A SIMPLE PROOF OF FERMAT'S LAST THEOREM BY



Similar documents
4.2 Euclid s Classification of Pythagorean Triples

5.1 Radical Notation and Rational Exponents

Solving Quadratic Equations

COMPLEX NUMBERS. a bi c di a c b d i. a bi c di a c b d i For instance, 1 i 4 7i i 5 6i

Trigonometric Functions and Equations

Five fundamental operations. mathematics: addition, subtraction, multiplication, division, and modular forms

1.2. Successive Differences

PYTHAGOREAN TRIPLES KEITH CONRAD

Year 9 set 1 Mathematics notes, to accompany the 9H book.

Pythagorean Triples. becomes

SECTION 10-2 Mathematical Induction

Congruent Number Problem

k, then n = p2α 1 1 pα k

This unit will lay the groundwork for later units where the students will extend this knowledge to quadratic and exponential functions.

A Second Course in Mathematics Concepts for Elementary Teachers: Theory, Problems, and Solutions

Zeros of a Polynomial Function

Logic is a systematic way of thinking that allows us to deduce new information

Every Positive Integer is the Sum of Four Squares! (and other exciting problems)

Lesson 9: Radicals and Conjugates

Algebra Unpacked Content For the new Common Core standards that will be effective in all North Carolina schools in the school year.

Algebra 1 Course Title

Core Maths C1. Revision Notes

Expression. Variable Equation Polynomial Monomial Add. Area. Volume Surface Space Length Width. Probability. Chance Random Likely Possibility Odds

THE CONGRUENT NUMBER PROBLEM

Homework until Test #2

Lesson 9: Radicals and Conjugates

Heron Triangles. by Kathy Temple. Arizona Teacher Institute. Math Project Thesis

Applications of Fermat s Little Theorem and Congruences

IB Math Research Problem

CORRELATED TO THE SOUTH CAROLINA COLLEGE AND CAREER-READY FOUNDATIONS IN ALGEBRA

Geometry: Classifying, Identifying, and Constructing Triangles

Solution to Exercise 2.2. Both m and n are divisible by d, som = dk and n = dk. Thus m ± n = dk ± dk = d(k ± k ),som + n and m n are divisible by d.

Introduction. Appendix D Mathematical Induction D1

of Nebraska - Lincoln

SYSTEMS OF PYTHAGOREAN TRIPLES. Acknowledgements. I would like to thank Professor Laura Schueller for advising and guiding me

MTH124: Honors Algebra I

CHAPTER 3. Methods of Proofs. 1. Logical Arguments and Formal Proofs

arxiv: v2 [math.ho] 4 Nov 2009

March 29, S4.4 Theorems about Zeros of Polynomial Functions

LAKE ELSINORE UNIFIED SCHOOL DISTRICT

Zero: If P is a polynomial and if c is a number such that P (c) = 0 then c is a zero of P.

Understanding Basic Calculus

South Carolina College- and Career-Ready (SCCCR) Pre-Calculus

Zeros of Polynomial Functions

Chapter 7 - Roots, Radicals, and Complex Numbers

Some practice problems for midterm 2

PROOFS BY DESCENT KEITH CONRAD

Rational Exponents. Squaring both sides of the equation yields. and to be consistent, we must have

The program also provides supplemental modules on topics in geometry and probability and statistics.

RECURSIVE ENUMERATION OF PYTHAGOREAN TRIPLES

ALGEBRA. sequence, term, nth term, consecutive, rule, relationship, generate, predict, continue increase, decrease finite, infinite

Exponents and Radicals

ALGEBRA 2 CRA 2 REVIEW - Chapters 1-6 Answer Section

POLYNOMIAL FUNCTIONS

Elementary Number Theory and Methods of Proof. CSE 215, Foundations of Computer Science Stony Brook University

MATH BOOK OF PROBLEMS SERIES. New from Pearson Custom Publishing!

Continued Fractions and the Euclidean Algorithm

MATHEMATICAL INDUCTION. Mathematical Induction. This is a powerful method to prove properties of positive integers.

MATH 90 CHAPTER 6 Name:.

3. Mathematical Induction

mod 10 = mod 10 = 49 mod 10 = 9.

Higher Education Math Placement

BookTOC.txt. 1. Functions, Graphs, and Models. Algebra Toolbox. Sets. The Real Numbers. Inequalities and Intervals on the Real Number Line

Square Roots and the Pythagorean Theorem

The Mean Value Theorem

Stanford Math Circle: Sunday, May 9, 2010 Square-Triangular Numbers, Pell s Equation, and Continued Fractions

Pennsylvania System of School Assessment

IB Maths SL Sequence and Series Practice Problems Mr. W Name

A Direct Method To Generate Pythagorean Triples And Its Generalization To Pythagorean Quadruples And n-tuples

Indiana State Core Curriculum Standards updated 2009 Algebra I

GRADES 7, 8, AND 9 BIG IDEAS

S on n elements. A good way to think about permutations is the following. Consider the A = 1,2,3, 4 whose elements we permute with the P =

MATH 095, College Prep Mathematics: Unit Coverage Pre-algebra topics (arithmetic skills) offered through BSE (Basic Skills Education)

F.IF.7b: Graph Root, Piecewise, Step, & Absolute Value Functions

Just the Factors, Ma am

2.5 Zeros of a Polynomial Functions

How To Prove The Dirichlet Unit Theorem

Quick Reference ebook

CONTINUED FRACTIONS AND PELL S EQUATION. Contents 1. Continued Fractions 1 2. Solution to Pell s Equation 9 References 12

Estimated Pre Calculus Pacing Timeline

Biggar High School Mathematics Department. National 5 Learning Intentions & Success Criteria: Assessing My Progress

Homework # 3 Solutions

Prentice Hall Connected Mathematics 2, 7th Grade Units 2009

Mathematics Pre-Test Sample Questions A. { 11, 7} B. { 7,0,7} C. { 7, 7} D. { 11, 11}

Chapter 3. Cartesian Products and Relations. 3.1 Cartesian Products

Integer roots of quadratic and cubic polynomials with integer coefficients

SOLVING EQUATIONS WITH RADICALS AND EXPONENTS 9.5. section ( )( ). The Odd-Root Property

Common Core Unit Summary Grades 6 to 8

Pythagorean Theorem: Proof and Applications

FACTORING LARGE SEMI-PRIMES

MEP Pupil Text 12. A list of numbers which form a pattern is called a sequence. In this section, straightforward sequences are continued.

MATH Fundamental Mathematics IV

28 CHAPTER 1. VECTORS AND THE GEOMETRY OF SPACE. v x. u y v z u z v y u y u z. v y v z

Chapter 3. Distribution Problems. 3.1 The idea of a distribution The twenty-fold way

Probability Generating Functions

DRAFT. Further mathematics. GCE AS and A level subject content

Algebra 1 Course Information

6 EXTENDING ALGEBRA. 6.0 Introduction. 6.1 The cubic equation. Objectives

Alex, I will take congruent numbers for one million dollars please

Answer Key for California State Standards: Algebra I

Transcription:

Page 5984. A SIMPLE PROOF OF FERMAT'S LAST THEOREM BY J. C. EDWARDS Abstract. The proof of Fermat's Last Theorem offered here is relatively simple and well within Fermat's own expertise. Therefore, it can be used to justify Fermat's claim that he vas able to prove the theorem himself. The proof recently published by Professor Andrew Wiles takes two hundred pages and the mathematics is so advanced that it could not possibly have been Fermat's own proof. Around the year 1637 Pierre de Fermat wrote in his copy of the Aritbaetica of Diophantus: "It is impossible to separate a cube into two cubes or a biquadrate into two biquadrates, or in general any power higher than the second into powers of like degree; I have discovered a truly remarkable proof which this margin is too small to contain." Although a detailed history of subsequent attempts to prove the theorem is beyond the scope of this investigation, it may be added that for over three hundred and fifty years mathematicians have failed to prove or disprove this theorem The theorem may be expressed as an equation, and the usual version of this is: The equation xn + yn = zn, where n is a natural number larger than 2, has no solution in integers all different from o. The theorem of Pythagoras determines a one-to-one relationship between the aides of a right triangle and the squares on its three sides, in which the sum of the squares on the two lesser sides is equal to the square on the third side, namely where a, b, c are the sides of the right triangle. For this reason the theorem can be expressed in terms of the right triangle If A, B, c are the sides of a right triangle, and A = an, b + bn, c = en. then a, b and c cannot be all integers, if n is an integer greater than 1. The Toth-Maatian Review, 3101 20th Street, LubboC!k, TX 7941 O, U.S.A. Volume 13, Number I, 1996, pp.5984-9.

This variation of the theorem has the great advantage that we have a formula, which will generate all the three sides of a right triangle in integers. A fourth variation is even more specific and has the advantage of being easier to prove: There are no solutions in integers to the equation an + bn = en except when a, b, c are a Pythagorean triple and n is equal to 2. 'l'he Pour 'l'heor- on which this Proor or Penaat a Last Theorea is Based 1. Pythagoras Theorem: The square on the hypotenuse is equal to the squares on the other two sides. 2. The Irrational Number Theorem: When a is not the perfect nth power of some rational number, the equation xn = a has no rational solutions. 3. The Formula for creating integer right triangles If p, q the same parity, let are integers, p 1 q) O, gcd(p,q) = 1, p, q not of a = P2 _ q2 b = 2pq c = p2 + q2. Then (a, b, c) is a primitive triple. And conversely, every primitive triple may so be obtained. 4. De Moivre s Theorem: eire = cos n6 + isin ne Table I = (cose + isina )n. Pythagorean triples a, b, c generated from sets (p,q) p q c b a p q c b a p q c b a 2 1 5 4 3 5 4 42 40 45 7 6 85 84 13 3 2 13 12 5 6 1 37 12 35 8 1 65 16 63 4 1 17 8 15 6 5 61 60 11 8 3 73 48 53 4 3 25 24 7 7 2 53 28 45 8 5 89 80 39 5 2 29 20 21 7 4 85 84 13 8 7 113 112 15 Page 5985.

Page 5986. It is to be noted that because the product of an irrational number and an integer is itself irrational, therefore what is proved in number theory for primitive triangles is also true for non-primitive or secondar~ triangles. If a, b, c are triples, then an, bn, c are members of a triple as well and for the same side of the triangle. However, as their values are not generated for the same sets (P,Q) they do not appear in the same equation. Here the sets (p,q) generate the basic triple i.e. (a, b, c) and the sets (P,Q) generate A = an, B = bn, c = en. The Por11a1a ror Generating the Pairs (P,Q) rr011 (p,q). A= (p + q)n(p- q)n, and let r = (p + q), s = (p- q). B P =;ern+ sn), Q =;ern- sn) = 2 2n-l.pnqn for specific values can be a factor of either pn or which of them is the even number. C = {p + iq)n(p - iq)n = (P + iq)(p -iq) = P 2 + 0 2, where i equals the square root of minus 1. of p and q. 2n-l qn depending on The Proof of PLT by the Method or Exclusion This method entails defining a domain of numbers, within which all possible solutions to the equation, xll + yn = zn must be found. Let X, Y, Z be sets of all possible finite integers, then xn, yn, zn, where n = 0 to infinity, must be sub-sets. A three row matrix can then be created, in which there are three columns and in which there is every possible combination of x, y, z. Every possible solution to the equation must then be represented within this matrix. Tbe domain can then be reduced in size by extracting stage by stage all those sub-sets of numbers, which conform to the theorem, until the only possible solutions in integers to the equation are to be found. Stage I The first restriction of the domain ioeerting an addition sign between the row of triples, which divides the domain regions: is introduced by X and Y sets of the into two separate

and Stage II (i) X + Y ~ Z (ii) X + Y = z. Page 5987. The first of these two sub-sets, (i), may be dismissed at once, because of the inequality between the LHS and RHS. Sub-set (ii) corresponds to the equation A + B = C, where A = a2, B Pythagorean triple. = b 2, c = c 2 and a, b, c However, more generally let A = an; B = bn; C = en which is the equation of Fermat's theorem. form a Note that although x, y, z numbers, a, b, c. represent complex equation, a - ib = c. are considered to be real the absolute values of the Stage III This sub-set can again be divided into two more parts by the use of the converse of Pythagoras theorem. If in the right triangle the sum of the squares on two sides of the triangle is equal to the square on the third then it is true that in the equation A + B = C the square roots of A, B, C form a right triangle, which are the square roots of an, bn, en. Stage IV This is an important stage in the proof and proves the theorem for all the odd values of n. If n is odd and either a~sor the others is not a square, then it is an irrational square root.this also applies to a, b, c themselves, because n/2 must also be an integer, and the integer root of an irrational numb'2 is i~self irrational, but if n is even, then ad/ 2, bn, en/ are integers, and not only are they integers, but also they are members of a Pyhtagorean triple. It has already been proved previously elsewhere that if n is even, it cannq~ be g2eate~ than 2. Hence, we are left only with ad/, bn7, en/ 2 as a Pythagorean triple and n equal to 2.

Page 5988. Stage V This last stage in the proof is only a matter of comparing an + bn against en. When n is equal to O, an + bn equals 2 on the left-hand side and en is equal to 1 on the right-hand side. When n = 1, en as the hypotenuse is still less than the sum of the other two sides in the right triangle, which is thus formed. When n = 2, the LHS = the RHS. After that the RHS is always greater than the LHS. This applies to all such triples, because of the differential growth of their exponentials. If the two sides of the equations are plotted together on the same graph their curves will always intersect when n = 2. Table II p q n=o n = 1 n = 2 n = 3 an + bn 2 1 2 7 25 91 en 1 5 25 125 an + bn 3 2 2 17 169 1853 en 1 13 169 2197 an + bn 5 4 2 49 1681 54728 en 1 41 1681 68921 an + bn 6 1 2 47 1369 44603 en 1 37 1369 50653 The Reasons ror Previous Failure to Solve the Proble Nov that the proof has been completed it is not difficult to analyse the cause of previous failure. This vas due to the omission of the fourth stage of the proof. The three numbers, x, y, z were considered to be ordinary real numbers taken from the complete set of all possible finite integers. The converse of Pythagoras theorem that in the equation A + B = C the square roots of these lengths formed a right triangle passed unnoticed. It vas not appreciated that out of the set, x, y, z only a, b, c, the Pythagorean triples could solve the equation. In fact, as triples the set does not consist of real numbers only; A is real, B is imaginary and c, the hypotenuse, is a complex number. For the same reason it vas not realized that in the equation, an + bn = en, when n is odd, a, b, c must be irrational unless an, bn, en are squares respectively.

Page 5989. Although it vas easier to prove the theorem for even numbers of n, it should have been first proved for the odd numbers. Much effort was expended in attempting to prove the theorem for specific values of n as an odd number, but all this vas irrelevant, because the proof is complete once n exceeds the number 2. J.C.Edwards 49 Marsh Crescent Regina, Saskatchewan Canada S4S 5R3 Submitted - September 15, 1996