FLUID FORCES ON CURVED SURFACES; BUOYANCY
|
|
|
- Alban Rodgers
- 9 years ago
- Views:
Transcription
1 FLUID FORCES ON CURVED SURFCES; BUOYNCY The principles applicable to analysis of pressure-induced forces on planar surfaces are directly applicable to curved surfaces. s before, the total force on the surface is computed as df, or p d, and, in each differential area, the force is perpendicular to the surface. The complication is therefore simply geometric, because we need to account for the different directions of the df terms. However, it turns out that this complexity can be eliminated, based on the following analysis. (Note: the analysis addresses ways of finding the magnitude and direction of the force; finding the location of action is not covered here.) Consider the forces acting on one side of an infinitely thin, but curved, surface that is completely exposed to a fluid at rest. For simplicity, assume that the surface is not curved under itself, so that the vertical component of the fluid pressure is downward everywhere on one side of the sheet, and upward everywhere on the other side. We can analyze the force downward on the upward-facing side of the sheet, based on a free-body analysis around a mass of fluid defined by the boundaries shown in the figure on the left below. The bottom boundary is the curved surface, the upper boundary is a horizontal plane at the water surface, and the side boundaries are vertical planes at the edges of the surface. Because this mass of fluid is at rest, the net vertical force on it must be zero. Consider a differential area of the curved surface, with length in the curved direction of dl and width equal to the full width of the sheet, at a depth h below the water. This area can be decomposed into vertical and horizontal components, d V and d H, respectively, as shown by the triangle below the figure. d H p gas h d V df H df V p = γ h d V d H Because pressure at a given depth is the same in all directions, and because the triangle is of differential size, the pressure exerted on all three faces of the triangle is the C:\data\CLSNOTE\42\Class Notes\Topic 4_curved surf & buoyancy.doc
2 same, equal to p air + γ h. Therefore, a free-body analysis of the water column above the area d shows that the force downward on d (and, equivalently, the force upward that the area d exerts on the water) is: ( γ ) df = p + h d (1) V gas H Integrating over the whole surface, we find the vertical force downward on the sheet, and that the sheet exerts upward on the water, is: (2) F = p d +γ hd V gas H H = p + γv = p + W () gas H above gas H above where W above is the weight of the water above the surface of the sheet. That is, the total downward force on the curved surface equals the sum of (1) the product of the pressure of the overlying gas phase and the projected area of the curved surface onto a horizontal plane, and (2) the weight of water that would fill the volume directly above the curved surface. Note that the analysis is based on the pressure exerted on different points of the surface, which in turn depends on γ and h. Thus, the result shown in Equation is valid even if some object (e.g., a fish) is in the fluid above the surface of interest. That is, as stated, the term W above equals the weight of water that would fill the volume directly above the curved surface, regardless of whether that volume is actually occupied by water or something else. very similar analysis can be carried out to determine the horizontal force on the upper curved surface. In this case, the boundaries for the free-body analysis include horizontal planes that are tangent to the highest and lowest points of the curved surface, vertical planes at the edges defining the width of the surface, a vertical plane an arbitrary distance to the right of the surface, and the surface itself. The horizontal force on a differential area and on the whole surface are then given by: df H = (p gas + γ h)d V (4) F = p d +γ hd H gas V V The integral hdv is the moment of the area projected onto the vertical plane and is therefore the centroid of that area, h c. Integrating the first term in Equation 4 and making the above substitution for the second term yields: ( γ ) F = p + h (5) H gas c V This result can be stated in words as: the horizontal force on a curved surface is the product of the projected area of the surface on a vertical plane with the sum of the pressure of the overlying air and the water pressure at the centroid of the projected area. 2
3 Now consider how the analysis applies to a solid object that is submerged in the fluid. We can consider the vertical forces on such an object in two parts: one part accounts for all the downward forces on the upper surface of the object, and the other part accounts for all the upward forces on its lower surface. Two copies of a schematic of such an object are shown below; the differences in shading are explained shortly. B B C C D D The analysis of the vertical force on this object is virtually identical to that leading to Equation, but now the pressure-based force upward on the bottom surface is greater than the downward pressure-based on the top surface. In the schematic, this difference is indicated by the shading, which indicates W above : the weight of water above the top surface (shown by the shading in the diagram on the left) is less than the corresponding weight above the bottom surface (shown by the shading in the diagram on the right). The difference between these two forces is the net upward (buoyant) force on the object. The effect of the air pressure on the two surfaces cancels out, leaving us with: F = F F buoyant V, bottom V, top = pgas H + Wabove pgas H + Wabove bottom top = W W = W (6) above above displaced bottom top volume
4 Thus, for an object that is completely submerged in a single fluid, the buoyant force equals the weight of the fluid displaced by the object s volume. This is the proof of rchimedes first law. The net horizontal force on such an object would be zero, since its projected areas to the left and right would be the same. However, there would be a net horizontal force on the object if it had different fluids on its two sides (e.g., if it were a plug, so that it had water on one side and air on the other). If an object is only partially submerged in a liquid (i.e., if it sticks out of the liquid at any location), the analysis follows the same outline. Since the system is at rest, the downward force of the object (typically, its weight plus the pressure-based forces on its upper surfaces) must be balanced by the upward force on it (any support structure plus the pressure-based force on its lower surfaces). s above, we can compute the buoyant force on the object as the difference between the upward, pressure-based force on its lower surface and the downward, pressure-based force on its upper surface. These forces can be computed by applying Equation to the lower and upper surfaces, but we must take care to include in W above only the projection of those parts of the surface that are actually in contact with the liquid Example. In the system shown schematically below, the solid cone fits into the 1.5-ft diameter opening in the bottom of the tank to prevent water from draining from the tank. The volumes of the cylindrical portion of the cone above the opening (B), the conical section below the opening (C) and the remaining, semi-annular portion of the cone () are shown in the figure. What is the minimum weight of the cone that will prevent it from lifting away from the opening? 2 ft 2 ft Water ft B V VB = π ft 2 9 = π ft 8 2 ft ir C VC = π ft 8 Solution. Section of the cone is completely submerged in the water (i.e., it has water both above and below it), so the buoyant force on that section equals the weight of water 4
5 that it displaces, i.e., Fbuoyant, = Vγ. Section B, on the other hand, is a cylinder with water above it and air below it. The air pressure on the bottom and the projected area of this section are identical to the air pressure on the top and the top projected area, respectively, so the two forces on section B associated with air pressure cancel one another. However, the section also experiences a force downward from the water pressure on its upper surface, equal to γ hbtop, reab. The distance h B,top is given as 2 ft, and, by geometry, the diameter of the B cylinder is 1.5 ft. We can therefore calculate the force on section B. Section C is not in the water and therefore experiences no buoyant or pressurebased force from the water; its only effect is to contribute to the weight of the cone, which is what we will solve for. We can therefore carry out a force analysis on the whole cone. Defining up as the direction of positive force, we have: F = 0 = F F W tot B cone (, ) = γ V h rea W B top B cone W cone [ 1.5] 2 π = 62.4 π ( 2) lb = 7.6 lb 2 4 The cone must weigh at least 7.6 lb to keep the water from leaking out Example. Calculate the force P necessary to lift the 4-ft diameter, 400 lb container off the bottom in the scenario shown in the schematic. Draw a free body diagram of the container to assist in the solution. 5
6 Solution. The water exerts a compressive force on the container, but no vertical force, so it has no effect on the force required to lift the container. lso, the atmospheric pressure exerts a force downward on the top surface of the container that is exactly equaled by the upward force it exerts on the bottom, so it also has no effect on the required force P. The pressure at a depth of 10 ft of oil is γ oil h, and this pressure is exerted on the upper surface of the container. The total downward force is therefore given by: F = W + γ h down oil [ 4 ft] 2 lb = 400 lb ( 10 ft) π = 667 lb ft 4 The force P must exceed 667 lbs to lift the container If an object is floating in a fluid, the analysis hardly changes: the buoyant force on the object must still balance the downward force of the object s weight and any other downward force on the object. The only difference is that, in this case, the volume of displaced fluid is less than the full volume of the object. The upward force on the bottom of such an object equals the weight of water that would be contained above the bottom surface, plus the force associated with any pressure of the overlying gas. similar statement applies to any upper surface that is submerged. The effects of the gas pressure cancel out, and the net result is that the buoyant force on the object equals the weight of liquid that it displaces. Thus, a floating object displaces a volume of water with weight equal to the weight of the object. This result is known as rchimedes second law. Weight of liquid in the volumes outlined in bold equals the upward force (on left) and downward force (on right) on the semi-submerged object. The difference between these two volumes equals the submerged volume of the object. Correspondingly, the net upward force equals the weight of a volume of water equal to the submerged volume of the object. Conclusion: a floating object displaces a volume of liquid that has the same weight as the object does. 6
7 The center of buoyancy of an object, i.e., the location of the resultant buoyant force, can be defined analogously to a center of gravity or of pressure. The center of buoyancy is always at the center of gravity of the liquid that has been displaced. Thus, the net vertical force on a partially or fully submerged object is the vector sum of the (downward) gravitational force acting at the center of gravity and the (upward) buoyant force acting at the center of buoyancy. 7
When the fluid velocity is zero, called the hydrostatic condition, the pressure variation is due only to the weight of the fluid.
Fluid Statics When the fluid velocity is zero, called the hydrostatic condition, the pressure variation is due only to the weight of the fluid. Consider a small wedge of fluid at rest of size Δx, Δz, Δs
SURFACE TENSION. Definition
SURFACE TENSION Definition In the fall a fisherman s boat is often surrounded by fallen leaves that are lying on the water. The boat floats, because it is partially immersed in the water and the resulting
p atmospheric Statics : Pressure Hydrostatic Pressure: linear change in pressure with depth Measure depth, h, from free surface Pressure Head p gh
IVE1400: n Introduction to Fluid Mechanics Statics : Pressure : Statics r P Sleigh: [email protected] r J Noakes:[email protected] January 008 Module web site: www.efm.leeds.ac.uk/ive/fluidslevel1
Hydrostatic Force on a Submerged Surface
Experiment 3 Hydrostatic Force on a Submerged Surface Purpose The purpose of this experiment is to experimentally locate the center of pressure of a vertical, submerged, plane surface. The experimental
Buoyancy Problem Set
Buoyancy Problem Set 1) A stone weighs 105 lb in air. When submerged in water, it weighs 67.0 lb. Find the volume and specific gravity of the stone. (Specific gravity of an object: ratio object density
Three Methods for Calculating the Buoyant Force Gleue: Physics
Three Methods for Calculating the Buoyant Force Gleue: Physics Name Hr. The Buoyant Force (F b ) is the apparent loss of weight for an object submerged in a fluid. For example if you have an object immersed
Physics 1114: Unit 6 Homework: Answers
Physics 1114: Unit 6 Homework: Answers Problem set 1 1. A rod 4.2 m long and 0.50 cm 2 in cross-sectional area is stretched 0.20 cm under a tension of 12,000 N. a) The stress is the Force (1.2 10 4 N)
oil liquid water water liquid Answer, Key Homework 2 David McIntyre 1
Answer, Key Homework 2 David McIntyre 1 This print-out should have 14 questions, check that it is complete. Multiple-choice questions may continue on the next column or page: find all choices before making
Chapter 27 Static Fluids
Chapter 27 Static Fluids 27.1 Introduction... 1 27.2 Density... 1 27.3 Pressure in a Fluid... 2 27.4 Pascal s Law: Pressure as a Function of Depth in a Fluid of Uniform Density in a Uniform Gravitational
Physics 181- Summer 2011 - Experiment #8 1 Experiment #8, Measurement of Density and Archimedes' Principle
Physics 181- Summer 2011 - Experiment #8 1 Experiment #8, Measurement of Density and Archimedes' Principle 1 Purpose 1. To determine the density of a fluid, such as water, by measurement of its mass when
Chapter 5: Distributed Forces; Centroids and Centers of Gravity
CE297-FA09-Ch5 Page 1 Wednesday, October 07, 2009 12:39 PM Chapter 5: Distributed Forces; Centroids and Centers of Gravity What are distributed forces? Forces that act on a body per unit length, area or
Mercury is poured into a U-tube as in Figure (14.18a). The left arm of the tube has crosssectional
Chapter 14 Fluid Mechanics. Solutions of Selected Problems 14.1 Problem 14.18 (In the text book) Mercury is poured into a U-tube as in Figure (14.18a). The left arm of the tube has crosssectional area
Buoyancy and Archimedes Principle. Buoyancy and Archimedes Principle Assume block is in equilibrium.
Assume block is in equilibrium. Then upward forces must equal downward forces. Upward force: pressure from fluid Downward force: atmospheric pressure plus weight Therefore In this case, the object is less
Figure 1.1 Vector A and Vector F
CHAPTER I VECTOR QUANTITIES Quantities are anything which can be measured, and stated with number. Quantities in physics are divided into two types; scalar and vector quantities. Scalar quantities have
Chapter 28 Fluid Dynamics
Chapter 28 Fluid Dynamics 28.1 Ideal Fluids... 1 28.2 Velocity Vector Field... 1 28.3 Mass Continuity Equation... 3 28.4 Bernoulli s Principle... 4 28.5 Worked Examples: Bernoulli s Equation... 7 Example
Archimedes Principle. Biological Systems
Archimedes Principle Introduction Many of the substances we encounter in our every day lives do not have rigid structure or form. Such substances are called fluids and can be divided into two categories:
Lesson 2 The Buoyant Force
Lesson 2 Student Labs and Activities Page Launch Lab 26 Content Vocabulary 27 Lesson Outline 28 MiniLab 30 Content Practice A 31 Content Practice B 32 School to Home 33 Key Concept Builders 34 Enrichment
2.016 Hydrodynamics Reading #2. 2.016 Hydrodynamics Prof. A.H. Techet
Pressure effects 2.016 Hydrodynamics Prof. A.H. Techet Fluid forces can arise due to flow stresses (pressure and viscous shear), gravity forces, fluid acceleration, or other body forces. For now, let us
Chapter 13 - Solutions
= Chapter 13 - Solutions Description: Find the weight of a cylindrical iron rod given its area and length and the density of iron. Part A On a part-time job you are asked to bring a cylindrical iron rod
Chapter 3. Flotation. ELEMENTARY HYDRAULICS National Certificate in Technology (Civil Engineering) Buoyancy
ELEMENTARY HYDRAULICS National Certificate in Technology (Civil Engineering) Chapter 3 Flotation Buoyancy Buoyancy arises from the fact that fluid pressure increases with depth and from the fact that the
Grade 8 Science Chapter 9 Notes
Grade 8 Science Chapter 9 Notes Force Force - Anything that causes a change in the motion of an object. - usually a push or a pull. - the unit for force is the Newton (N). Balanced Forces - forces that
MECHANICAL PRINCIPLES HNC/D MOMENTS OF AREA. Define and calculate 1st. moments of areas. Define and calculate 2nd moments of areas.
MECHANICAL PRINCIPLES HNC/D MOMENTS OF AREA The concepts of first and second moments of area fundamental to several areas of engineering including solid mechanics and fluid mechanics. Students who are
CENTRIFUGAL PUMP OVERVIEW Presented by Matt Prosoli Of Pumps Plus Inc.
CENTRIFUGAL PUMP OVERVIEW Presented by Matt Prosoli Of Pumps Plus Inc. 1 Centrifugal Pump- Definition Centrifugal Pump can be defined as a mechanical device used to transfer liquid of various types. As
CHAPTER 29 VOLUMES AND SURFACE AREAS OF COMMON SOLIDS
CHAPTER 9 VOLUMES AND SURFACE AREAS OF COMMON EXERCISE 14 Page 9 SOLIDS 1. Change a volume of 1 00 000 cm to cubic metres. 1m = 10 cm or 1cm = 10 6m 6 Hence, 1 00 000 cm = 1 00 000 10 6m = 1. m. Change
Forces. Definition Friction Falling Objects Projectiles Newton s Laws of Motion Momentum Universal Forces Fluid Pressure Hydraulics Buoyancy
Forces Definition Friction Falling Objects Projectiles Newton s Laws of Motion Momentum Universal Forces Fluid Pressure Hydraulics Buoyancy Definition of Force Force = a push or pull that causes a change
Geometry Notes PERIMETER AND AREA
Perimeter and Area Page 1 of 57 PERIMETER AND AREA Objectives: After completing this section, you should be able to do the following: Calculate the area of given geometric figures. Calculate the perimeter
Density. Density is how concentrated or compact matter is.
Density Density is how concentrated or compact matter is. Packing snow into snowballs increases its density. You are squeezing large amounts of matter into small volumes of space. Equation for Density
GCSE Exam Questions on Volume Question 1. (AQA June 2003 Intermediate Paper 2 Calculator OK) A large carton contains 4 litres of orange juice.
Question 1. (AQA June 2003 Intermediate Paper 2 Calculator OK) A large carton contains 4 litres of orange juice. Cylindrical glasses of height 10 cm and radius 3 cm are to be filled from the carton. How
Activity P13: Buoyant Force (Force Sensor)
July 21 Buoyant Force 1 Activity P13: Buoyant Force (Force Sensor) Concept DataStudio ScienceWorkshop (Mac) ScienceWorkshop (Win) Archimedes Principle P13 Buoyant Force.DS P18 Buoyant Force P18_BUOY.SWS
Serway_ISM_V1 1 Chapter 4
Serway_ISM_V1 1 Chapter 4 ANSWERS TO MULTIPLE CHOICE QUESTIONS 1. Newton s second law gives the net force acting on the crate as This gives the kinetic friction force as, so choice (a) is correct. 2. As
11.1. Objectives. Component Form of a Vector. Component Form of a Vector. Component Form of a Vector. Vectors and the Geometry of Space
11 Vectors and the Geometry of Space 11.1 Vectors in the Plane Copyright Cengage Learning. All rights reserved. Copyright Cengage Learning. All rights reserved. 2 Objectives! Write the component form of
5. Forces and Motion-I. Force is an interaction that causes the acceleration of a body. A vector quantity.
5. Forces and Motion-I 1 Force is an interaction that causes the acceleration of a body. A vector quantity. Newton's First Law: Consider a body on which no net force acts. If the body is at rest, it will
CENTER OF GRAVITY, CENTER OF MASS AND CENTROID OF A BODY
CENTER OF GRAVITY, CENTER OF MASS AND CENTROID OF A BODY Dr. Amilcar Rincon-Charris, MSME Mechanical Engineering Department MECN 3005 - STATICS Objective : Students will: a) Understand the concepts of
CHAPTER 3: FORCES AND PRESSURE
CHAPTER 3: FORCES AND PRESSURE 3.1 UNDERSTANDING PRESSURE 1. The pressure acting on a surface is defined as.. force per unit. area on the surface. 2. Pressure, P = F A 3. Unit for pressure is. Nm -2 or
Structural Axial, Shear and Bending Moments
Structural Axial, Shear and Bending Moments Positive Internal Forces Acting Recall from mechanics of materials that the internal forces P (generic axial), V (shear) and M (moment) represent resultants
W02D2-2 Table Problem Newton s Laws of Motion: Solution
ASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics Physics 8.01 W0D- Table Problem Newton s Laws of otion: Solution Consider two blocks that are resting one on top of the other. The lower block
( ) where W is work, f(x) is force as a function of distance, and x is distance.
Work by Integration 1. Finding the work required to stretch a spring 2. Finding the work required to wind a wire around a drum 3. Finding the work required to pump liquid from a tank 4. Finding the work
The small increase in x is. and the corresponding increase in y is. Therefore
Differentials For a while now, we have been using the notation dy to mean the derivative of y with respect to. Here is any variable, and y is a variable whose value depends on. One of the reasons that
Copyright 2011 Casa Software Ltd. www.casaxps.com. Centre of Mass
Centre of Mass A central theme in mathematical modelling is that of reducing complex problems to simpler, and hopefully, equivalent problems for which mathematical analysis is possible. The concept of
Solids. Objective A: Volume of a Solids
Solids Math00 Objective A: Volume of a Solids Geometric solids are figures in space. Five common geometric solids are the rectangular solid, the sphere, the cylinder, the cone and the pyramid. A rectangular
Stack Contents. Pressure Vessels: 1. A Vertical Cut Plane. Pressure Filled Cylinder
Pressure Vessels: 1 Stack Contents Longitudinal Stress in Cylinders Hoop Stress in Cylinders Hoop Stress in Spheres Vanishingly Small Element Radial Stress End Conditions 1 2 Pressure Filled Cylinder A
Liquid level measurement using hydrostatic pressure and buoyancy
iquid level measurement using hydrostatic pressure and buoyancy This worksheet and all related files are licensed under the Creative Commons Attribution icense, version 1.0. To view a copy of this license,
Buoyant Force and Archimedes' Principle
Buoyant Force and Archimedes' Principle Introduction: Buoyant forces keep Supertankers from sinking and party balloons floating. An object that is more dense than a liquid will sink in that liquid. If
Name Class. Date Section. Test Form A Chapter 11. Chapter 11 Test Bank 155
Chapter Test Bank 55 Test Form A Chapter Name Class Date Section. Find a unit vector in the direction of v if v is the vector from P,, 3 to Q,, 0. (a) 3i 3j 3k (b) i j k 3 i 3 j 3 k 3 i 3 j 3 k. Calculate
PHY121 #8 Midterm I 3.06.2013
PHY11 #8 Midterm I 3.06.013 AP Physics- Newton s Laws AP Exam Multiple Choice Questions #1 #4 1. When the frictionless system shown above is accelerated by an applied force of magnitude F, the tension
Awell-known lecture demonstration1
Acceleration of a Pulled Spool Carl E. Mungan, Physics Department, U.S. Naval Academy, Annapolis, MD 40-506; [email protected] Awell-known lecture demonstration consists of pulling a spool by the free end
Student Exploration: Archimedes Principle
Name: Date: Student Exploration: Archimedes Principle Vocabulary: Archimedes principle, buoyant force, density, displace, mass, volume, weight Prior Knowledge Questions (Do these BEFORE using the Gizmo.)
Chapter 15. FLUIDS. 15.1. What volume does 0.4 kg of alcohol occupy? What is the weight of this volume? m m 0.4 kg. ρ = = ; ρ = 5.
Chapter 15. FLUIDS Density 15.1. What volume does 0.4 kg of alcohol occupy? What is the weight of this volume? m m 0.4 kg ρ = ; = = ; = 5.06 x 10-4 m ρ 790 kg/m W = D = ρg = 790 kg/m )(9.8 m/s )(5.06 x
SURFACE AREA AND VOLUME
SURFACE AREA AND VOLUME In this unit, we will learn to find the surface area and volume of the following threedimensional solids:. Prisms. Pyramids 3. Cylinders 4. Cones It is assumed that the reader has
Buoyancy. What floats your boat?
Buoyancy What floats your boat? Sink or float? Test The cube sinks to the bottom. WHY? Weight Due to the pulling force of gravity both the cube and the water have the property of weight. Gravity Gravity
Exam 1 Practice Problems Solutions
MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics 8 Spring 13 Exam 1 Practice Problems Solutions Part I: Short Questions and Concept Questions Problem 1: Spark Plug Pictured at right is a typical
Geometry Notes VOLUME AND SURFACE AREA
Volume and Surface Area Page 1 of 19 VOLUME AND SURFACE AREA Objectives: After completing this section, you should be able to do the following: Calculate the volume of given geometric figures. Calculate
Buoyant Force and Archimedes Principle
Buoyant Force and Archimedes Principle Predict the behavior of fluids as a result of properties including viscosity and density Demonstrate why objects sink or float Apply Archimedes Principle by measuring
So if ω 0 increases 3-fold, the stopping angle increases 3 2 = 9-fold.
Name: MULTIPLE CHOICE: Questions 1-11 are 5 points each. 1. A safety device brings the blade of a power mower from an angular speed of ω 1 to rest in 1.00 revolution. At the same constant angular acceleration,
W i f(x i ) x. i=1. f(x i ) x = i=1
Work Force If an object is moving in a straight line with position function s(t), then the force F on the object at time t is the product of the mass of the object times its acceleration. F = m d2 s dt
Vector surface area Differentials in an OCS
Calculus and Coordinate systems EE 311 - Lecture 17 1. Calculus and coordinate systems 2. Cartesian system 3. Cylindrical system 4. Spherical system In electromagnetics, we will often need to perform integrals
PROBLEM SET. Practice Problems for Exam #1. Math 1352, Fall 2004. Oct. 1, 2004 ANSWERS
PROBLEM SET Practice Problems for Exam # Math 352, Fall 24 Oct., 24 ANSWERS i Problem. vlet R be the region bounded by the curves x = y 2 and y = x. A. Find the volume of the solid generated by revolving
1 of 7 9/5/2009 6:12 PM
1 of 7 9/5/2009 6:12 PM Chapter 2 Homework Due: 9:00am on Tuesday, September 8, 2009 Note: To understand how points are awarded, read your instructor's Grading Policy. [Return to Standard Assignment View]
GROUNDWATER FLOW NETS Graphical Solutions to the Flow Equations. One family of curves are flow lines Another family of curves are equipotential lines
GROUNDWTER FLOW NETS Graphical Solutions to the Flow Equations One family of curves are flow lines nother family of curves are equipotential lines B C D E Boundary Conditions B and DE - constant head BC
Activity P13: Buoyant Force (Force Sensor)
Activity P13: Buoyant Force (Force Sensor) Equipment Needed Qty Equipment Needed Qty Economy Force Sensor (CI-6746) 1 Mass and Hanger Set (ME-9348) 1 Base and Support Rod (ME-9355) 1 Ruler, metric 1 Beaker,
du u U 0 U dy y b 0 b
BASIC CONCEPTS/DEFINITIONS OF FLUID MECHANICS (by Marios M. Fyrillas) 1. Density (πυκνότητα) Symbol: 3 Units of measure: kg / m Equation: m ( m mass, V volume) V. Pressure (πίεση) Alternative definition:
Chapter 18 Static Equilibrium
Chapter 8 Static Equilibrium 8. Introduction Static Equilibrium... 8. Lever Law... Example 8. Lever Law... 4 8.3 Generalized Lever Law... 5 8.4 Worked Examples... 7 Example 8. Suspended Rod... 7 Example
01 The Nature of Fluids
01 The Nature of Fluids WRI 1/17 01 The Nature of Fluids (Water Resources I) Dave Morgan Prepared using Lyx, and the Beamer class in L A TEX 2ε, on September 12, 2007 Recommended Text 01 The Nature of
Solving Simultaneous Equations and Matrices
Solving Simultaneous Equations and Matrices The following represents a systematic investigation for the steps used to solve two simultaneous linear equations in two unknowns. The motivation for considering
OUTCOME 1 STATIC FLUID SYSTEMS TUTORIAL 1 - HYDROSTATICS
Unit 41: Fluid Mechanics Unit code: T/601/1445 QCF Level: 4 Credit value: 15 OUTCOME 1 STATIC FLUID SYSTEMS TUTORIAL 1 - HYDROSTATICS 1. Be able to determine the behavioural characteristics and parameters
1.3. DOT PRODUCT 19. 6. If θ is the angle (between 0 and π) between two non-zero vectors u and v,
1.3. DOT PRODUCT 19 1.3 Dot Product 1.3.1 Definitions and Properties The dot product is the first way to multiply two vectors. The definition we will give below may appear arbitrary. But it is not. It
6. Vectors. 1 2009-2016 Scott Surgent ([email protected])
6. Vectors For purposes of applications in calculus and physics, a vector has both a direction and a magnitude (length), and is usually represented as an arrow. The start of the arrow is the vector s foot,
Partial Derivatives. @x f (x; y) = @ x f (x; y) @x x2 y + @ @x y2 and then we evaluate the derivative as if y is a constant.
Partial Derivatives Partial Derivatives Just as derivatives can be used to eplore the properties of functions of 1 variable, so also derivatives can be used to eplore functions of 2 variables. In this
Examples of magnetic field calculations and applications. 1 Example of a magnetic moment calculation
Examples of magnetic field calculations and applications Lecture 12 1 Example of a magnetic moment calculation We consider the vector potential and magnetic field due to the magnetic moment created by
Differential Relations for Fluid Flow. Acceleration field of a fluid. The differential equation of mass conservation
Differential Relations for Fluid Flow In this approach, we apply our four basic conservation laws to an infinitesimally small control volume. The differential approach provides point by point details of
Area of Parallelograms, Triangles, and Trapezoids (pages 314 318)
Area of Parallelograms, Triangles, and Trapezoids (pages 34 38) Any side of a parallelogram or triangle can be used as a base. The altitude of a parallelogram is a line segment perpendicular to the base
EDEXCEL NATIONAL CERTIFICATE/DIPLOMA MECHANICAL PRINCIPLES AND APPLICATIONS NQF LEVEL 3 OUTCOME 1 - LOADING SYSTEMS
EDEXCEL NATIONAL CERTIFICATE/DIPLOMA MECHANICAL PRINCIPLES AND APPLICATIONS NQF LEVEL 3 OUTCOME 1 - LOADING SYSTEMS TUTORIAL 1 NON-CONCURRENT COPLANAR FORCE SYSTEMS 1. Be able to determine the effects
Buoyant Force. Goals and Introduction
Buoyant Force Goals and Introduction When an object is placed in a fluid, it either floats or sinks. While the downward gravitational force, F g, still acts on the object, an object in a fluid is also
Chapter 4. Electrostatic Fields in Matter
Chapter 4. Electrostatic Fields in Matter 4.1. Polarization A neutral atom, placed in an external electric field, will experience no net force. However, even though the atom as a whole is neutral, the
Physics 41, Winter 1998 Lab 1 - The Current Balance. Theory
Physics 41, Winter 1998 Lab 1 - The Current Balance Theory Consider a point at a perpendicular distance d from a long straight wire carrying a current I as shown in figure 1. If the wire is very long compared
FRICTION, WORK, AND THE INCLINED PLANE
FRICTION, WORK, AND THE INCLINED PLANE Objective: To measure the coefficient of static and inetic friction between a bloc and an inclined plane and to examine the relationship between the plane s angle
Pressure in Fluids. Introduction
Pressure in Fluids Introduction In this laboratory we begin to study another important physical quantity associated with fluids: pressure. For the time being we will concentrate on static pressure: pressure
Newton s Law of Universal Gravitation
Newton s Law of Universal Gravitation The greatest moments in science are when two phenomena that were considered completely separate suddenly are seen as just two different versions of the same thing.
MECHANICS OF SOLIDS - BEAMS TUTORIAL 2 SHEAR FORCE AND BENDING MOMENTS IN BEAMS
MECHANICS OF SOLIDS - BEAMS TUTORIAL 2 SHEAR FORCE AND BENDING MOMENTS IN BEAMS This is the second tutorial on bending of beams. You should judge your progress by completing the self assessment exercises.
Force measurement. Forces VECTORIAL ISSUES ACTION ET RÉACTION ISOSTATISM
Force measurement Forces VECTORIAL ISSUES In classical mechanics, a force is defined as "an action capable of modifying the quantity of movement of a material point". Therefore, a force has the attributes
Name Class Date. F 2 2269 N A 1 88.12 cm 2 A 2 1221 cm 2 Unknown: Step 2: Write the equations for Pascal s principle and pressure, force, and area.
Skills Worksheet Math Skills Pascal s Principle After you study each sample problem and solution, work out the practice problems on a separate sheet of paper. Write your answers in the spaces provided.
Experiment 6: Magnetic Force on a Current Carrying Wire
Chapter 8 Experiment 6: Magnetic Force on a Current Carrying Wire 8.1 Introduction Maricourt (1269) is credited with some of the original work in magnetism. He identified the magnetic force centers of
Arrangements And Duality
Arrangements And Duality 3.1 Introduction 3 Point configurations are tbe most basic structure we study in computational geometry. But what about configurations of more complicated shapes? For example,
3600 s 1 h. 24 h 1 day. 1 day
Week 7 homework IMPORTANT NOTE ABOUT WEBASSIGN: In the WebAssign versions of these problems, various details have been changed, so that the answers will come out differently. The method to find the solution
SURFACE AREAS AND VOLUMES
CHAPTER 1 SURFACE AREAS AND VOLUMES (A) Main Concepts and Results Cuboid whose length l, breadth b and height h (a) Volume of cuboid lbh (b) Total surface area of cuboid 2 ( lb + bh + hl ) (c) Lateral
Density Measurement. Technology: Pressure. Technical Data Sheet 00816-0100-3208 INTRODUCTION. S min =1.0 S max =1.2 CONSTANT LEVEL APPLICATIONS
Technical Data Sheet 00816-0100-3208 Density Measurement Technology: Pressure INTRODUCTION Pressure and differential pressure transmitters are often used to measure the density of a fluid. Both types of
TWO-DIMENSIONAL TRANSFORMATION
CHAPTER 2 TWO-DIMENSIONAL TRANSFORMATION 2.1 Introduction As stated earlier, Computer Aided Design consists of three components, namely, Design (Geometric Modeling), Analysis (FEA, etc), and Visualization
Chapter 2. Derivation of the Equations of Open Channel Flow. 2.1 General Considerations
Chapter 2. Derivation of the Equations of Open Channel Flow 2.1 General Considerations Of interest is water flowing in a channel with a free surface, which is usually referred to as open channel flow.
Concept Questions Archimedes Principle. 8.01t Nov 24, 2004
Concept Questions Archimedes Principle 8.01t Nov 24, 2004 Pascal s Law Pressure applied to an enclosed fluid is transmitted undiminished to every portion of the fluid and the walls of the containing vessel
ENGINEERING SCIENCE H1 OUTCOME 1 - TUTORIAL 3 BENDING MOMENTS EDEXCEL HNC/D ENGINEERING SCIENCE LEVEL 4 H1 FORMERLY UNIT 21718P
ENGINEERING SCIENCE H1 OUTCOME 1 - TUTORIAL 3 BENDING MOMENTS EDEXCEL HNC/D ENGINEERING SCIENCE LEVEL 4 H1 FORMERLY UNIT 21718P This material is duplicated in the Mechanical Principles module H2 and those
Chapter 10 Rotational Motion. Copyright 2009 Pearson Education, Inc.
Chapter 10 Rotational Motion Angular Quantities Units of Chapter 10 Vector Nature of Angular Quantities Constant Angular Acceleration Torque Rotational Dynamics; Torque and Rotational Inertia Solving Problems
Eighth Grade, Density To Float or Not to Float? 2004 Colorado Unit Writing Project 1
Density To Float or Not to Float? That is the Question! Grade Level or Special Area: Eighth Grade Science Written by: Aida Peterson, Clear Lake Middle School, Denver, Colorado Length of Unit: Twelve lessons
CHAPTER 6 WORK AND ENERGY
CHAPTER 6 WORK AND ENERGY CONCEPTUAL QUESTIONS. REASONING AND SOLUTION The work done by F in moving the box through a displacement s is W = ( F cos 0 ) s= Fs. The work done by F is W = ( F cos θ). s From
Volumes of Revolution
Mathematics Volumes of Revolution About this Lesson This lesson provides students with a physical method to visualize -dimensional solids and a specific procedure to sketch a solid of revolution. Students
The purposes of this experiment are to test Faraday's Law qualitatively and to test Lenz's Law.
260 17-1 I. THEORY EXPERIMENT 17 QUALITATIVE STUDY OF INDUCED EMF Along the extended central axis of a bar magnet, the magnetic field vector B r, on the side nearer the North pole, points away from this
Solution Derivations for Capa #11
Solution Derivations for Capa #11 1) A horizontal circular platform (M = 128.1 kg, r = 3.11 m) rotates about a frictionless vertical axle. A student (m = 68.3 kg) walks slowly from the rim of the platform
LECTURE 6: Fluid Sheets
LECTURE 6: Fluid Sheets The dynamics of high-speed fluid sheets was first considered by Savart after his early work on electromagnetism with Biot, and was subsequently examined in a series of papers by
MATHEMATICS FOR ENGINEERING BASIC ALGEBRA
MATHEMATICS FOR ENGINEERING BASIC ALGEBRA TUTORIAL 4 AREAS AND VOLUMES This is the one of a series of basic tutorials in mathematics aimed at beginners or anyone wanting to refresh themselves on fundamentals.
v v ax v a x a v a v = = = Since F = ma, it follows that a = F/m. The mass of the arrow is unchanged, and ( )
Week 3 homework IMPORTANT NOTE ABOUT WEBASSIGN: In the WebAssign versions of these problems, various details have been changed, so that the answers will come out differently. The method to find the solution
