Consumer Theory. The consumer s problem
|
|
|
- Marshall Newton
- 9 years ago
- Views:
Transcription
1 Consumer Theory The consumer s problem 1
2 The Marginal Rate of Substitution (MRS) We define the MRS(x,y) as the absolute value of the slope of the line tangent to the indifference curve at point point (x,y). y MRS(x,y) = 1/2 x 2
3 The Marginal Rate of Substitution (MRS) Conceptually, the MRS(x,y) is the quantity of good y that will compensate the consumer if he reduces his consumption of x in one (infinitesimal) unit, so that the consumer maintains the level of welfare he has when he consumes the bundle (x,y). In other words, the MRS(x,y) is the consumer s value for one (infinitesimal) unit of good x, measured in units of good y, when he has the bundle (x,y). 3
4 1. u(x,y) = xy The MRS: Examples Denote by u(x,y) = xy = u* the utility level at the consumption bundle (x,y). Then Therefore u* = xy y =f(x) = u*/x. f (x) = -u*/x 2. Substituting u*=xy we obtain MRS(x,y) = -xy/x 2 = y/x. Evaluating the MRS at (2,1) yields MRS(2,1) = 1/2. 4
5 The MRS: Examples y MRS = slope = 1/2 x 5
6 2. u(x,y) = 2x + y The MRS: Examples Denote by u* = 2x + y = u* the utility level at the consumption bunde (x,y). Then Therefore u* = 2x + y y = f(x) = u* - 2x. MRS(x,y) = f (x) = 2. In this case, the MRS is a constant and equal to 2. 6
7 y 4 The MRS: Examples 3. The goods x and y are perfect substitutes x 7
8 3. u(x,y) = min{x,2y} The MRS: Examples This utility function is not differentiable at (x,y) when x 2y. For these points, the MRS is not defined. At points (x,y) such that x > 2y, we have MRS(x,y)=0. 8
9 Examples 3. MRS(x,y) = 0 if y < x/2, and MRS(x,y) is not defined if y x/2. y u(x,y)=min{x,2y} y = x/2 x 9
10 MRS as the ratio of marginal utilities We can find an expression for the MRS(x,y) without knowing the function y = f(x) that defines the indifference curve. In order to calculate the MRS(x0,y0), we start from the equation that defines the indifference curve at point (x0,y0) u(x,y) = u0, (*) where u(x0,y0) = u0. The Implicit Function Theorem establishes conditions that guarantee that this equation defines a function around the point (x0,y0), and under these conditions ensures that the derivative of this function can be obtanined by total differentiation
11 MRS as the ratio of marginal utilities Denoting the partial derivatives of u(x,y) with respect to x and y as ux and uy, respectively, and taking the total derivative of the equation (*), we obtain dx ux + dy uy = 0. Hence the derivative of the function defined by equation (*) is dy/dx = -ux/uy Therefore MRS(x0,y0) is obtained by evaluating this expression at (x0,y0): MRS(x0,y0) = -ux(x0,y0)/uy(x0,y0) 11
12 MRS as the ratio of marginal utilities We apply this formula to examples 1 and 2 above. 1. u(x,y)=xy. We have u x = U/ x=y, and u y = U/ y=x. Hence MRS(x,y)= - u x /u y = y/x. 2. u(x,y)=2x+y We have u x = U/ x =2, and u y = U/ y =1. Hence MRS(x,y)= - u x /u y = 2/1= 2. 12
13 The consumer s problem The consumer chooses the consumption bundle that maximizes his welfare (that is, his utility) on the set of his feasible consumption bundles (that is, on his budget set). Thus, the consumer s problem (CP) is: Max x,y u(x,y) s. t. p x x + p y y I x 0, y 0. 13
14 The consumer s Problem Axioms A1, A2 and A4 imply that there is a utility function u: R 2 + R that represents the consumer s preferences. Moreover, the function u is continuous. When prices are positive, the consumer s budget set is compact (that is, closed and bounded). Hence, Weierstrass Theorem implies that the consumer s problem has a solution. 14
15 The consumer s Problem Axiom A3 implies that the function u(x,y) is non decreasing in x and non decreasing in y; furthermore, it is increasing in (x,y). Hence a solution to the CP, (x*, y*), satisfies: (1) p x x*+ p y y*= I. 15
16 The consumer s Problem Proof: If p x x+ p y y= I ε < I, then the bundle (x+ ε/2p x,y+ ε/2p x ) is in the budget set, and is preferred to (x, y) by A.3. 16
17 The consumer s Problem Axiom A5 implies that u is concave. Hence a local maximum of the function u is a global maximum; that is, second order conditions need not be checked. 17
18 The consumer s problem Characterizing a solution to the CP. Let (x*, y*) be a solution to the CP. Then: 2.a. If x*> 0 MRS(x*,y*) p x /p y 2.b. If y*> 0 MRS(x*,y*) p x /p y 18
19 The consumer s problem y I/p y B At B, the MRS p x /p y. The bundle C is preferred to B and is feasible. Therefore, B is not optimal. C I/p x x 19
20 The consumer s problem Interior solutions: (x*,y*) >> (0,0) (1) p x x+ p y y = I (2) MRS(x,y) = p x /p y 20
21 Corner solutions: The consumer s problem Only good x is consumed: x*= I/p x, y*= 0 (2) MRS(I/p x, 0) p x /p y Only good y is consumed: x*= 0, y*= I/p y (2) MRS(0, I/p y ) p x /p y 21
22 Examples 1. u(x,y) = xy; p x =1, p y =2, I=80. We have MRS(x,y) = y/x. Using (2) (MRS(x,y) = p x /p y ) we have y/x = 1/2 x = 2y Substituting in (1) (xp x + yp y = I) we have x+2y =80 2x=80. That is, x*= 40, y*= 20, and u* = x*y* = 800. There are no corner solutions since u(x,0)=u(0,y)=0<u*. 22
23 Examples y x 23
24 Examples 2. u(x,y) = 2x + y; p x =1, p y =2, I=80. We have MRS(x,y) = 2. Interior solutions: (1) p x x + p y y = I x + 2y = 80 (2) MRS(x,y) = p x /p y 2= 1/2?? Equation (2) is not satisfied. Hence there is no interior solution! 24
25 Corner solutions: y Examples MRS(0,40) = 2 > p x /p y = 1/ x The bundle (0,40) is not a solution. 25
26 Examples Corner solutions: y MRS(80,0) = 2 > p x /p y = 1/ x The bundle (80,0) is a solution. 26
27 Examples 3. u(x,y) = min{x,2y}; p x =1, p y =2, I=80. MRS(x,y) = 0 if y < x/2 (the indifference curve is horizontal at these points). The MRS(x,y) is not defined if y x/2 (at these points, the indifference curve is vertical or it has several tangent lines). The method discussed, which is based on the MRS, is not useful in solving this problem. 27
28 Examples Let s see that the solution is the bundle (40,20), like the graph below suggests. y y = x/ x 28
29 Examples Let s suppose that (x*,y*) solves the CP. a. If y* < x*/2, since x* + 2y* = 80, we have y* = (80- x*)/2 < 40- y* y* < 20. Therefore u(x*,y*)=2y* < 40 = u(40,20). b. If y* > x*/2, since x* + 2y* = 80, we have x* = 80-2y* < 80- x* x* < 40. Therefore u(x*,y*)=x* < 40 = u(40,20). (a) and (b) imply that (x*,y*) = (40,20) is the solution to the CP. 29
Economics 121b: Intermediate Microeconomics Problem Set 2 1/20/10
Dirk Bergemann Department of Economics Yale University s by Olga Timoshenko Economics 121b: Intermediate Microeconomics Problem Set 2 1/20/10 This problem set is due on Wednesday, 1/27/10. Preliminary
REVIEW OF MICROECONOMICS
ECO 352 Spring 2010 Precepts Weeks 1, 2 Feb. 1, 8 REVIEW OF MICROECONOMICS Concepts to be reviewed Budget constraint: graphical and algebraic representation Preferences, indifference curves. Utility function
Econ 100A: Intermediate Microeconomics Notes on Consumer Theory
Econ 100A: Interediate Microeconoics Notes on Consuer Theory Linh Bun Winter 2012 (UCSC 1. Consuer Theory Utility Functions 1.1. Types of Utility Functions The following are soe of the type of the utility
Advanced Microeconomics
Advanced Microeconomics Ordinal preference theory Harald Wiese University of Leipzig Harald Wiese (University of Leipzig) Advanced Microeconomics 1 / 68 Part A. Basic decision and preference theory 1 Decisions
Lecture 2. Marginal Functions, Average Functions, Elasticity, the Marginal Principle, and Constrained Optimization
Lecture 2. Marginal Functions, Average Functions, Elasticity, the Marginal Principle, and Constrained Optimization 2.1. Introduction Suppose that an economic relationship can be described by a real-valued
Problem Set #5-Key. Economics 305-Intermediate Microeconomic Theory
Problem Set #5-Key Sonoma State University Economics 305-Intermediate Microeconomic Theory Dr Cuellar (1) Suppose that you are paying your for your own education and that your college tuition is $200 per
Section 12.6: Directional Derivatives and the Gradient Vector
Section 26: Directional Derivatives and the Gradient Vector Recall that if f is a differentiable function of x and y and z = f(x, y), then the partial derivatives f x (x, y) and f y (x, y) give the rate
Envelope Theorem. Kevin Wainwright. Mar 22, 2004
Envelope Theorem Kevin Wainwright Mar 22, 2004 1 Maximum Value Functions A maximum (or minimum) value function is an objective function where the choice variables have been assigned their optimal values.
Multi-variable Calculus and Optimization
Multi-variable Calculus and Optimization Dudley Cooke Trinity College Dublin Dudley Cooke (Trinity College Dublin) Multi-variable Calculus and Optimization 1 / 51 EC2040 Topic 3 - Multi-variable Calculus
Choice under Uncertainty
Choice under Uncertainty Part 1: Expected Utility Function, Attitudes towards Risk, Demand for Insurance Slide 1 Choice under Uncertainty We ll analyze the underlying assumptions of expected utility theory
MATH 425, PRACTICE FINAL EXAM SOLUTIONS.
MATH 45, PRACTICE FINAL EXAM SOLUTIONS. Exercise. a Is the operator L defined on smooth functions of x, y by L u := u xx + cosu linear? b Does the answer change if we replace the operator L by the operator
TOPIC 4: DERIVATIVES
TOPIC 4: DERIVATIVES 1. The derivative of a function. Differentiation rules 1.1. The slope of a curve. The slope of a curve at a point P is a measure of the steepness of the curve. If Q is a point on the
Price Elasticity of Supply; Consumer Preferences
1 Price Elasticity of Supply 1 14.01 Principles of Microeconomics, Fall 2007 Chia-Hui Chen September 12, 2007 Lecture 4 Price Elasticity of Supply; Consumer Preferences Outline 1. Chap 2: Elasticity -
1. Briefly explain what an indifference curve is and how it can be graphically derived.
Chapter 2: Consumer Choice Short Answer Questions 1. Briefly explain what an indifference curve is and how it can be graphically derived. Answer: An indifference curve shows the set of consumption bundles
Chapter 4 Online Appendix: The Mathematics of Utility Functions
Chapter 4 Online Appendix: The Mathematics of Utility Functions We saw in the text that utility functions and indifference curves are different ways to represent a consumer s preferences. Calculus can
CHAPTER 3 CONSUMER BEHAVIOR
CHAPTER 3 CONSUMER BEHAVIOR EXERCISES 2. Draw the indifference curves for the following individuals preferences for two goods: hamburgers and beer. a. Al likes beer but hates hamburgers. He always prefers
Economics 2020a / HBS 4010 / HKS API-111 FALL 2010 Solutions to Practice Problems for Lectures 1 to 4
Economics 00a / HBS 4010 / HKS API-111 FALL 010 Solutions to Practice Problems for Lectures 1 to 4 1.1. Quantity Discounts and the Budget Constraint (a) The only distinction between the budget line with
Utility. M. Utku Ünver Micro Theory. M. Utku Ünver Micro Theory Utility 1 / 15
Utility M. Utku Ünver Micro Theory M. Utku Ünver Micro Theory Utility 1 / 15 Utility Function The preferences are the fundamental description useful for analyzing choice and utility is simply a way of
Lecture Note 7: Revealed Preference and Consumer Welfare
Lecture Note 7: Revealed Preference and Consumer Welfare David Autor, Massachusetts Institute of Technology 14.03/14.003 Microeconomic Theory and Public Policy, Fall 2010 1 1 Revealed Preference and Consumer
Constrained optimization.
ams/econ 11b supplementary notes ucsc Constrained optimization. c 2010, Yonatan Katznelson 1. Constraints In many of the optimization problems that arise in economics, there are restrictions on the values
Increasing for all. Convex for all. ( ) Increasing for all (remember that the log function is only defined for ). ( ) Concave for all.
1. Differentiation The first derivative of a function measures by how much changes in reaction to an infinitesimal shift in its argument. The largest the derivative (in absolute value), the faster is evolving.
In this section, we will consider techniques for solving problems of this type.
Constrained optimisation roblems in economics typically involve maximising some quantity, such as utility or profit, subject to a constraint for example income. We shall therefore need techniques for solving
Chapter 6: Pure Exchange
Chapter 6: Pure Exchange Pure Exchange Pareto-Efficient Allocation Competitive Price System Equitable Endowments Fair Social Welfare Allocation Outline and Conceptual Inquiries There are Gains from Trade
Walrasian Demand. u(x) where B(p, w) = {x R n + : p x w}.
Walrasian Demand Econ 2100 Fall 2015 Lecture 5, September 16 Outline 1 Walrasian Demand 2 Properties of Walrasian Demand 3 An Optimization Recipe 4 First and Second Order Conditions Definition Walrasian
Cost Minimization and the Cost Function
Cost Minimization and the Cost Function Juan Manuel Puerta October 5, 2009 So far we focused on profit maximization, we could look at a different problem, that is the cost minimization problem. This is
Microeconomic Theory: Basic Math Concepts
Microeconomic Theory: Basic Math Concepts Matt Van Essen University of Alabama Van Essen (U of A) Basic Math Concepts 1 / 66 Basic Math Concepts In this lecture we will review some basic mathematical concepts
5.1 Derivatives and Graphs
5.1 Derivatives and Graphs What does f say about f? If f (x) > 0 on an interval, then f is INCREASING on that interval. If f (x) < 0 on an interval, then f is DECREASING on that interval. A function has
1 Calculus of Several Variables
1 Calculus of Several Variables Reading: [Simon], Chapter 14, p. 300-31. 1.1 Partial Derivatives Let f : R n R. Then for each x i at each point x 0 = (x 0 1,..., x 0 n) the ith partial derivative is defined
CONSUMER PREFERENCES THE THEORY OF THE CONSUMER
CONSUMER PREFERENCES The underlying foundation of demand, therefore, is a model of how consumers behave. The individual consumer has a set of preferences and values whose determination are outside the
PRACTICE FINAL. Problem 1. Find the dimensions of the isosceles triangle with largest area that can be inscribed in a circle of radius 10cm.
PRACTICE FINAL Problem 1. Find the dimensions of the isosceles triangle with largest area that can be inscribed in a circle of radius 1cm. Solution. Let x be the distance between the center of the circle
Chapter 5. Linear Inequalities and Linear Programming. Linear Programming in Two Dimensions: A Geometric Approach
Chapter 5 Linear Programming in Two Dimensions: A Geometric Approach Linear Inequalities and Linear Programming Section 3 Linear Programming gin Two Dimensions: A Geometric Approach In this section, we
Lecture Notes on Elasticity of Substitution
Lecture Notes on Elasticity of Substitution Ted Bergstrom, UCSB Economics 210A March 3, 2011 Today s featured guest is the elasticity of substitution. Elasticity of a function of a single variable Before
1. First-order Ordinary Differential Equations
Advanced Engineering Mathematics 1. First-order ODEs 1 1. First-order Ordinary Differential Equations 1.1 Basic concept and ideas 1.2 Geometrical meaning of direction fields 1.3 Separable differential
The Envelope Theorem 1
John Nachbar Washington University April 2, 2015 1 Introduction. The Envelope Theorem 1 The Envelope theorem is a corollary of the Karush-Kuhn-Tucker theorem (KKT) that characterizes changes in the value
The Walrasian Model and Walrasian Equilibrium
The Walrasian Model and Walrasian Equilibrium 1.1 There are only two goods in the economy and there is no way to produce either good. There are n individuals, indexed by i = 1,..., n. Individual i owns
A Utility Maximization Example
A Utilit Maximization Example Charlie Gibbons Universit of California, Berkele September 17, 2007 Since we couldn t finish the utilit maximization problem in section, here it is solved from the beginning.
Math 432 HW 2.5 Solutions
Math 432 HW 2.5 Solutions Assigned: 1-10, 12, 13, and 14. Selected for Grading: 1 (for five points), 6 (also for five), 9, 12 Solutions: 1. (2y 3 + 2y 2 ) dx + (3y 2 x + 2xy) dy = 0. M/ y = 6y 2 + 4y N/
Lecture notes for Choice Under Uncertainty
Lecture notes for Choice Under Uncertainty 1. Introduction In this lecture we examine the theory of decision-making under uncertainty and its application to the demand for insurance. The undergraduate
Table of Contents MICRO ECONOMICS
economicsentrance.weebly.com Basic Exercises Micro Economics AKG 09 Table of Contents MICRO ECONOMICS Budget Constraint... 4 Practice problems... 4 Answers... 4 Supply and Demand... 7 Practice Problems...
Scalar Valued Functions of Several Variables; the Gradient Vector
Scalar Valued Functions of Several Variables; the Gradient Vector Scalar Valued Functions vector valued function of n variables: Let us consider a scalar (i.e., numerical, rather than y = φ(x = φ(x 1,
Linear and quadratic Taylor polynomials for functions of several variables.
ams/econ 11b supplementary notes ucsc Linear quadratic Taylor polynomials for functions of several variables. c 010, Yonatan Katznelson Finding the extreme (minimum or maximum) values of a function, is
Chapter 4 The Theory of Individual Behavior
Managerial Economics & Business Strategy Chapter 4 The Theory of Individual Behavior McGraw-Hill/Irwin Copyright 2010 by the McGraw-Hill Companies, Inc. All rights reserved. Overview I. Consumer Behavior
3.1 Solving Systems Using Tables and Graphs
Algebra 2 Chapter 3 3.1 Solve Systems Using Tables & Graphs 3.1 Solving Systems Using Tables and Graphs A solution to a system of linear equations is an that makes all of the equations. To solve a system
The fundamental question in economics is 2. Consumer Preferences
A Theory of Consumer Behavior Preliminaries 1. Introduction The fundamental question in economics is 2. Consumer Preferences Given limited resources, how are goods and service allocated? 1 3. Indifference
Solutions for Review Problems
olutions for Review Problems 1. Let be the triangle with vertices A (,, ), B (4,, 1) and C (,, 1). (a) Find the cosine of the angle BAC at vertex A. (b) Find the area of the triangle ABC. (c) Find a vector
Unraveling versus Unraveling: A Memo on Competitive Equilibriums and Trade in Insurance Markets
Unraveling versus Unraveling: A Memo on Competitive Equilibriums and Trade in Insurance Markets Nathaniel Hendren January, 2014 Abstract Both Akerlof (1970) and Rothschild and Stiglitz (1976) show that
UNIVERSITETET I OSLO
NIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Examination in: Trial exam Partial differential equations and Sobolev spaces I. Day of examination: November 18. 2009. Examination hours:
Math 241, Exam 1 Information.
Math 241, Exam 1 Information. 9/24/12, LC 310, 11:15-12:05. Exam 1 will be based on: Sections 12.1-12.5, 14.1-14.3. The corresponding assigned homework problems (see http://www.math.sc.edu/ boylan/sccourses/241fa12/241.html)
Name. Final Exam, Economics 210A, December 2011 Here are some remarks to help you with answering the questions.
Name Final Exam, Economics 210A, December 2011 Here are some remarks to help you with answering the questions. Question 1. A firm has a production function F (x 1, x 2 ) = ( x 1 + x 2 ) 2. It is a price
Production Possibilities Frontier and Output Market Efficiency. 1 Production Possibilities Frontier
Production Possibilities rontier. Principles of Microeconomics, all hia-hui hen October, Lecture Production Possibilities rontier and Output Market Efficiency Outline. hap : Production Possibilities rontier.
Problem Set #3 Answer Key
Problem Set #3 Answer Key Economics 305: Macroeconomic Theory Spring 2007 1 Chapter 4, Problem #2 a) To specify an indifference curve, we hold utility constant at ū. Next, rearrange in the form: C = ū
To give it a definition, an implicit function of x and y is simply any relationship that takes the form:
2 Implicit function theorems and applications 21 Implicit functions The implicit function theorem is one of the most useful single tools you ll meet this year After a while, it will be second nature to
2.2 Derivative as a Function
2.2 Derivative as a Function Recall that we defined the derivative as f (a) = lim h 0 f(a + h) f(a) h But since a is really just an arbitrary number that represents an x-value, why don t we just use x
Solutions to Homework 5
Solutions to Homework 5 1. Let z = f(x, y) be a twice continously differentiable function of x and y. Let x = r cos θ and y = r sin θ be the equations which transform polar coordinates into rectangular
Preferences. M. Utku Ünver Micro Theory. Boston College. M. Utku Ünver Micro Theory (BC) Preferences 1 / 20
Preferences M. Utku Ünver Micro Theory Boston College M. Utku Ünver Micro Theory (BC) Preferences 1 / 20 Preference Relations Given any two consumption bundles x = (x 1, x 2 ) and y = (y 1, y 2 ), the
Math 115 HW #8 Solutions
Math 115 HW #8 Solutions 1 The function with the given graph is a solution of one of the following differential equations Decide which is the correct equation and justify your answer a) y = 1 + xy b) y
Chapter 3 Consumer Behavior
Chapter 3 Consumer Behavior Read Pindyck and Rubinfeld (2013), Chapter 3 Microeconomics, 8 h Edition by R.S. Pindyck and D.L. Rubinfeld Adapted by Chairat Aemkulwat for Econ I: 2900111 1/29/2015 CHAPTER
A Detailed Price Discrimination Example
A Detailed Price Discrimination Example Suppose that there are two different types of customers for a monopolist s product. Customers of type 1 have demand curves as follows. These demand curves include
( 1)2 + 2 2 + 2 2 = 9 = 3 We would like to make the length 6. The only vectors in the same direction as v are those
1.(6pts) Which of the following vectors has the same direction as v 1,, but has length 6? (a), 4, 4 (b),, (c) 4,, 4 (d), 4, 4 (e) 0, 6, 0 The length of v is given by ( 1) + + 9 3 We would like to make
Rolle s Theorem. q( x) = 1
Lecture 1 :The Mean Value Theorem We know that constant functions have derivative zero. Is it possible for a more complicated function to have derivative zero? In this section we will answer this question
Calculus with Parametric Curves
Calculus with Parametric Curves Suppose f and g are differentiable functions and we want to find the tangent line at a point on the parametric curve x f(t), y g(t) where y is also a differentiable function
correct-choice plot f(x) and draw an approximate tangent line at x = a and use geometry to estimate its slope comment The choices were:
Topic 1 2.1 mode MultipleSelection text How can we approximate the slope of the tangent line to f(x) at a point x = a? This is a Multiple selection question, so you need to check all of the answers that
MICROECONOMICS AND POLICY ANALYSIS - U8213 Professor Rajeev H. Dehejia Class Notes - Spring 2001
MICROECONOMICS AND POLICY ANALYSIS - U8213 Professor Rajeev H. Dehejia Class Notes - Spring 2001 General Equilibrium and welfare with production Wednesday, January 24 th and Monday, January 29 th Reading:
88 CHAPTER 2. VECTOR FUNCTIONS. . First, we need to compute T (s). a By definition, r (s) T (s) = 1 a sin s a. sin s a, cos s a
88 CHAPTER. VECTOR FUNCTIONS.4 Curvature.4.1 Definitions and Examples The notion of curvature measures how sharply a curve bends. We would expect the curvature to be 0 for a straight line, to be very small
An increase in the number of students attending college. shifts to the left. An increase in the wage rate of refinery workers.
1. Which of the following would shift the demand curve for new textbooks to the right? a. A fall in the price of paper used in publishing texts. b. A fall in the price of equivalent used text books. c.
Schooling, Political Participation, and the Economy. (Online Supplementary Appendix: Not for Publication)
Schooling, Political Participation, and the Economy Online Supplementary Appendix: Not for Publication) Filipe R. Campante Davin Chor July 200 Abstract In this online appendix, we present the proofs for
Calculus 1: Sample Questions, Final Exam, Solutions
Calculus : Sample Questions, Final Exam, Solutions. Short answer. Put your answer in the blank. NO PARTIAL CREDIT! (a) (b) (c) (d) (e) e 3 e Evaluate dx. Your answer should be in the x form of an integer.
Review of Fundamental Mathematics
Review of Fundamental Mathematics As explained in the Preface and in Chapter 1 of your textbook, managerial economics applies microeconomic theory to business decision making. The decision-making tools
U = x 1 2. 1 x 1 4. 2 x 1 4. What are the equilibrium relative prices of the three goods? traders has members who are best off?
Chapter 7 General Equilibrium Exercise 7. Suppose there are 00 traders in a market all of whom behave as price takers. Suppose there are three goods and the traders own initially the following quantities:
x 2 + y 2 = 1 y 1 = x 2 + 2x y = x 2 + 2x + 1
Implicit Functions Defining Implicit Functions Up until now in this course, we have only talked about functions, which assign to every real number x in their domain exactly one real number f(x). The graphs
MICROECONOMICS II PROBLEM SET III: MONOPOLY
MICROECONOMICS II PROBLEM SET III: MONOPOLY EXERCISE 1 Firstly, we analyze the equilibrium under the monopoly. The monopolist chooses the quantity that maximizes its profits; in particular, chooses the
17. If a good is normal, then the Engel curve A. Slopes upward B. Slopes downward C. Is vertical D. Is horizontal
Sample Exam 1 1. Suppose that when the price of hot dogs is $2 per package, there is a demand for 10,000 bags of hot dog buns. When the price of hot dogs is $3 per package, the demand for hot dog buns
4. How many integers between 2004 and 4002 are perfect squares?
5 is 0% of what number? What is the value of + 3 4 + 99 00? (alternating signs) 3 A frog is at the bottom of a well 0 feet deep It climbs up 3 feet every day, but slides back feet each night If it started
Sample Midterm Solutions
Sample Midterm Solutions Instructions: Please answer both questions. You should show your working and calculations for each applicable problem. Correct answers without working will get you relatively few
Theoretical Tools of Public Economics. Part-2
Theoretical Tools of Public Economics Part-2 Previous Lecture Definitions and Properties Utility functions Marginal utility: positive (negative) if x is a good ( bad ) Diminishing marginal utility Indifferences
Don't Forget the Differential Equations: Finishing 2005 BC4
connect to college success Don't Forget the Differential Equations: Finishing 005 BC4 Steve Greenfield available on apcentral.collegeboard.com connect to college success www.collegeboard.com The College
Homework #2 Solutions
MAT Spring Problems Section.:, 8,, 4, 8 Section.5:,,, 4,, 6 Extra Problem # Homework # Solutions... Sketch likely solution curves through the given slope field for dy dx = x + y...8. Sketch likely solution
Second degree price discrimination
Bergals School of Economics Fall 1997/8 Tel Aviv University Second degree price discrimination Yossi Spiegel 1. Introduction Second degree price discrimination refers to cases where a firm does not have
4.1 Ordinal versus cardinal utility
Microeconomics I. Antonio Zabalza. Universit of Valencia 1 Micro I. Lesson 4. Utilit In the previous lesson we have developed a method to rank consistentl all bundles in the (,) space and we have introduced
CHAPTER 4 Consumer Choice
CHAPTER 4 Consumer Choice CHAPTER OUTLINE 4.1 Preferences Properties of Consumer Preferences Preference Maps 4.2 Utility Utility Function Ordinal Preference Utility and Indifference Curves Utility and
Average rate of change of y = f(x) with respect to x as x changes from a to a + h:
L15-1 Lecture 15: Section 3.4 Definition of the Derivative Recall the following from Lecture 14: For function y = f(x), the average rate of change of y with respect to x as x changes from a to b (on [a,
The Optimal Use of Government Purchases for Macroeconomic Stabilization. Pascal Michaillat (LSE) & Emmanuel Saez (Berkeley) July 2015
The Optimal Use of Government Purchases for Macroeconomic Stabilization Pascal Michaillat (LSE) & Emmanuel Saez (Berkeley) July 2015 1 / 29 You are Barack Obama. It is early 2009. The unemployment rate
Lecture 6: Price discrimination II (Nonlinear Pricing)
Lecture 6: Price discrimination II (Nonlinear Pricing) EC 105. Industrial Organization. Fall 2011 Matt Shum HSS, California Institute of Technology November 14, 2012 EC 105. Industrial Organization. Fall
Demand. Lecture 3. August 2015. Reading: Perlo Chapter 4 1 / 58
Demand Lecture 3 Reading: Perlo Chapter 4 August 2015 1 / 58 Introduction We saw the demand curve in chapter 2. We learned about consumer decision making in chapter 3. Now we bridge the gap between the
MATH 10550, EXAM 2 SOLUTIONS. x 2 + 2xy y 2 + x = 2
MATH 10550, EXAM SOLUTIONS (1) Find an equation for the tangent line to at the point (1, ). + y y + = Solution: The equation of a line requires a point and a slope. The problem gives us the point so we
Chapter 21: The Discounted Utility Model
Chapter 21: The Discounted Utility Model 21.1: Introduction This is an important chapter in that it introduces, and explores the implications of, an empirically relevant utility function representing intertemporal
D) Marginal revenue is the rate at which total revenue changes with respect to changes in output.
Ch. 9 1. Which of the following is not an assumption of a perfectly competitive market? A) Fragmented industry B) Differentiated product C) Perfect information D) Equal access to resources 2. Which of
Consumer Theory: The Mathematical Core
Consumer Theory: The Mathematical Core Dan McFadden, C13 Suppose an individual has a utility function U(x) which is a function of non-negative commodity vectors x = (x 1,x,...,x N ), and seeks to maximize
Inverse Functions and Logarithms
Section 3. Inverse Functions and Logarithms 1 Kiryl Tsishchanka Inverse Functions and Logarithms DEFINITION: A function f is called a one-to-one function if it never takes on the same value twice; that
Understanding Basic Calculus
Understanding Basic Calculus S.K. Chung Dedicated to all the people who have helped me in my life. i Preface This book is a revised and expanded version of the lecture notes for Basic Calculus and other
Deriving Demand Functions - Examples 1
Deriving Demand Functions - Examples 1 What follows are some examples of different preference relations and their respective demand functions. In all the following examples, assume we have two goods x
Principles of Economics: Micro: Exam #2: Chapters 1-10 Page 1 of 9
Principles of Economics: Micro: Exam #2: Chapters 1-10 Page 1 of 9 print name on the line above as your signature INSTRUCTIONS: 1. This Exam #2 must be completed within the allocated time (i.e., between
c. Given your answer in part (b), what do you anticipate will happen in this market in the long-run?
Perfect Competition Questions Question 1 Suppose there is a perfectly competitive industry where all the firms are identical with identical cost curves. Furthermore, suppose that a representative firm
Deriving MRS from Utility Function, Budget Constraints, and Interior Solution of Optimization
Utilit Function, Deriving MRS. Principles of Microeconomics, Fall Chia-Hui Chen September, Lecture Deriving MRS from Utilit Function, Budget Constraints, and Interior Solution of Optimization Outline.
Constrained Optimisation
CHAPTER 9 Constrained Optimisation Rational economic agents are assumed to make choices that maximise their utility or profit But their choices are usually constrained for example the consumer s choice
UC Berkeley Haas School of Business Economic Analysis for Business Decisions (EWMBA 201A)
UC Berkeley Haas School of Business Economic Analysis for Business Decisions (EWMBA 201A) The economic agent (PR 3.1-3.4) Standard economics vs. behavioral economics Lectures 1-2 Aug. 15, 2009 Prologue
Name: ID: Discussion Section:
Math 28 Midterm 3 Spring 2009 Name: ID: Discussion Section: This exam consists of 6 questions: 4 multiple choice questions worth 5 points each 2 hand-graded questions worth a total of 30 points. INSTRUCTIONS:
Introductory Notes on Demand Theory
Introductory Notes on Demand Theory (The Theory of Consumer Behavior, or Consumer Choice) This brief introduction to demand theory is a preview of the first part of Econ 501A, but it also serves as a prototype
Slope-Intercept Equation. Example
1.4 Equations of Lines and Modeling Find the slope and the y intercept of a line given the equation y = mx + b, or f(x) = mx + b. Graph a linear equation using the slope and the y-intercept. Determine
ANSWER KEY 3 UTILITY FUNCTIONS, THE CONSUMER S PROBLEM, DEMAND CURVES
ANSWER KEY 3 UTILITY FUNCTIONS, THE CONSUMER S PROBLEM, DEMAND CURVES ECON 210 (1) Perfect Substitutes. Suppose that Jack s utility is entirely based on number of hours spent camping (c) and skiing (s).
