UIUC Physics 436 EM Fields & Sources II Fall Semester, 2015 Lect. Notes 10.5 Prof. Steven Errede LECTURE NOTES 10.5



Similar documents
Lecture 26. Dielectric Slab Waveguides

Thick-Walled Cylinders and Press Fits by W.H.Dornfeld PressCylinder:

Optimizing Cross Slot Parameters for Circular Polarization of Rectangular Waveguide Antenna

Gravitation. Definition of Weight Revisited. Newton s Law of Universal Gravitation. Newton s Law of Universal Gravitation. Gravitational Field

s s f h s s SPH3UW Unit 7.7 Concave Lens Page 1 of 7 Notes Properties of a Converging Lens

SOLID MECHANICS TUTORIAL FRICTION CLUTCHES

E-learning and Student Mobility in Higher Education. BEST Symposium on Education, Gothenburg 2 nd June 10 th June; 2007

Electric Potential. otherwise to move the object from initial point i to final point f

TUTORIAL No. 1 FLUID FLOW THEORY

Chapter 25 The Reflection of Light: Mirrors. The content contained in all sections of chapter 25 of the textbook is included on the AP Physics B exam.

Green's function integral equation methods for plasmonic nanostructures

Additional File 1 - A model-based circular binary segmentation algorithm for the analysis of array CGH data

TUTORIAL 7 STABILITY ANALYSIS

1.- L a m e j o r o p c ió n e s c l o na r e l d i s co ( s e e x p li c a r á d es p u é s ).

BARTON COLLEGE PRACTICE PLACEMENT TEST. a) 4 b) 4 c) 12 d) a) 7a 11 b) a 17 c) a 11 d) 7a 17. a) 14 b) 1 c) 66 d) 81

High-frequency response of a CG amplifier

AREA COVERAGE SIMULATIONS FOR MILLIMETER POINT-TO-MULTIPOINT SYSTEMS USING STATISTICAL MODEL OF BUILDING BLOCKAGE

Transient Voltage Suppressor SMBJ5.0 - SMBJ440CA

The Mathematical Derivation of Least Squares


Perturbation Theory and Celestial Mechanics

I = Prt. = P(1+i) n. A = Pe rt

Faraday's Law of Induction

Victims Compensation Claim Status of All Pending Claims and Claims Decided Within the Last Three Years

Govern mechanics and thermodynamics of systems Control Mass Laws. Propulsion systems generally employ fluid flow

Bipolar-Junction (BJT) transistors

Vector Calculus: Are you ready? Vectors in 2D and 3D Space: Review

ELEC 204 Digital System Design LABORATORY MANUAL

21 Vectors: The Cross Product & Torque

An Algorithm For Factoring Integers

Chapter 14, Problem 1. Find the transfer function V o. /V i. of the RC circuit in Fig Express it using ω = 1/RC. Figure For Prob

Lecture 10: TEM, TE, and TM Modes for Waveguides. Rectangular Waveguide.

CITY AND GUILDS 9210 Level 6 Module - Unit 129 FLUID MECHANICS

CUSTOMER'S SPECIFICATION 650TVL WIDE DYNAMIC DIGITAL BOARD COLOR CAMERA

Mechanics 1: Motion in a Central Force Field

Oblique incidence: Interface between dielectric media

I n la n d N a v ig a t io n a co n t r ib u t io n t o eco n o m y su st a i n a b i l i t y

!"#$%&'()%"*#%*+,-./-*+01.2(.* *!"#$%&"'()'*+,-."/01&2#."'3424,'

YOU ARE RECEIVING THIS NOTICE AS REQUIRED BY THE NEW NATIONAL HEALTH REFORM LAW (ALSO KNOWN AS THE AFFORDABLE CARE ACT OR ACA)

Sun Synchronous Orbits for the Earth Solar Power Satellite System

Graphs of Equations. A coordinate system is a way to graphically show the relationship between 2 quantities.

NURBS Drawing Week 5, Lecture 10

(a) The centripetal acceleration of a point on the equator of the Earth is given by v2. The velocity of the earth can be found by taking the ratio of

HEAT TRANSFER HEAT EXCHANGERS

CODES FOR PHARMACY ONLINE CLAIMS PROCESSING

So far circuit analysis has been performed on single-

Getting started with Android

CSSE463: Image Recognition Day 27

Connecting to

Getting Your Fingers In On the Action

Gauss Law. Physics 231 Lecture 2-1

n + d + q = 24 and.05n +.1d +.25q = 2 { n + d + q = 24 (3) n + 2d + 5q = 40 (2)

4. SHAFT SENSORLESS FORCED DYNAMICS CONTROL OF RELUCTANCE SYNCHRONOUS MOTOR DRIVES


Operational Amplifier Circuits Comparators and Positive Feedback


Episode 401: Newton s law of universal gravitation

PCA vs. Varimax rotation

. The torque at the rear sprocket is what actually accelerates the bicycle, and so R R

Leads and Signals. All things being equal, we tend to be on defense about half the time; and leading about half of this time

B I N G O B I N G O. Hf Cd Na Nb Lr. I Fl Fr Mo Si. Ho Bi Ce Eu Ac. Md Co P Pa Tc. Uut Rh K N. Sb At Md H. Bh Cm H Bi Es. Mo Uus Lu P F.


Coordinate Systems L. M. Kalnins, March 2009

Unit cell refinement from powder diffraction data: the use of regression diagnostics

LINES ON BRIESKORN-PHAM SURFACES

Earthquake Hazard Zones: The relative risk of damage to Canadian buildings

Cold-Chain Logistics Solution (Pharmaceuticals)

Gauss Law. AP Physics C

Federation of State Boards of Physical Therapy Jurisdiction Licensure Reference Guide Topic: Continuing Competence

Module 2. AC to DC Converters. Version 2 EE IIT, Kharagpur 1

Bishaash. o k j. k k k k k j. k k. k k k e j k k k j k k k j. - one's ask - ing if I know the spell - ing of "Help"...


esupport Quick Start Guide

Lecture 16: Single-Component phase diagrams continued; Thermodynamics of solutions

Description of the Force Method Procedure. Indeterminate Analysis Force Method 1. Force Method con t. Force Method con t

Luby s Alg. for Maximal Independent Sets using Pairwise Independence

Standardized Coefficients


14.74 Lecture 5: Health (2)

Remote Desktop Tutorial. By: Virginia Ginny Morris

Physics 235 Chapter 5. Chapter 5 Gravitation

Keywords: Transportation network, Hazardous materials, Risk index, Routing, Network optimization.

Magnetic Field and Magnetic Forces. Young and Freedman Chapter 27

Small-Signal Analysis of BJT Differential Pairs

Put the human back in Human Resources.

Multiple stage amplifiers

David Drivers Revit One-sheets: Linked Project Positioning and shared coordinates

Recurrence. 1 Definitions and main statements

How do I evaluate the quality of my wireless connection?

1. Oblast rozvoj spolků a SU UK 1.1. Zvyšování kvalifikace Školení Zapojení do projektů Poradenství 1.2. Financování

Comparison Of A One- Dimensional Model Of A High-Temperature Solid- Oxide Electrolysis Stack With CFD And Experimental Results

Wireless Light-Level Monitoring

Orbit dynamics and kinematics with full quaternions

PHYSICS 161 EXAM III: Thursday December 04, :00 a.m.

Transcription:

UIUC Phscs 436 EM Felds & Suces II Fall Semeste, 5 Lect. Ntes.5 Pf. Steven Eede LECTURE NOTES.5 EM Standng Waves n Resnant Cavtes One can ceate a esnant cavt f EM waves b takng a wavegude (f abta shape) and clsng/cappng ff the tw pen ends f the wavegude. Standng EM waves est n (ected) esnant cavt (= lnea supepstn f tw cunteppagatng tavelng EM waves f same fequenc). Analgus t standng acustcal/sund waves n an acustcal enclsue. Rectangula esnant cavt use Catesan cdnates Clndcal esnant cavt use clndcal cdnates t slve the EM wave eqn. Sphecal esnant cavt use sphecal cdnates A.) Rectangula Resnant Cavt: ( LWH ab d) wth pefectl cnductng walls (.e. n dsspatn/eneg lss mechansms pesent), wth a, b, d. n.b. Agan, b cnventn: a > b > d. Snce we have ectangula smmet, we use Catesan cdnates - seek mnchmatc EM plane wave tpe slutns f the geneal fm: E t E e B t B e,,,,,,,,,, t t Mawell s Equatns (nsde the ectangula esnant cavt awa fm the walls): () Gauss Law: () N Mnples: E B E Subject t the bunda cndtns E and B at all nne sufaces. (3) Faada s Law: (4) Ampee s Law: B E E B E t B c t B B E c Take the cul f (3): = {Gauss Law} E B E E B E {usng (4) Ampee s Law} c E c E c E c E E E E E,, E E,, e.. each s a fcn,, E E,, Pfess Steven Eede, Depatment f Phscs, Unvest f Illns at Ubana-Champagn, Illns 5-5. All Rghts Reseved.

UIUC Phscs 436 EM Felds & Suces II Fall Semeste, 5 Lect. Ntes.5 Pf. Steven Eede F each cmpnent,, f E,, sepaatn f vaables technque:,, f,, E X Y Z we t pduct slutns and then use the E E whee subscpt,,. c X Y Z c Y Z X Z X Y X Y Z c Dvde bth sdes b X Y Z : The wave equatn becmes: fcn nl fcn nl fcn nl X Y Z X Y Z c Ths equatn must hld/be tue f abta (,, ) pts. nte t esnant cavt Ths can nl be tue f: X X Y Y Z Z k k k cnstant cnstant cnstant X Y k X ky Z kz a b d n.b. We seek scllat (nt damped) slutns!!! wth: k k k k c Geneal slutn(s) ae f the fm:,, : chaactestc equatn,, cs sn cs sn cs sn E A k B k C k D k E k F k n.b. In geneal, k, k and k shuld each have subscpt,,, but we wll shtl fnd ut that k same f all,,, k same f all,,, and k same f all,,. Pfess Steven Eede, Depatment f Phscs, Unvest f Illns at Ubana-Champagn, Illns 5-5. All Rghts Reseved.

UIUC Phscs 436 EM Felds & Suces II Fall Semeste, 5 Lect. Ntes.5 Pf. Steven Eede Bunda Cndtns: E @ bundaes and B @ bundaes: E E E, b at, d ceffcents E C, a at, d ceffcents A E, a at, b ceffcents A C and and and k n b, n,,3,... k d,,,3,... k m b, m,,3,... k d,,,3,... k m a, m,,3,... k n d, n,,3,... n.b. m =, and/ n = and/ ae nt allwed, thewse E,, (tval slutn). Thus we have (absbng cnstants/ceffcents, & dppng,, subscpts n ceffcents):,, cs sn sn sn,, sn cs sn sn,, sn sn cs sn E A k B k k k E k C k D k k E k k E k F k E E E But () Gauss Law: E Thus: sn cs sn sn k A k B k k k k sn k Csn k Dcs k sn k ksn k sn k Esn k Fcs k Ths equatn must be satsfed f an/all pnts nsde ectangula cavt esnat. In patcula, t has t be satsfed at,,,,. We see that f the lcus f pnts asscated wth ( =,,) and (, =,) and (,, = ), we must have B D F n the abve equatn. Nte als that f the lcus f pnts asscated wth m k,,, n k, and,, k whee mn,, dd nteges (, 3, 5, 7, etc. ) we must have: Ak Ck Ek. Nte futhe that ths elatn s autmatcall satsfed f mn,, and even nteges (, 4, 6, 8, etc. ). Pfess Steven Eede, Depatment f Phscs, Unvest f Illns at Ubana-Champagn, Illns 5-5. All Rghts Reseved. 3

UIUC Phscs 436 EM Felds & Suces II Fall Semeste, 5 Lect. Ntes.5 Pf. Steven Eede Thus: m k m,,3, 4, E,, A csksnk snk a n E,, C sn kcsk sn kk n,,3,4, b E,, Esnk snk csk k,,3, 4, d n.b.: mn smultaneusl s nt allwed! Wth: E,, E ˆE ˆE ˆ Nw use Faada s Law t detemne B : B E E E B Ek sn k csk csk Ck sn k csk csk E E B Ak csk sn k csk Ek csk sn k csk E E B Ck cskcsksn k Ak csk csk sn k : B,, B ˆB ˆB ˆ Ek ˆ Ck sn k cs k cs k Ak cs sn cs ˆ Ek k k k Ck cs cs sn ˆ Ak k k k Ths epessn f B,, (alead) autmatcall satsfes bunda cndtn () B : B at, a B at, b B at, d m n wth k wth k wth k a b d m,,, n,,,,,, 4 Pfess Steven Eede, Depatment f Phscs, Unvest f Illns at Ubana-Champagn, Illns 5-5. All Rghts Reseved.

UIUC Phscs 436 EM Felds & Suces II Fall Semeste, 5 Lect. Ntes.5 Pf. Steven Eede,,??? Des B B B B B,, cs cs cs cs cs cs k Ek Ck k k k k k E kkc k Ak Ek k k k kka kke kck Ak cskcskcs k kkc kka B,, YES!!! k k k cs cs cs F TE Mdes: E ceffcent E. Then Ak Ck Ek tells us that: Ak Ck : Thus: k C A k The lwest TEmn,, mde abd s: TE,,, cs sn sn t,,,3, k m E t A k k k e m a k t E,,, ta sn kcsk sn k e n k,,,3, k n b E,,, t k,,,3, d (n = s NOT allwed f TE mdes!!!) k t B t,,, A k sn k csk cske k t B,,, t ka csk sn k cske k t B t,,, A k k csk csk snke k The angula cutff fequenc f th mn,, mde f TE mdes n a ectangula cavt s: mn m n c a b d and: vg c v n dspesn. k Pfess Steven Eede, Depatment f Phscs, Unvest f Illns at Ubana-Champagn, Illns 5-5. All Rghts Reseved. 5

UIUC Phscs 436 EM Felds & Suces II Fall Semeste, 5 Lect. Ntes.5 Pf. Steven Eede F TM Mdes: B Ck Ak : Thus: The lwest TM mn,, mde abd s: TM k C A k t E,,, t A csksn k sn k e m k,,,3, m a k,,, t E t A snkcsk csk e n k, n,,3, k b (m = s NOT allwed f TM mdes!!!) k,,,3, d k k k t E,,, ta snksnk csk e k k k k k k B t,,, Ak k A k snkcskcske k,,, k t B t Ak Ak k csk sn k cske k k B,,, t t k k k F ethe TE TM mdes: k k k k c wth: k m n, m,, k, n,, k,,, a b d The angula cutff fequenc f th mn,, mde s the same f TE/TM mdes n a ectangula cavt: mn m n c a b d and: vg c v n dspesn. k 6 Pfess Steven Eede, Depatment f Phscs, Unvest f Illns at Ubana-Champagn, Illns 5-5. All Rghts Reseved.

UIUC Phscs 436 EM Felds & Suces II Fall Semeste, 5 Lect. Ntes.5 Pf. Steven Eede B.) The Sphecal Resnant Cavt: The geneal pblem f EM mdes n a sphecal cavt s mathematcall cnsdeabl me nvlved (e.g. than f the ectangula cavt) due t the vectal natue f the E and B -felds. F smplct s sake, t s cnceptuall ease t cnsde the scala wave equatn, wth a scala feld t t,, satsfng the fee-suce wave equatn t, c t t whch can be Fue-analed n the cmple tme-dman t,, e d wth each Fue cmpnent, satsfng the Helmhlt wave equatn: k, wth: k c.e. n dspesn. In sphecal cdnates, the Laplacan peat s:,,,, sn sn sn T slve ths scala wave equatn we agan t a pduct slutn f the fm: Plug ths, R, PQe t m, m f Y, m sphecal hamncs nt the abve scala wave equatn, use the sepaatn f vaables technque: d d Get adal equatn: k f whee: =,,, 3,... d d Let: f u. Then we btan Bessel s equatn wth nde v : d d k u d d m m Slutns f the (adal) Bessel s equatn ae f the fm: f J k N k A m B Bessel fcn f st Bessel fcn f nd knd f de knd f de It s custma t defne s-called sphecal Bessel functns and sphecal Hankel functns: j J whee: k n N The Y, m satsf the angula ptn f scala wave equatn Pfess Steven Eede, Depatment f Phscs, Unvest f Illns at Ubana-Champagn, Illns 5-5. All Rghts Reseved. 7

UIUC Phscs 436 EM Felds & Suces II Fall Semeste, 5 Lect. Ntes.5 Pf. Steven Eede and: h J N j n, n.b. If = k s eal, then h h * sn d j d d cs n d j n j n sn cs F, : j n sn cs cs sn...!! 3!!... F, : j sn n cs h h e e e e h h!! 3... 53 whee: The geneal slutn t Helmhlt s equatn n sphecal cdnates can be wtten as: t, Am h k Am h k Ym,, m Ceffcents ae detemned b bunda cndtns. F the case f EM waves n a sphecal esnant cavt we wll (hee) nl cnsde TM mdes, whch f sphecal gemet means that the adal cmpnent f B, B. We futhe assume (f smplct s sake) that the E and B -felds d nt have an eplct -dependence. 8 Pfess Steven Eede, Depatment f Phscs, Unvest f Illns at Ubana-Champagn, Illns 5-5. All Rghts Reseved.

UIUC Phscs 436 EM Felds & Suces II Fall Semeste, 5 Lect. Ntes.5 Pf. Steven Eede m! m m Hence: Ym, P cse 4 m! Wll have sme estctns mpsed n t Asscated Legendé Plnmal If B and B eplct functn f, then: B B {necessal} B But: E eques: E t TM mdes wth n eplct -dependence nvlve nl E, E and B B E Cmbnng E and B wth hamnc tme dependence t c t t e f slutns, We btan: c BB The -cmpnent f ths equatn s: B B B sn c sn B B sn sn sn sn But: snb T pduct slutns f the fm: ~Legendé equatn wth m u B P, cs Substtutng ths nt the abve equatn gves a dffeental equatn f u f the fm f: du Bessel s equatn: u wth =,,, 3,... defnng the d c angula dependence f the TM mdes. Let us cnsde a esnant sphecal cavt as tw cncentc, pefectl cnductng sphees f nne adus a and ute adus b. If u B, P cs, the adal and tangental electc felds (usng Ampee s Law) ae: c c u E, snb P cs sn c c u E, B P cs Pfess Steven Eede, Depatment f Phscs, Unvest f Illns at Ubana-Champagn, Illns 5-5. All Rghts Reseved. 9

UIUC Phscs 436 EM Felds & Suces II Fall Semeste, 5 Lect. Ntes.5 Pf. Steven Eede But E E whch must vansh at = a and = b u u a b The slutns f the adal Bessel equatn ae sphecal Bessel functns ( sphecal Hankel functns). u The abve adal bunda cndtns n a lead t tanscendental equatns f b the chaactestc fequences, {eeeeek}!!! Hweve {dn t panc!}, f: (b a) = h s such that h a then: And thus n ths stuatn, the slutns f Bessel s equatn: a cnstant!!! u d c a du du ku d whee: ae smpl sn (k) and cs (k)!!!.e. u AcskBsn k k c a u Then: kasn kakb cska a F b a h a u and ka kb kb kb an appmate slutn s: u Acsk ka wth: kh k b a n, n =,,,... b sn cs Thus: k n n c a h, n =,,, 3,... and =,,, 3,... The cespndng angula cutff fequenc s: n n c kn c f h a, n =,,, 3,... and =,,, 3,... a h a Because h a, we see that the mdes wth n =,, 3,... tun ut t have elatvel hgh n fequences n c h f n. Hweve, the n = mdes have elatvel lw fequences: c c f h a. a a An eact slutn (cect t fst de n (h/a) epansn) f n = s: c a h These egen-mde fequences ae knwn as Schumann esnance fequences. =,, 3,... (W.O. Schumann Z. Natufsch. 7, 49, 5 (95)) Pfess Steven Eede, Depatment f Phscs, Unvest f Illns at Ubana-Champagn, Illns 5-5. All Rghts Reseved.

UIUC Phscs 436 EM Felds & Suces II Fall Semeste, 5 Lect. Ntes.5 Pf. Steven Eede F n =, the EM felds ae: Ve Useful Table: ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ E, E P cs and B P cs b a ẑ ˆ, B S ˆ ˆ ˆ E ˆ, ŷ ˆ Pntng s vect: S E B P P P P ˆ ˆ ˆ cs cs cs cs 3 3 Ccumpla N-S waves! The Eath s suface and the Eath s nsphee behave as a sphecal esnant cavt (!!!) wth the Eath s suface {appmatel} as the nne sphecal suface: a 6378 km 6 6.378 m (= Eath s mean equatal adus), the heght h (abve the suface f the Eath) 5 f the nsphee s: h km m( a ) b = a + h 6.478 6 m. F the n = Schumann esnances: c a h f h a. : : 3: 4: 5: c h a c 6 h a c h 3 a c h 4 a c 3 h 5 a f f f f f.5 8.3 3 3 5.7 4 4 33. 5 5 46.7 H H H H H (... etc.) n.b. F the n = Schumann esnances: f.5 KH The n = Schumann esnances n the Eath-nsphee cavt manfest themselves as peaks n the nse pwe spectum n the VLF (Ve Lw Fequenc) ptn f the EM spectum VLF EM standng waves n the sphecal cavt f the Eath-nsphee sstem!!! Pfess Steven Eede, Depatment f Phscs, Unvest f Illns at Ubana-Champagn, Illns 5-5. All Rghts Reseved.

UIUC Phscs 436 EM Felds & Suces II Fall Semeste, 5 Lect. Ntes.5 Pf. Steven Eede Schumann esnances n the Eath-nsphee cavt ae ected b the adal E -feld cmpnent f lghtnng dschages (the fequenc cmpnent f EM waves pduced b lghtnng at these Schumann esnance fequences). Lghtnng dschages (anwhee n Eath) cntan a wde spectum f fequences f EM adatn the fequenc cmpnents f, f, f3, f4,.. ecte these esnant mdes the Eath lteall ngs lke a bell at these fequences!!! The n = Schumann esnances ae the lwest-lng nmal mdes f the Eath-nsphee cavt. Schumann esnances wee fst defntvel bseved n 96. (M. Balse and C.A. Wagne, Natue 88, 638 (96)). Nkla Tesla ma have bseved them befe 9!!! (Befe the nsphee was knwn t even est!!!) He als estmated the lwest mdal fequenc t be f ~ 6 H!!! n = Schumann Resnances: Pfess Steven Eede, Depatment f Phscs, Unvest f Illns at Ubana-Champagn, Illns 5-5. All Rghts Reseved.

UIUC Phscs 436 EM Felds & Suces II Fall Semeste, 5 Lect. Ntes.5 Pf. Steven Eede The bseved Schumann esnance fequences ae sstematcall lwe than pedcted, (pmal) due t dampng effects: Q whee Q = Qualt fact = Q f esnance, and = wdth at half mamum f pwe spectum: The Eath s suface s als nt pefectl cnductng. Seawate cnductvt C. Semens!! Nethe s the nsphee! Insphee s cnductvt C 4 7 Semens On Jul 9, 96, a nuclea eplsn (EMP) detnated at hgh alttude (4 km) ve Jhnsn Island n the Pacfc {Test Sht: Stafsh Pme, Opeatn Dmnc I}. - Measuabl affected the Eath s nsphee and adatn belts n a wld-wde scale! - Sudden decease f ~ 3 5% n Schumann fequences ncease n heght f nsphee! - Change n heght f nsphee: hh h.3.5r 4 6 km!!! - Heght changes decaed awa afte ~ seveal hus. - Atfcal adatn belts lasted seveal eas! Nte that # f lghtnng stkes, (e.g. n tpcs) s stngl celated t aveage tempeatue. Scentsts have used Schumann esnances & mnthl mean magnetc feld stengths t mnt lghtnng ates and thus mnt mnthl tempeatues the all celate ve well!!! Mntng Schumann Resnances Glbal Themmete useful f Glbal Wamng studes!! Eath Cdnate Sstem: c f h a E (nth suth) E P cs (up dwn) B P cs (east west) S P 3 cs P cs ˆ (nth suth) F the n = mdes f Schumann Resnances: E ˆ (up dwn) B ˆ (east west) S ˆ (nth suth) Pfess Steven Eede, Depatment f Phscs, Unvest f Illns at Ubana-Champagn, Illns 5-5. All Rghts Reseved. 3

UIUC Phscs 436 EM Felds & Suces II Fall Semeste, 5 Lect. Ntes.5 Pf. Steven Eede We can bseve Schumann esnances ght hee n twn / @ UIUC!! Use e.g. Gbsn P-9 sngle-cl electc guta pckup LP 9 Hens, ~K tuns #4AWG cppe we f detect f Schumann waves and a spectum anale (e.g. HP 356A Dnamc Sgnal Anale) ead ut the HP 356A nt PC va GPIB. Oentatn/algnment f Gbsn P-9 electc guta pckup s mptant want as f pckup algned B ˆ (.e. ented east west) as shwn n fgue belw. n.b. nl ths entatn elded Schumann-tpe esnance sgnals {als ted the 9 entatns {up-dwn} and {nth-suth} but bseved n sgnal(s) f Schumann esnances f these.} Electc guta PU s ae ve senstve e.g. the can easl detect ca / bus taffc n steet belw fm 65 ESB (6 th Fl Lab) can easl see ca/bus sgnal fm PU n a scpe!!! n.b. PU hused n 4 clsed, gunded alumnum sheet-metal b t suppess electc nse. 4 Pfess Steven Eede, Depatment f Phscs, Unvest f Illns at Ubana-Champagn, Illns 5-5. All Rghts Reseved.

UIUC Phscs 436 EM Felds & Suces II Fall Semeste, 5 Lect. Ntes.5 Pf. Steven Eede Pfess Steven Eede, Depatment f Phscs, Unvest f Illns at Ubana-Champagn, Illns 5-5. All Rghts Reseved. 5