01 The Nature of Fluids



Similar documents
Fluid Mechanics: Static s Kinematics Dynamics Fluid

XI / PHYSICS FLUIDS IN MOTION 11/PA

1. Fluids Mechanics and Fluid Properties. 1.1 Objectives of this section. 1.2 Fluids

Physics Notes Class 11 CHAPTER 2 UNITS AND MEASUREMENTS

= 800 kg/m 3 (note that old units cancel out) J 1000 g = 4184 J/kg o C

p atmospheric Statics : Pressure Hydrostatic Pressure: linear change in pressure with depth Measure depth, h, from free surface Pressure Head p gh

HEAT UNIT 1.1 KINETIC THEORY OF GASES Introduction Postulates of Kinetic Theory of Gases

Physics 181- Summer Experiment #8 1 Experiment #8, Measurement of Density and Archimedes' Principle

OUTCOME 1 STATIC FLUID SYSTEMS TUTORIAL 1 - HYDROSTATICS

Physics 1114: Unit 6 Homework: Answers

METRIC CONVERSION TABLE Multiply By To Obtain Millimetres Inches Millimetres Feet Metres Feet Kilometres 0.

Chapter 27 Static Fluids

CE 204 FLUID MECHANICS

WEEK 1. Engineering Calculations Processes Process Variables

Chapter 15. FLUIDS What volume does 0.4 kg of alcohol occupy? What is the weight of this volume? m m 0.4 kg. ρ = = ; ρ = 5.

Grade 8 Science Chapter 9 Notes

Mercury is poured into a U-tube as in Figure (14.18a). The left arm of the tube has crosssectional

Three Methods for Calculating the Buoyant Force Gleue: Physics

CHAPTER 3: FORCES AND PRESSURE

Chapter 13 - Solutions

a cannonball = (P cannon P atmosphere )A cannon m cannonball a cannonball = (P cannon P atmosphere ) πd 2 a cannonball = 5.00 kg

CE 3500 Fluid Mechanics / Fall 2014 / City College of New York

Buoyant Force and Archimedes Principle

Fundamental Concepts in Fluid Mechanics

CBE 6333, R. Levicky 1 Review of Fluid Mechanics Terminology

An Introduction to Fluid Mechanics

PHYS-2010: General Physics I Course Lecture Notes Section XIII

OUTCOME 3 TUTORIAL 5 DIMENSIONAL ANALYSIS

Pump Formulas Imperial and SI Units

SURFACE TENSION. Definition

Vatten(byggnad) VVR145 Vatten. 2. Vätskors egenskaper (1.1, 4.1 och 2.8) (Föreläsningsanteckningar)

Notes on Polymer Rheology Outline

Scalars, Vectors and Tensors

Properties of Fluids

39th International Physics Olympiad - Hanoi - Vietnam Theoretical Problem No. 3

Archimedes Principle. Biological Systems

Weight The weight of an object is defined as the gravitational force acting on the object. Unit: Newton (N)

EXPERIMENT 15: Ideal Gas Law: Molecular Weight of a Vapor

1 Wetting your feet. 2 Scaling Lies / Check your understanding: Solutions

Forces. Definition Friction Falling Objects Projectiles Newton s Laws of Motion Momentum Universal Forces Fluid Pressure Hydraulics Buoyancy

Physical Quantities, Symbols and Units

INTERIM UNITS OF MEASURE As suggested by Federal Standard 376B January 27, hectare (ha) Hundred for traffic buttons.

Pipe Flow-Friction Factor Calculations with Excel

Unit 1 INTRODUCTION 1.1.Introduction 1.2.Objectives

Gases. Macroscopic Properties. Petrucci, Harwood and Herring: Chapter 6

Buoyancy Problem Set

When the fluid velocity is zero, called the hydrostatic condition, the pressure variation is due only to the weight of the fluid.

Preferred SI (Metric) Units

Solution for Homework #1

MECHANICS OF SOLIDS - BEAMS TUTORIAL 2 SHEAR FORCE AND BENDING MOMENTS IN BEAMS

Pressure in Fluids. Introduction

PHYSICAL QUANTITIES AND UNITS

FXA Candidates should be able to : Define and apply the concept of specific heat capacity. Select and apply the equation : E = mcδθ

Name Class Date. F N A cm 2 A cm 2 Unknown: Step 2: Write the equations for Pascal s principle and pressure, force, and area.

FLUID DYNAMICS. Intrinsic properties of fluids. Fluids behavior under various conditions

_CH06_p qxd 1/20/10 9:44 PM Page 69 GAS PROPERTIES PURPOSE

2.016 Hydrodynamics Reading # Hydrodynamics Prof. A.H. Techet

Swissmetro travels at high speeds through a tunnel at low pressure. It will therefore undergo friction that can be due to:

Pressure. Pressure. Atmospheric pressure. Conceptual example 1: Blood pressure. Pressure is force per unit area:

So if ω 0 increases 3-fold, the stopping angle increases 3 2 = 9-fold.

Homework 9. Problems: 12.31, 12.32, 14.4, 14.21

Dimensional Analysis

Column Design. Gavin Duffy School of Electrical Engineering Systems DIT, Kevin Street

Fluids I. Level : Conceptual Physics/Physics I. Q1) Order the following materials from lowest to greatest according to their densities.

ENGINEERING SCIENCE H1 OUTCOME 1 - TUTORIAL 3 BENDING MOMENTS EDEXCEL HNC/D ENGINEERING SCIENCE LEVEL 4 H1 FORMERLY UNIT 21718P

APPLIED FLUID MECHANICS. TUTORIAL No.6 DIMENSIONAL ANALYSIS. When you have completed this tutorial you should be able to do the following.

W i f(x i ) x. i=1. f(x i ) x = i=1

1Physical quantities and units

Lecture 24 - Surface tension, viscous flow, thermodynamics

Thermodynamics AP Physics B. Multiple Choice Questions

Sheet 5:Chapter 5 5 1C Name four physical quantities that are conserved and two quantities that are not conserved during a process.

Basic Principles in Microfluidics

FLUID FORCES ON CURVED SURFACES; BUOYANCY

Concept Questions Archimedes Principle. 8.01t Nov 24, 2004

THE KINETIC THEORY OF GASES

The value of the wastewater flow used for sewer design is the daily peak flow. This can be estimated as follows:

The Ideal Gas Law. Gas Constant. Applications of the Gas law. P = ρ R T. Lecture 2: Atmospheric Thermodynamics

Ch 2 Properties of Fluids - II. Ideal Fluids. Real Fluids. Viscosity (1) Viscosity (3) Viscosity (2)

LAB #3: MEASURING SPECIFIC GRAVITY AND DENSITY. Set-up and Materials for Experiment

UNIT (1) MEASUREMENTS IN CHEMISTRY

Statistical Mechanics, Kinetic Theory Ideal Gas. 8.01t Nov 22, 2004

The ratio of inertial to viscous forces is commonly used to scale fluid flow, and is called the Reynolds number, given as:

CHEMISTRY GAS LAW S WORKSHEET

Chapter 28 Fluid Dynamics

L r = L m /L p. L r = L p /L m

PHYS 101-4M, Fall 2005 Exam #3. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

EDEXCEL NATIONAL CERTIFICATE/DIPLOMA MECHANICAL PRINCIPLES OUTCOME 2 ENGINEERING COMPONENTS TUTORIAL 1 STRUCTURAL MEMBERS

Phys222 W11 Quiz 1: Chapters Keys. Name:

CHAPTER 14 THE CLAUSIUS-CLAPEYRON EQUATION

Chemistry 13: States of Matter

ENGINEERING INFORMATION Hot water and steam service

Fluids and Solids: Fundamentals

Density. Density is how concentrated or compact matter is.

TEACHER ANSWER KEY November 12, Phys - Vectors

Physics 101 Hour Exam 3 December 1, 2014

Ponce de Leon Middle School Physical Science 2016 Summer Instructional Packet

STRESS AND DEFORMATION ANALYSIS OF LINEAR ELASTIC BARS IN TENSION

WORK DONE BY A CONSTANT FORCE

Gas Laws. The kinetic theory of matter states that particles which make up all types of matter are in constant motion.

Transcription:

01 The Nature of Fluids WRI 1/17 01 The Nature of Fluids (Water Resources I) Dave Morgan Prepared using Lyx, and the Beamer class in L A TEX 2ε, on September 12, 2007

Recommended Text 01 The Nature of Fluids WRI 2/17 A recommended text to accompany these notes is Applied Fluid Mechanics by Mott: Read sections: 1.3, 1.4, 1.6 (omit US units), 1.7, 1.8, 1.9, 1.11 Study Example Problems: 1.5-1.9

Elementary Properties of Fluids 01 The Nature of Fluids WRI 3/17 Fluids can be either liquid or gas A liquid tends to ow and conform to the shape of its container Liquids are not readily compressible (for the purpose of this course, we consider them to be imcompressible) A gas tends to expand to ll the closed container it is in (or to disperse if not contained). Gases are readily compressible We shall be primarily concerned with liquids

Primary Units 01 The Nature of Fluids WRI 4/17 SI units are used. Four primary units will be used extensively in this course: Quantity SI unit Dimension Length metre, m L Mass kilogram, kg M Time second, s T Temperature Kelvin, K θ (Current and luminosity are the two other primary SI units.)

Derived Units 01 The Nature of Fluids WRI 5/17 Quantity SI Unit Dimensions velocity m/s LT 1 acceleration m/s 2 LT 2 force N, newton MLT 2 kg m/s 2 energy J, joule (work) N m ML 2 T 2 kg m 2 /s 2 power N m/s ML 2 T 3 J/s pressure Pa, pascal ML 1 T 2 (stress) N/m 2 kg/m/s 2

Derived Units: 01 The Nature of Fluids WRI 6/17 Quantity SI Unit Dimensions Volume ow rate, Q m 3 /s L 3 T 1 L/s Weight ow rate, W N/s ML 1 S 2 kg/m/s 2 Mass ow rate, M kg/s MT 1 Specic weight, γ N/m 3 ML 2 T 2 Density, ρ kg/m 3 ML 3

Pressure 01 The Nature of Fluids WRI 7/17 Pressure is given by: p = F A It is the force per unit area on a surface, where 1 N/m 2 = 1 Pa (pascal)

Pressure 01 The Nature of Fluids WRI 7/17 Pressure is given by: p = F A It is the force per unit area on a surface, where 1 N/m 2 = 1 Pa (pascal) Blaise Pascal (1623-1662), after whom the Pascal programming language was named, determined the following principles: 1 Pressure acts uniformly in all directions on a small volume of a uid at rest 2 In a uid conned by solid boundaries, pressure acts perpendicularly to the boundaries

Pascal's Laws 01 The Nature of Fluids WRI 8/17 Pressure acts uniformly in all directions on a small volume of a uid at rest. The forces must balance out (i.e. Σ F x = Σ F y = 0); otherwise the volume of uid will not be in equilibrium and cannot remain at rest. Also, the volume must be suciently small that we do not have to consider the mass, and therefore the weight, of the volume of uid. If the weight is not negligible, the upward pressure on the bottom of the volume will have to be greater than the downward pressure on the top of the volume so that Σ F y = F up W F down = 0.

Pascal's Laws 01 The Nature of Fluids WRI 9/17 In a uid conned by solid boundaries, pressure acts perpendicularly to the boundaries. Why is this true? (Consider a small volume of uid at rest against one of the boundaries? If this volume remains at rest, what are the forces that act upon it?)

Density 01 The Nature of Fluids WRI 10/17 Density is mass per unit volume: ρ = m V

Density 01 The Nature of Fluids WRI 10/17 Density is mass per unit volume: ρ = m V The density of water between 0 C and 15 C is close to 1000 kg/m 3. It has a maximum density at 4 C. Above 15 C, the density drops steadily to a density of 958 kg/m 3 at 100 C. (There is a table of values for the properties of water at the back of Applied Fluid Mechanics by Mott, or from numerous other sources)

Specic Weight 01 The Nature of Fluids WRI 11/17 Specic weight is weight per unit volume: γ = w V

Specic Weight 01 The Nature of Fluids WRI 11/17 Specic weight is weight per unit volume: γ = w V Water has a specic weight of 9.81 kn/m 3 between 0 C and 15 C.

Specic Weight 01 The Nature of Fluids WRI 11/17 Specic weight is weight per unit volume: γ = w V Water has a specic weight of 9.81 kn/m 3 between 0 C and 15 C. Since w = mg, it follows that: γ = w V = mg V = ρg

Specic Gravity 01 The Nature of Fluids WRI 12/17 Specic gravity is the ratio of the density (or specic weight) of a substance to the density (or specic weight) of water at 4 C. Then, the specic gravity of a substance s is given by sg = γ s γ w@4 C = ρ s ρ w@4 C

Specic Gravity 01 The Nature of Fluids WRI 12/17 Specic gravity is the ratio of the density (or specic weight) of a substance to the density (or specic weight) of water at 4 C. Then, the specic gravity of a substance s is given by sg = γ s γ w@4 C = ρ s ρ w@4 C The density of gasoline at 25 C is 680 kg/m 3 and the density of water at 4 C is 1000 kg/m 3. Therefore, the specic gravity of gasoline at 25 C is sg= 680/1000 = 0.68.

Specic Gravity 01 The Nature of Fluids WRI 12/17 Specic gravity is the ratio of the density (or specic weight) of a substance to the density (or specic weight) of water at 4 C. Then, the specic gravity of a substance s is given by sg = γ s γ w@4 C = ρ s ρ w@4 C The density of gasoline at 25 C is 680 kg/m 3 and the density of water at 4 C is 1000 kg/m 3. Therefore, the specic gravity of gasoline at 25 C is sg= 680/1000 = 0.68. The specic weight of mercury at 25 C is 132.8 kn/m 3 and the specic weight of water at 4 C is 9.81 kn/m 3 so the specic gravity of mercury at 25 C is sg = 13.54

Nature of Fluids 01 The Nature of Fluids WRI 13/17 Example Calculate the pressure produced in the oil in a closed cylinder by a piston with diameter 7.5 cm exerting a force of 11175 N

Nature of Fluids 01 The Nature of Fluids WRI 13/17 Example Calculate the pressure produced in the oil in a closed cylinder by a piston with diameter 7.5 cm exerting a force of 11175 N 11175 N 7.5 cm

Nature of Fluids 01 The Nature of Fluids WRI 13/17 Example Calculate the pressure produced in the oil in a closed cylinder by a piston with diameter 7.5 cm exerting a force of 11175 N 11175 N Solution 7.5 cm p = F A = 11175 N π(0.075) 2 /4 m 2 = 2529500 Pa = 2.53 MPa

Nature of Fluids 01 The Nature of Fluids WRI 14/17 Example Calculate the weight of 1 m 3 of kerosene if it has a mass of 823 kg

Nature of Fluids 01 The Nature of Fluids WRI 14/17 Example Calculate the weight of 1 m 3 of kerosene if it has a mass of 823 kg Solution W = mg = 823 kg 9.81 m/s 2 = 8070 N Note: In general, use 5 signicant gures for interim calculations and 3 signicant gures for displayed solutions.

Nature of Fluids 01 The Nature of Fluids WRI 15/17 Example Calculate the density and the specic weight of benzene if its specic gravity is 0.876.

Nature of Fluids 01 The Nature of Fluids WRI 15/17 Example Calculate the density and the specic weight of benzene if its specic gravity is 0.876. Solution 0.876 = ρ b ρ water@4 C ρ b = 0.876 1000 kg/m 3 = 876 kg/m 3 0.876 = γ b γ water@4 C γ b = 0.876 9.81 kn/m 3 = 8.59 kn/m 3

Nature of Fluids 01 The Nature of Fluids WRI 16/17 Example A cylindrical tank with diameter 12.0 m contains water at 20 C to a depth of 4.0 m. If the water is heated to 65 C, what is the depth of the water? (Assume that the tank dimensions remain constant and that there are no losses due to evaporation.)

Nature of Fluids Example A cylindrical tank with diameter 12.0 m contains water at 20 C to a depth of 4.0 m. If the water is heated to 65 C, what is the depth of the water? (Assume that the tank dimensions remain constant and that there are no losses due to evaporation.) Solution Volume at 20 C: V 20 = πd 2 h 20 4 Mass of water in the tank: = π(12.0 m)2 (4.0 m) 4 = 452.39 m 3 m = ρv 20 = 998 kg/m 3 452.39 m 3 = 451490 kg...continued 01 The Nature of Fluids WRI 16/17

Nature of Fluids 01 The Nature of Fluids WRI 17/17 Solution (continued) V 20 = πd 2 h 20 4 = π(12.0 m)2 (4.0 m) 4 = 452.39 m 3 m = ρ 20 V 20 = 998 kg/m 3 452.39 m 3 = 451490 kg Volume at 65 C: Depth at 65 C: V 65 = m 451490 kg = = 460.23 m3 3 ρ 65 981 kg/m h 65 = 4V 65 πd 2 4 460.23 m3 = = 4.0639 m π(12.0) 2 The depth at 65 C is 4.06 m