PHYSICS 161 EXAM III: Thursday December 04, :00 a.m.
|
|
|
- Louisa Webb
- 9 years ago
- Views:
Transcription
1 PHYS 6: Eam III Fall 003 PHYSICS 6 EXAM III: Thusda Decembe 04, 003 :00 a.m. Po. N. S. Chan. Please pn ou name and ene ou sea numbe o den ou and ou eamnaon. Suden s Pned Name: Recaon Secon Numbe: Sea Numbe:. The Unes has a naonall ecognzed Hono Code, admnseed b he Suden Hono Councl. The Suden Hono Councl poposed and he Unes Senae appoed an Hono Pledge. The Unes o Maland Hono Pledge eads: "I pledge on m hono ha I hae no gen o eceed an unauhozed asssance on hs assgnmen/eamnaon." Suden s Sgnaue (n nk please): Ths es consss o 4 pas, each woh 5 pons. The eam s pned on 8 pages and s o be compleed n 50 mnues. Please check ha ou hae a complee eam. In mos cases paal ced wll be gen, so show ou wok. I ou need addonal space use he eese sde o he shees, o ask o addonal pape. Some o he ollowng nomaon ma be useul n he eam. g 9.8 m/s SCORING TABLE (Each suden should check he addon o hs own scoe.) Poblem Pons. /(5). /(5) 3. /(5) 4. /(5) Toal /(00)
2 PHYS 6: Eam III Fall 003. A.00-kg objec (mass m) sldes o he gh on a suace hang a coecen o knec con µ k 0.50 (See Fg). The objec has a speed o 3.00 m/s when makes conac wh a lgh spng ha has a oce consan k 50.0 N/m. The objec comes o es ae he spng has been compessed a dsance d. The objec s hen oced owad he le b he spng and connues o moe n ha decon beond he spng s unseched poson. Fnall he objec comes o es a dsance D o he le o he unseched spng. a) (0 pons) Fnd a (quadac) equaon o d n ems o m, µ k, g, k and. b) (8 pons) Assume d m and, nd he speed a he un-seched poson when he objec s mong o he le. c) (7 pons) Assume d m and nd he dsance D whee he objec comes o es.
3 PHYS 6: Eam III Fall 003. A spos ca aelng Noh a 30 m/s colldes head on wh a uck headng Souh a 5 m/s. The mass o he ca ncludng he de s,500 kg and he mass o he uck ncludng he de s 0,000 kg. Ae he collson he wo ehcles sck ogehe. a) (8 pons) Fnd he speed o he weckage. Is mong Noh o Souh? b) (5 pons) Wha s he mpulse appled o he uck due o he collson? c) (6 pons) Assume ha he mass o he uck de s 00 kg and ha he s beled n. Wha s he mpulse epeenced b he de due o he collson? I he collson lass 0. s, wha s he aeage oce epeenced b he de? d) (6 pons) Assume ha he mass o he spos ca de s 00 kg and ha he s beled n. Wha s he mpulse appled o he de due o he collson? I he collson lass 0. s, wha s he aeage oce epeenced b hs de? 3
4 PHYS 6: Eam III Fall Two blocks ae conneced b a sng o neglgble mass passng oe a pulle o adus 0.50 m and momen o nea I. The block on he conless nclne s mong up wh a consan acceleaon o.00 m/s. a) (4 pons) Wha s he angula acceleaon o he pulle? b) (6 pons) Wha s he angula eloc o he pulle ae has compleed 3 complee eoluons sang om es? c) (6 pons) Deemne T and T, he ensons n he wo pas o he sng. d) (5 pons) Wha s he oque appled o he pulle? e) (4 pons) Fnd he momen o nea o he pulle. 4
5 PHYS 6: Eam III Fall Med bag a) (0 pons) A bowlng ball wh mass M, adus R, and a momen o nea o 5 MR s eleased om he op o an nclned plane o hegh H. A clndcal ng wh he same mass M, adus R, and wh a momen o nea MR s also eleased a he same me. Boh oll whou slppng. Use eneg mehods o nd he cene o mass eloc, V CM, o each objec when eaches he boom o he nclne. Epess ou esul n ems o R, H and he acceleaon due o ga, g. Whch objec eaches he boom s? b) A bllad ball mong a 5.00 m/s skes a saona ball o he same mass (each mass s kg). Ae he collson, he s ball moes a 4.33 m/s, a an angle o 30.0 wh espec o he ognal lne o moon.. (0 pons) Fnd he suck ball's eloc ae he collson.. (5 pons) Wha s he eloc o he cene o mass beoe he collson? 5
6 PHYS 6: Eam III Fall 003 Possbl useul nomaon Chape Dmensons [M], [L], [T] ρ M / V sg. gs. Chape a a. speed oal ds./me d d a d d a ( ) a a ( ) Chape 3 cos(θ ) sn(θ ) In dmensons: A A A C A B C A B B B B C A B C C C A A ˆ A ˆj A kˆ z C an θ and n 3d. usng un ecos: C B B ˆ B ˆj B kˆ A A A A ec. z z Chape 4 a a 0, g a c a a ( ) ec. a R sn(θ ) h sn ( θ ) g g d a a a ˆ θˆ d a a a c a 6
7 PHYS 6: Eam III Fall 003 Chape 5 F ma w mg R s µ s R k µ k Chape 6 a c Chape 7 W F cos ϑ F W F d k ( ) K m Wne K K P W P F Chape 8 U g mg U s k E K U Wg ( U U W nc ( K U ) ( K U K U K U ) ) W con d m mg m mg d k Chape 9 p m mpulse I F I AV p m m m m m m cm M F m k F s F I du d Fd ) cm M MV dm eenal Ma cm cm p p oal ( m cm m m m 7
8 PHYS 6: Eam III Fall 003 Chape 0 θ s ω dθ d α dω d ω ω α ω a α θ θ ( ω ω ) I m ω K I Fd P τω θ θ ω ω ω α ( θ θ ) α a I dm c τ τ Iα W Iω Iω ω K ω I CM M CM 8
Goals Rotational quantities as vectors. Math: Cross Product. Angular momentum
Physcs 106 Week 5 Torque and Angular Momentum as Vectors SJ 7thEd.: Chap 11.2 to 3 Rotatonal quanttes as vectors Cross product Torque expressed as a vector Angular momentum defned Angular momentum as a
Exam 3: Equation Summary
MASSACHUSETTS INSTITUTE OF TECHNOLOGY Depatment of Physics Physics 8.1 TEAL Fall Tem 4 Momentum: p = mv, F t = p, Fext ave t= t f t= Exam 3: Equation Summay total = Impulse: I F( t ) = p Toque: τ = S S,P
Phys 2101 Gabriela González. cos. sin. sin
1 Phys 101 Gabiela González a m t t ma ma m m T α φ ω φ sin cos α τ α φ τ sin m m α τ I We know all of that aleady!! 3 The figue shows the massive shield doo at a neuton test facility at Lawence Livemoe
PY1052 Problem Set 8 Autumn 2004 Solutions
PY052 Poblem Set 8 Autumn 2004 Solutions H h () A solid ball stats fom est at the uppe end of the tack shown and olls without slipping until it olls off the ight-hand end. If H 6.0 m and h 2.0 m, what
CHAPTER 8 Potential Energy and Conservation of Energy
CHAPTER 8 Potental Energy and Conservaton o Energy One orm o energy can be converted nto another orm o energy. Conservatve and non-conservatve orces Physcs 1 Knetc energy: Potental energy: Energy assocated
Center of Gravity. We touched on this briefly in chapter 7! x 2
Center of Gravity We touched on this briefly in chapter 7! x 1 x 2 cm m 1 m 2 This was for what is known as discrete objects. Discrete refers to the fact that the two objects separated and individual.
Rotation Kinematics, Moment of Inertia, and Torque
Rotaton Knematcs, Moment of Inerta, and Torque Mathematcally, rotaton of a rgd body about a fxed axs s analogous to a lnear moton n one dmenson. Although the physcal quanttes nvolved n rotaton are qute
Acceleration due to Gravity
Acceleration due to Gravity 1 Object To determine the acceleration due to gravity by different methods. 2 Apparatus Balance, ball bearing, clamps, electric timers, meter stick, paper strips, precision
Multiple choice questions [60 points]
1 Multiple choice questions [60 points] Answe all o the ollowing questions. Read each question caeully. Fill the coect bubble on you scanton sheet. Each question has exactly one coect answe. All questions
12. Rolling, Torque, and Angular Momentum
12. olling, Toque, and Angula Momentum 1 olling Motion: A motion that is a combination of otational and tanslational motion, e.g. a wheel olling down the oad. Will only conside olling with out slipping.
Lecture 17. Last time we saw that the rotational analog of Newton s 2nd Law is
Lecture 17 Rotational Dynamics Rotational Kinetic Energy Stress and Strain and Springs Cutnell+Johnson: 9.4-9.6, 10.1-10.2 Rotational Dynamics (some more) Last time we saw that the rotational analog of
Chapter 22. Outside a uniformly charged sphere, the field looks like that of a point charge at the center of the sphere.
Chapte.3 What is the magnitude of a point chage whose electic field 5 cm away has the magnitude of.n/c. E E 5.56 1 11 C.5 An atom of plutonium-39 has a nuclea adius of 6.64 fm and atomic numbe Z94. Assuming
Chapter 11. h = 5m. = mgh + 1 2 mv 2 + 1 2 Iω 2. E f. = E i. v = 4 3 g(h h) = 4 3 9.8m / s2 (8m 5m) = 6.26m / s. ω = v r = 6.
Chapter 11 11.7 A solid cylinder of radius 10cm and mass 1kg starts from rest and rolls without slipping a distance of 6m down a house roof that is inclined at 30 degrees (a) What is the angular speed
11. Rotation Translational Motion: Rotational Motion:
11. Rotation Translational Motion: Motion of the center of mass of an object from one position to another. All the motion discussed so far belongs to this category, except uniform circular motion. Rotational
Acceleration Lab Teacher s Guide
Acceleraion Lab Teacher s Guide Objecives:. Use graphs of disance vs. ime and velociy vs. ime o find acceleraion of a oy car.. Observe he relaionship beween he angle of an inclined plane and he acceleraion
Angular acceleration α
Angular Acceleration Angular acceleration α measures how rapidly the angular velocity is changing: Slide 7-0 Linear and Circular Motion Compared Slide 7- Linear and Circular Kinematics Compared Slide 7-
Lecture 7 Force and Motion. Practice with Free-body Diagrams and Newton s Laws
Lecture 7 Force and Motion Practice with Free-body Diagrams and Newton s Laws oday we ll just work through as many examples as we can utilizing Newton s Laws and free-body diagrams. Example 1: An eleator
Magnetic Field and Magnetic Forces. Young and Freedman Chapter 27
Magnetic Field and Magnetic Foces Young and Feedman Chapte 27 Intoduction Reiew - electic fields 1) A chage (o collection of chages) poduces an electic field in the space aound it. 2) The electic field
SOLID MECHANICS DYNAMICS TUTORIAL MOMENT OF INERTIA. This work covers elements of the following syllabi.
SOLID MECHANICS DYNAMICS TUTOIAL MOMENT OF INETIA This work covers elements of the following syllabi. Parts of the Engineering Council Graduate Diploma Exam D5 Dynamics of Mechanical Systems Parts of the
Midterm Solutions. mvr = ω f (I wheel + I bullet ) = ω f 2 MR2 + mr 2 ) ω f = v R. 1 + M 2m
Midterm Solutions I) A bullet of mass m moving at horizontal velocity v strikes and sticks to the rim of a wheel a solid disc) of mass M, radius R, anchored at its center but free to rotate i) Which of
Chapter 7 Homework solutions
Chapter 7 Homework solutions 8 Strategy Use the component form of the definition of center of mass Solution Find the location of the center of mass Find x and y ma xa + mbxb (50 g)(0) + (10 g)(5 cm) x
Physics 201 Homework 8
Physics 201 Homework 8 Feb 27, 2013 1. A ceiling fan is turned on and a net torque of 1.8 N-m is applied to the blades. 8.2 rad/s 2 The blades have a total moment of inertia of 0.22 kg-m 2. What is the
Chapter 6. Work and Energy
Chapter 6 Work and Energy The concept of forces acting on a mass (one object) is intimately related to the concept of ENERGY production or storage. A mass accelerated to a non-zero speed carries energy
PHYSICS 111 HOMEWORK SOLUTION #13. May 1, 2013
PHYSICS 111 HOMEWORK SOLUTION #13 May 1, 2013 0.1 In intoductoy physics laboatoies, a typical Cavendish balance fo measuing the gavitational constant G uses lead sphees with masses of 2.10 kg and 21.0
University Physics AI No. 11 Kinetic Theory
Unersty hyscs AI No. 11 Knetc heory Class Number Name I.Choose the Correct Answer 1. Whch type o deal gas wll hae the largest alue or C -C? ( D (A Monatomc (B Datomc (C olyatomc (D he alue wll be the same
Work, Energy & Power. AP Physics B
ork, Energy & Power AP Physics B There are many dierent TYPES o Energy. Energy is expressed in JOULES (J) 4.19 J = 1 calorie Energy can be expressed more speciically by using the term ORK() ork = The Scalar
Chapter 19: Electric Charges, Forces, and Fields ( ) ( 6 )( 6
Chapte 9 lectic Chages, Foces, an Fiels 6 9. One in a million (0 ) ogen molecules in a containe has lost an electon. We assume that the lost electons have been emove fom the gas altogethe. Fin the numbe
So if ω 0 increases 3-fold, the stopping angle increases 3 2 = 9-fold.
Name: MULTIPLE CHOICE: Questions 1-11 are 5 points each. 1. A safety device brings the blade of a power mower from an angular speed of ω 1 to rest in 1.00 revolution. At the same constant angular acceleration,
Physics 1A Lecture 10C
Physics 1A Lecture 10C "If you neglect to recharge a battery, it dies. And if you run full speed ahead without stopping for water, you lose momentum to finish the race. --Oprah Winfrey Static Equilibrium
Spline. Computer Graphics. B-splines. B-Splines (for basis splines) Generating a curve. Basis Functions. Lecture 14 Curves and Surfaces II
Lecure 4 Curves and Surfaces II Splne A long flexble srps of meal used by drafspersons o lay ou he surfaces of arplanes, cars and shps Ducks weghs aached o he splnes were used o pull he splne n dfferen
Columbia University Department of Physics QUALIFYING EXAMINATION
Columbia University Department of Physics QUALIFYING EXAMINATION Monday, January 13, 2014 1:00PM to 3:00PM Classical Physics Section 1. Classical Mechanics Two hours are permitted for the completion of
HUT, TUT, LUT, OU, ÅAU / Engineering departments Entrance examination in mathematics May 25, 2004
HUT, TUT, LUT, OU, ÅAU / Engineeing depamens Enane examinaion in mahemais May 5, 4 Insuions. Reseve a sepaae page fo eah poblem. Give you soluions in a lea fom inluding inemediae seps. Wie a lean opy of
Homework: 49, 56, 67, 60, 64, 74 (p. 234-237)
Hoework: 49, 56, 67, 60, 64, 74 (p. 34-37) 49. bullet o ass 0g strkes a ballstc pendulu o ass kg. The center o ass o the pendulu rses a ertcal dstance o c. ssung that the bullet reans ebedded n the pendulu,
Objective: Equilibrium Applications of Newton s Laws of Motion I
Type: Single Date: Objective: Equilibrium Applications of Newton s Laws of Motion I Homework: Assignment (1-11) Read (4.1-4.5, 4.8, 4.11); Do PROB # s (46, 47, 52, 58) Ch. 4 AP Physics B Mr. Mirro Equilibrium,
Physics 110 Spring 2006 2-D Motion Problems: Projectile Motion Their Solutions
Physcs 110 Sprn 006 -D Moton Problems: Projectle Moton Ther Solutons 1. A place-kcker must kck a football from a pont 36 m (about 40 yards) from the oal, and half the crowd hopes the ball wll clear the
Lecture 16. Newton s Second Law for Rotation. Moment of Inertia. Angular momentum. Cutnell+Johnson: 9.4, 9.6
Lecture 16 Newton s Second Law for Rotation Moment of Inertia Angular momentum Cutnell+Johnson: 9.4, 9.6 Newton s Second Law for Rotation Newton s second law says how a net force causes an acceleration.
( )( 10!12 ( 0.01) 2 2 = 624 ( ) Exam 1 Solutions. Phy 2049 Fall 2011
Phy 49 Fall 11 Solutions 1. Three charges form an equilateral triangle of side length d = 1 cm. The top charge is q = - 4 μc, while the bottom two are q1 = q = +1 μc. What is the magnitude of the net force
Two-Body System: Two Hanging Masses
Specific Outcome: i. I can apply Newton s laws of motion to solve, algebraically, linear motion problems in horizontal, vertical and inclined planes near the surface of Earth, ignoring air resistance.
Valuing Long-Lived Assets
Valuing Long-Lived Asses Olive Tabalski, 008-09-0 This chape explains how you can calculae he pesen value of cash flow. Some vey useful shocu mehods will be shown. These shocus povide a good oppouniy fo
Oblique incidence: Interface between dielectric media
lecrmagnec Felds Oblque ncdence: Inerface beween delecrc meda Cnsder a planar nerface beween w delecrc meda. A plane wave s ncden a an angle frm medum. The nerface plane defnes he bundary beween he meda.
. The torque at the rear sprocket is what actually accelerates the bicycle, and so R R
CHAPTE 8: anal Mn Answes Quesns. The dmee desgned 7-nch wheels nceases s eadng by he ccumeence a 7-nch wheel 7 " eey elun he wheel. a 4-nch wheel s used, he dmee wll sll egse 7 " eey elun, bu nly 4 " lnea
C o a t i a n P u b l i c D e b tm a n a g e m e n t a n d C h a l l e n g e s o f M a k e t D e v e l o p m e n t Z a g e bo 8 t h A p i l 2 0 1 1 h t t pdd w w wp i j fp h D p u b l i c2 d e b td S t
Lecture 40 Induction. Review Inductors Self-induction RL circuits Energy stored in a Magnetic Field
ecure 4 nducon evew nducors Self-nducon crcus nergy sored n a Magnec Feld 1 evew nducon end nergy Transfers mf Bv Mechancal energy ransform n elecrc and hen n hermal energy P Fv B v evew eformulaon of
Vatten(byggnad) VVR145 Vatten. 2. Vätskors egenskaper (1.1, 4.1 och 2.8) (Föreläsningsanteckningar)
Vatten(byggnad) Vätskors egenskaper (1) Hydrostatik (3) Grundläggande ekvationer (5) Rörströmning (4) 2. Vätskors egenskaper (1.1, 4.1 och 2.8) (Föreläsningsanteckningar) Vätska som kontinuerligt medium
Mechanics 1: Motion in a Central Force Field
Mechanics : Motion in a Cental Foce Field We now stud the popeties of a paticle of (constant) ass oving in a paticula tpe of foce field, a cental foce field. Cental foces ae ve ipotant in phsics and engineeing.
Vector Calculus: Are you ready? Vectors in 2D and 3D Space: Review
Vecto Calculus: Ae you eady? Vectos in D and 3D Space: Review Pupose: Make cetain that you can define, and use in context, vecto tems, concepts and fomulas listed below: Section 7.-7. find the vecto defined
Chapter 4. Forces and Newton s Laws of Motion. continued
Chapter 4 Forces and Newton s Laws of Motion continued 4.9 Static and Kinetic Frictional Forces When an object is in contact with a surface forces can act on the objects. The component of this force acting
Victims Compensation Claim Status of All Pending Claims and Claims Decided Within the Last Three Years
Claim#:021914-174 Initials: J.T. Last4SSN: 6996 DOB: 5/3/1970 Crime Date: 4/30/2013 Status: Claim is currently under review. Decision expected within 7 days Claim#:041715-334 Initials: M.S. Last4SSN: 2957
d e f i n i c j i p o s t a w y, z w i z a n e j e s t t o m. i n. z t y m, i p o jі c i e t o
P o s t a w y s p o і e c z e t s t w a w o b e c o s у b n i e p e і n o s p r a w n y c h z e s z c z e g у l n y m u w z g lb d n i e n i e m o s у b z z e s p o і e m D o w n a T h e a t t i t uodf
Chapter 21 Rigid Body Dynamics: Rotation and Translation about a Fixed Axis
Chapter 21 Rigid Body Dynamics: Rotation and Translation about a Fixed Axis 21.1 Introduction... 1 21.2 Translational Equation of Motion... 1 21.3 Translational and Rotational Equations of Motion... 1
2 r2 θ = r2 t. (3.59) The equal area law is the statement that the term in parentheses,
3.4. KEPLER S LAWS 145 3.4 Keple s laws You ae familia with the idea that one can solve some mechanics poblems using only consevation of enegy and (linea) momentum. Thus, some of what we see as objects
Generalized Difference Sequence Space On Seminormed Space By Orlicz Function
Ieaoa Joa of Scece ad Eee Reeach IJSER Vo Ie Decembe -4 5687 568X Geeazed Dffeece Seece Sace O Semomed Sace B Ocz Fco A.Sahaaa Aa ofeo G Ie of TechooCombaoeIda. Abac I h aewe defe he eece ace o emomed
Gravitation. AP Physics C
Gavitation AP Physics C Newton s Law of Gavitation What causes YOU to be pulled down? THE EARTH.o moe specifically the EARTH S MASS. Anything that has MASS has a gavitational pull towads it. F α Mm g What
Imagine a Source (S) of sound waves that emits waves having frequency f and therefore
heoreical Noes: he oppler Eec wih ound Imagine a ource () o sound waes ha emis waes haing requency and hereore period as measured in he res rame o he ource (). his means ha any eecor () ha is no moing
CHAPTER 6 WORK AND ENERGY
CHAPTER 6 WORK AND ENERGY CONCEPTUAL QUESTIONS. REASONING AND SOLUTION The work done by F in moving the box through a displacement s is W = ( F cos 0 ) s= Fs. The work done by F is W = ( F cos θ). s From
Practice Exam Three Solutions
MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics Physics 8.01T Fall Term 2004 Practice Exam Three Solutions Problem 1a) (5 points) Collisions and Center of Mass Reference Frame In the lab frame,
WORK DONE BY A CONSTANT FORCE
WORK DONE BY A CONSTANT FORCE The definition of work, W, when a constant force (F) is in the direction of displacement (d) is W = Fd SI unit is the Newton-meter (Nm) = Joule, J If you exert a force of
8. Potential Energy and Conservation of Energy Potential Energy: When an object has potential to have work done on it, it is said to have potential
8. Potential Energy and Conservation of Energy Potential Energy: When an object has potential to have work done on it, it is said to have potential energy, e.g. a ball in your hand has more potential energy
SOLID MECHANICS DYNAMICS TUTORIAL CENTRIPETAL FORCE
SOLID MECHANICS DYNAMICS TUTORIAL CENTRIPETAL FORCE This work coers elements of the syllabus for the Engineering Council Exam D5 Dynamics of Mechanical Systems C10 Engineering Science. This tutorial examines
PHY121 #8 Midterm I 3.06.2013
PHY11 #8 Midterm I 3.06.013 AP Physics- Newton s Laws AP Exam Multiple Choice Questions #1 #4 1. When the frictionless system shown above is accelerated by an applied force of magnitude F, the tension
Gravity. A. Law of Gravity. Gravity. Physics: Mechanics. A. The Law of Gravity. Dr. Bill Pezzaglia. B. Gravitational Field. C.
Physics: Mechanics 1 Gavity D. Bill Pezzaglia A. The Law of Gavity Gavity B. Gavitational Field C. Tides Updated: 01Jul09 A. Law of Gavity 3 1a. Invese Squae Law 4 1. Invese Squae Law. Newton s 4 th law
PHY231 Section 2, Form A March 22, 2012. 1. Which one of the following statements concerning kinetic energy is true?
1. Which one of the following statements concerning kinetic energy is true? A) Kinetic energy can be measured in watts. B) Kinetic energy is always equal to the potential energy. C) Kinetic energy is always
Simple Harmonic Motion
Simple Harmonic Motion 1 Object To determine the period of motion of objects that are executing simple harmonic motion and to check the theoretical prediction of such periods. 2 Apparatus Assorted weights
21 Vectors: The Cross Product & Torque
21 Vectors: The Cross Product & Torque Do not use our left hand when applng ether the rght-hand rule for the cross product of two vectors dscussed n ths chapter or the rght-hand rule for somethng curl
TOP VIEW. FBD s TOP VIEW. Examination No. 2 PROBLEM NO. 1. Given:
RLEM N. 1 Given: Find: vehicle having a mass of 500 kg is traveling on a banked track on a path with a constant radius of R = 1000 meters. t the instant showing, the vehicle is traveling with a speed of
PHY231 Section 1, Form B March 22, 2012
1. A car enters a horizontal, curved roadbed of radius 50 m. The coefficient of static friction between the tires and the roadbed is 0.20. What is the maximum speed with which the car can safely negotiate
4 Impulse and Impact. Table of contents:
4 Impulse and Impact At the end of this section you should be able to: a. define momentum and impulse b. state principles of conseration of linear momentum c. sole problems inoling change and conseration
Derivative Securities: Lecture 7 Further applications of Black-Scholes and Arbitrage Pricing Theory. Sources: J. Hull Avellaneda and Laurence
Deivaive ecuiies: Lecue 7 uhe applicaios o Black-choles ad Abiage Picig heoy ouces: J. Hull Avellaeda ad Lauece Black s omula omeimes is easie o hik i ems o owad pices. Recallig ha i Black-choles imilaly
Chapter 6 Work and Energy
Chapter 6 WORK AND ENERGY PREVIEW Work is the scalar product of the force acting on an object and the displacement through which it acts. When work is done on or by a system, the energy of that system
Skills Needed for Success in Calculus 1
Skills Needed fo Success in Calculus Thee is much appehension fom students taking Calculus. It seems that fo man people, "Calculus" is snonmous with "difficult." Howeve, an teache of Calculus will tell
Chapter 5: Applying Newton s Laws
Chapter 5: Appling Newton s Laws Newton s 1 st Law he 1 st law defines what the natural states of motion: rest and constant velocit. Natural states of motion are and those states are when a = 0. In essence,
Problem Set #13 Solutions
MASSACHUSETTS INSTITUTE OF TECHNOLOGY Physics Department 8.0L: Physics I January 3, 06 Prof. Alan Guth Problem Set #3 Solutions Due by :00 am on Friday, January in the bins at the intersection of Buildings
Physics 231 Lecture 15
Physics 31 ecture 15 Main points of today s lecture: Simple harmonic motion Mass and Spring Pendulum Circular motion T 1/f; f 1/ T; ω πf for mass and spring ω x Acos( ωt) v ωasin( ωt) x ax ω Acos( ωt)
Ch 7 Kinetic Energy and Work. Question: 7 Problems: 3, 7, 11, 17, 23, 27, 35, 37, 41, 43
Ch 7 Kinetic Energy and Work Question: 7 Problems: 3, 7, 11, 17, 23, 27, 35, 37, 41, 43 Technical definition of energy a scalar quantity that is associated with that state of one or more objects The state
www.mathsbox.org.uk Displacement (x) Velocity (v) Acceleration (a) x = f(t) differentiate v = dx Acceleration Velocity (v) Displacement x
Mechanics 2 : Revision Notes 1. Kinematics and variable acceleration Displacement (x) Velocity (v) Acceleration (a) x = f(t) differentiate v = dx differentiate a = dv = d2 x dt dt dt 2 Acceleration Velocity
Introduction to Fluid Mechanics
Chapte 1 1 1.6. Solved Examples Example 1.1 Dimensions and Units A body weighs 1 Ibf when exposed to a standad eath gavity g = 3.174 ft/s. (a) What is its mass in kg? (b) What will the weight of this body
Faraday's Law of Induction
Introducton Faraday's Law o Inducton In ths lab, you wll study Faraday's Law o nducton usng a wand wth col whch swngs through a magnetc eld. You wll also examne converson o mechanc energy nto electrc energy
Chapter 11 Torque and Angular Momentum
Chapter 11 Torque and Angular Momentum I. Torque II. Angular momentum - Defnton III. Newton s second law n angular form IV. Angular momentum - System of partcles - Rgd body - Conservaton I. Torque - Vector
PHYS 211 FINAL FALL 2004 Form A
1. Two boys with masses of 40 kg and 60 kg are holding onto either end of a 10 m long massless pole which is initially at rest and floating in still water. They pull themselves along the pole toward each
Newton s Laws of Motion
Newon s Laws of Moion MS4414 Theoreical Mechanics Firs Law velociy. In he absence of exernal forces, a body moves in a sraigh line wih consan F = 0 = v = cons. Khan Academy Newon I. Second Law body. The
Moment and couple. In 3-D, because the determination of the distance can be tedious, a vector approach becomes advantageous. r r
Moment and couple In 3-D, because the detemination of the distance can be tedious, a vecto appoach becomes advantageous. o k j i M k j i M o ) ( ) ( ) ( + + M o M + + + + M M + O A Moment about an abita
Answer, Key Homework 2 David McIntyre 45123 Mar 25, 2004 1
Answer, Key Homework 2 Daid McInyre 4123 Mar 2, 2004 1 This prin-ou should hae 1 quesions. Muliple-choice quesions may coninue on he ne column or page find all choices before making your selecion. The
PHY2053: Lecture 12. Elastic Forces - Hooke s Law Work done by elastic forces Elastic Potential Energy Power
PHY2053: Lecture 12 Elastic Forces - Hooke s Law Work done by elastic forces Elastic Potential Energy Power Elastic Forces 2 Hooke s Law Discovered by Robert Hooke cca 1660 ceiiinosssttuv cca 1676 Ut tensio,
Weight The weight of an object is defined as the gravitational force acting on the object. Unit: Newton (N)
Gravitational Field A gravitational field as a region in which an object experiences a force due to gravitational attraction Gravitational Field Strength The gravitational field strength at a point in
Mechanics 1: Work, Power and Kinetic Energy
Mechanics 1: Wok, Powe and Kinetic Eneg We fist intoduce the ideas of wok and powe. The notion of wok can be viewed as the bidge between Newton s second law, and eneg (which we have et to define and discuss).
Physics 53. Kinematics 2. Our nature consists in movement; absolute rest is death. Pascal
Phsics 53 Kinematics 2 Our nature consists in movement; absolute rest is death. Pascal Velocit and Acceleration in 3-D We have defined the velocit and acceleration of a particle as the first and second
New York Public School Spending In Perspec7ve
New York Public School Spending In Perspec7ve School District Fiscal Stress Conference Nelson A. Rockefeller Ins0tute of Government New York State Associa0on of School Business Officials October 4, 2013
Multiple choice questions [70 points]
Multiple choice questions [70 points] Answe all of the following questions. Read each question caefull. Fill the coect bubble on ou scanton sheet. Each question has exactl one coect answe. All questions
PHYS 2425 Engineering Physics I EXPERIMENT 9 SIMPLE HARMONIC MOTION
PHYS 2425 Engineering Physics I EXPERIMENT 9 SIMPLE HARMONIC MOTION I. INTRODUCTION The objective of this experiment is the study of oscillatory motion. In particular the springmass system and the simple
cooking trajectory boiling water B (t) microwave 0 2 4 6 8 101214161820 time t (mins)
Alligaor egg wih calculus We have a large alligaor egg jus ou of he fridge (1 ) which we need o hea o 9. Now here are wo accepable mehods for heaing alligaor eggs, one is o immerse hem in boiling waer
Fluid Dynamics. AP Physics B
Fluid Dynamics AP Physics B Fluid Flow Up till now, we hae pretty much focused on fluids at rest. Now let's look at fluids in motion It is important that you understand that an IDEAL FLUID: Is non iscous
(Ch. 22.5) 2. What is the magnitude (in pc) of a point charge whose electric field 50 cm away has a magnitude of 2V/m?
Em I Solutions PHY049 Summe 0 (Ch..5). Two smll, positively chged sphees hve combined chge of 50 μc. If ech sphee is epelled fom the othe by n electosttic foce of N when the sphees e.0 m pt, wht is the
Model Question Paper Mathematics Class XII
Model Question Pape Mathematics Class XII Time Allowed : 3 hous Maks: 100 Ma: Geneal Instuctions (i) The question pape consists of thee pats A, B and C. Each question of each pat is compulsoy. (ii) Pat
Simple Harmonic Motion(SHM) Period and Frequency. Period and Frequency. Cosines and Sines
Simple Harmonic Motion(SHM) Vibration (oscillation) Equilibrium position position of the natural length of a spring Amplitude maximum displacement Period and Frequency Period (T) Time for one complete
3 Work, Power and Energy
3 Work, Power and Energy At the end of this section you should be able to: a. describe potential energy as energy due to position and derive potential energy as mgh b. describe kinetic energy as energy
Spring Simple Harmonic Oscillator. Spring constant. Potential Energy stored in a Spring. Understanding oscillations. Understanding oscillations
Spring Simple Harmonic Oscillator Simple Harmonic Oscillations and Resonance We have an object attached to a spring. The object is on a horizontal frictionless surface. We move the object so the spring
SOLID MECHANICS TUTORIAL MECHANISMS KINEMATICS - VELOCITY AND ACCELERATION DIAGRAMS
SOLID MECHANICS TUTORIAL MECHANISMS KINEMATICS - VELOCITY AND ACCELERATION DIAGRAMS This work covers elements of the syllabus for the Engineering Council exams C105 Mechanical and Structural Engineering
R e t r o f i t o f t C i r u n i s g e C o n t r o l
R e t r o f i t o f t C i r u n i s g e C o n t r o l VB Sprinter D e s c r i p t i o n T h i s r e t r o f i t c o n s i s t s o f i n s t a l l i n g a c r u i s e c o n t r o l s wi t c h k i t i n
