of output is given by the function where c(w,, ) = ( λ r w r + λ r 2 w r 2) /r (30) r = ρ ρ. We previously found that r = σ where σ is the elasticity of substitution of the production function. Therefore the following result follows from Equation 30 and the fact that with constant returns to scale, c(w,, y) = c(w,, )y. Fact 7. The production function f(x, ) = (λ x ρ + λ 2 x ρ 2) /ρ with λ + λ 2 = has constant elasticity of substitution σ = /( ρ). The corresponding cost function has elasticity of substitution /σ = ( ρ) and is given by c(w,, y) = λ σ w σ + λ σ 2w2 σ /( σ) y. 0

We can also work backwards. If we know that if there is a CES cost function with parameter r, then it corresponds to a CES production function with parameter ρ = r/( r). So for example if ρ =, r = /2 and if r = /2, ρ =. Remark: We have solved for the cost function if f(x, ) = (λ x ρ + λ ρ 2) /ρ where r. It is not hard now to find the cost function for the more general CES function f(x, ) = A (λ x ρ + λ 2 x ρ 2) k/ρ where A > 0 and k > 0. Hint: If f is homogeneous of degree, how is the cost function for the production function g such that g(x) = Af(x) k related to the cost function for f? Generalized means, CES functions, and limiting cases These notes are based on the presentation by Hardy, Littlewood and Polya in their classic book Inequalities [2]. Consider a collection of numbers x = {x,..., x n } such that x i 0 for all i. We define the mean of order r of these numbers as /r M r (x) = x r i (3) n If r < 0, then the above definition of M r (x,..., x n ) does not apply when x j = 0 for some j, since 0 r is not defined for r < 0. Therefore for r < 0, we define M r (x,..., x n ) as in Equation 3 if x i > 0 for all i and we define M r (x,..., x n ) = 0 if x j = 0 for some j. The special case where r = is the familiar arithmetic mean of the numbers x,..., x n. The case where r = is known as the harmonic mean. So far, we have not defined M 0 (x,..., x n ). We can demonstrate the following useful fact. i Fact 8. lim r 0 ( ai x r i ) /r = n i= x a i i.

Proof. To prove this, note that ln ( ai x r i ) /r = r ln ( ) ai x r i Applying L Hospital s rule to the expression on the right, we have lim r 0 r ln ( ( ) ai x r i = ln lim r 0 d dr ( a i x r ) i ) d r dr (32) = lim ai x r r 0 i ln x i = a i ln x i. (33) Therefore lim r 0 r ln ( ) ai x r i = ai ln x i. Since the exponential function is continuous, it must be that ( ) lim ai x r /r r 0 i = e lim r 0 ln( a r i x r i) (34) = e a i ln x i n = i= x a i i The special case where r = 0 for all i is known as the geometric mean. Two other interesting limiting cases of means of order r are the limits as r approaches and. We have the following result: Fact 9. and lim M r(x,..., x n ) = max{x,..., x n } r lim M r(x,..., x n ) = min{x,..., x n } r Here are some more useful facts about generalized means. Fact 0. For any real number r, M r (x,..., x n ) is homogeneous of degree one and is a non-decreasing function of each of its arguments. Moreover, min {x,..., x n } M r (x,..., x n ) max {x,..., x n }. 2

Fact. If r < s, then unless all of the x i are equal, M r (x) < M s (x). Immediate consequences of Fact are that for any collection of numbers that are not all equal, the geometric mean is less than the arithmetic mean and the harmonic mean is less than the geometric mean. We have demonstrated the following fact in previous discussions. Fact 2. The function M r (x) is a concave function if r and a convex function if r. This result is sometimes known as Minkowski s inequality. There are at least four different (equally weighted) generalized means that are sufficiently commonly used to have common names. The first three listed below are known as the Pythagoran means. The final one is known as the root mean square. the familiar arithmetic mean (order ) M (x,..., x n ) = n n x i i the geometric mean (order 0) ( n ) /n M 0 (x,..., x n ) = x i i which is the nth root of the product of the x i s the harmonic mean (order -) M (x,,..., x n ) = n ( +... + ) x x n which is the reciprocal of the average of the reciprocals of the x i s. the root mean square (order 2) ( M 2 (x,..., x n ) = n ( x 2 +... + n) ) /2. This is the square root of the average of the squares. 3

A simple generalization of the means of order r is the weighted mean of order r. Where a = a,..., a n ) such that a i 0 for all i and i a i =, we define the function M r (a, x) of x = {x,..., x n } so that M r (a, x) = ( ai x r i ) /r. (35) Thus the complete family of CES functions used by economists can be regarded as weighted means of some order r. The properties that we have found for ordinary means extend in a straightforward way to weighted means. Hardy, Littlewood and Polya point out that not only are ordinary means special cases of weighted means, but weighted means with rational weighs can be constructed as ordinary means by replacing every number (in x) by an appropriate set of equal numbers. Exercises Exercise. A) Suppose that x = = x 3 = 4. Find M r (x,, x 3 ) for r =, r = 0, and r =. B) Suppose that x =, = 4 x 3 = 6. Find M r (x,, x 3 ) for r =, r = 0, and r =. Verify that Minkowski s inequality holds. Exercise 2. Suppose that a vehicle travels from point A to point B at a speed of S and travels back from point B to point A at a speed of S 2. The average speed of travel is defined to be the ratio of total distance travelled to total time spent traveling. Show that the average speed of travel for this vehicle is the harmonic mean of S and S 2. Suppose that a vehicle travels at speed S for two hours and speed S 2 for two hours. Show that the average speed of the vehicle is the arithmetic mean of S and S 2. Exercise 3. Suppose that investment offers a rate of return of r 0 in odd numbered years and r in even numbered years. Investment 2 offers a rate of return r every year. If, after 00 years, the total return from investment is the same as that from investment 2, how is r related to r 0 and r? 4

References [] Kenneth J. Arrow, Hollis B. Chenery, Bagicha S. Minhas, and Robert M. Solow. Capital-labor substitution and economic efficiency. Review of Economics and Statistics, 43(3):225 250, August 96. [2] G. Hardy, J.E. Littlewood, and Pólya G. Inequalities. Cambridge University Press, Cambridge, U.K., 934. 5