Mechanics 1: Motion in a Central Force Field
|
|
|
- Emma Riley
- 9 years ago
- Views:
Transcription
1 Mechanics : Motion in a Cental Foce Field We now stud the popeties of a paticle of (constant) ass oving in a paticula tpe of foce field, a cental foce field. Cental foces ae ve ipotant in phsics and engineeing. Fo eaple, the gavitional foce of attaction between two point asses is a cental foce. The Coulob foce of attaction and epulsion between chaged paticles is a cental foce. Because of thei ipotance the deseve special consideation. We begin b giving a pecise definition of cental foce, o cental foce field. Cental Foces: The Definition. Suppose that a foce acting on a paticle of ass has the popeties that: the foce is alwas diected fo towad, o awa, fo a fied point O, the agnitude of the foce onl depends on the distance fo O. Foces having these popeties ae called cental foces. The paticle is said to ove in a cental foce field. The point O is efeed to as the cente of foce. Matheaticall, F is a cental foce if and onl if: F = f() = f(), () whee = is a unit vecto in the diection of. If f() < 0 the foce is said to be attactive towads O. If f() > 0 the foce is said to be epulsive fo O. We give a geoetical illustation in Fig.. z F=f() O Figue : Geoetical illustation of a cental foce. Popeties of a Paticle Moving unde the Influence of a Cental Foce. If a paticle oves in a cental foce field then the following popeties hold:. The path of the paticle ust be a plane cuve, i.e., it ust lie in a plane.. The angula oentu of the paticle is conseved, i.e., it is constant in tie. 3. The paticle oves in such a wa that the position vecto (fo the point O) sweeps out equal aeas in equal ties. In othe wods, the tie ate of change in aea is constant. This is efeed to as the Law of Aeas. We will descibe this in oe detail, and pove it, shotl.
2 Equations of Motion fo a Paticle in a Cental Foce Field. Now we will deive the basic equations of otion fo a paticle oving in a cental foce field. Fo Popet above, the otion of the paticle ust occu in a plane, which we take as the plane, and the cente of foce is taken as the oigin. In Fig. we show the plane, as well as the pola coodinate sste in the plane. θ j O θ i cosθ sinθ Figue : Pola coodinate sste associated with a paticle oving in the plane. Since the vectoial natue of the cental foce is epessed in tes of a adial vecto fo the oigin it is ost natual (though not equied!) to wite the equations of otion in pola coodinates. In ealie lectues we deived the epession fo the acceleation of a paticle in pola coodinates: a = ( θ ) + ( θ + ṙ θ)θ. () Then, using Newton s second law, and the atheatical fo fo the cental foce given in (), we have: o ( θ ) + ( θ + ṙ θ)θ = f(), (3) ( θ ) = f(), (4) ( θ + ṙ θ) = 0. (5) These ae the basic equations of otion fo a paticle in a cental foce field. The will be the stating point fo an of ou investigations. Fo these equations we can deive a useful constant of the otion. This is done as follows. Fo (5) we have: o ( θ + ṙ θ) = ( θ + ṙ θ) = d dt ( θ) = 0, θ = constant = h. (6) This is an inteesting elation that, we will see, is elated to popeties and 3 above. Howeve, one use fo it should be appaent. If ou know the coponent of the otion it allows ou to copute the θ coponent b integation. This is anothe eaple of how constants of the otion allow us to integate the equations of otion. It also eplain wh constants of the otion ae often efeed to as integals of the otion. Now, let us etun to popet 3 above and deive the Law of Aeas.
3 Suppose that in tie t the position vecto oves fo to +. Then the aea swept out b the position vecto in this tie is appoiatel half the aea of a paalleloga with sides and. We give a poof of this: Aea of paalleloga = height, = sin θ, =, see Fig. 3. z Ȧ = aeal velocit = _ ( v ) + Δ Aea = ΔA Q θ Δ P Figue 3: Hence, A =. Dividing this epession b t, and letting t 0, gives: A li t 0 t = li t 0 t = v, o Ȧ = v. Now we need to evaluate v. Using =, we have: Theefoe we have: v = (ṙ + θθ ) = ṙ( ) + θ( θ ) = θk. The vecto: θ = Ȧ = constant. (7) Ȧ = Ȧk = θk, is called the aeal velocit. 3
4 Altenative Fos to the Basic Equations of Motion fo a Paticle in a Cental Foce Field. Recall the basic equations of otion as the will be ou stating point: we deived the following constant of the otion: ( θ ) = f(), (8) ( θ + ṙ θ) = 0. (9) θ = h = constant. (0) This constant of the otion will allow ou to deteine the θ coponent of otion, povided ou know the coponent of otion. Howeve, (8) and (9) ae coupled (nonlinea) equations fo the and θ coponents of the otion. How could ou solve the without solving fo both the and θ coponents? This is whee altenative fos of the equations of otion ae useful. Let us ewite (8) in the following fo (b dividing though b the ass ): θ = f(). () Now, using (0), () can be witten entiel in tes of : h 3 = f(). () We can use () to solve fo (t), and the use (0) to solve fo θ(t). Equation () is a nonlinea diffeential equation. Thee is a useful change of vaiables, which fo cetain ipotant cental foces, tuns the equation into a linea diffeential equation with constant coefficients, and these can alwas be solved analticall. Hee we descibe this coodinate tansfoation. Let = u. This is pat of the coodinate tansfoation. We will also use θ as a new tie vaiable. Coodinate tansfoation ae effected b the chain ule, since this allows us to epess deivatives of old coodinates in tes of the new coodinates. We have: and ṙ = d dt = d dθ dθ dt = h d dθ = h d du du dθ = hdu dθ, (3) = dṙ dt = d ( h du ) = d ( h du ) dθ dt dθ dθ dθ dt = h u d u dθ, (4) whee, in both epessions, we have used the elation θ = h at stategic points. Now θ = h 4 = h u 3. (5) Substituting this elation, along with (4) into (8), gives: o ( ) h u d u dθ h u 3 = f ( ), u d u dθ + u = f ( u) h u. (6) Now if f() = K, whee K is soe constant, (6) becoes a linea, constant coefficient equation. 4
5 Cental Foce Fields ae Consevative. Now we will show that cental foces ae consevative foces. We alead know that thee ae an ipotant iplications that will follow fo this fact, such as consevation of total eneg. If a cental foce is consevative then the wok done b the foce in oving a paticle between two points is independent of the path taken between the two points, i.e., it onl depends on the endpoints of the path. In this case we ust have: F d = dv whee V is a scala valued function (the potential). Evaluating the left-hand-side of this epession gives: F d = f() d = f()d, whee we have used the elation d = d. Theefoe, fo which it follows that: dv = f()d, V = f()d. (7) Hence, if we know the cental foce field, (7) tells us how to copute the potential. Consevation of Eneg fo a Paticle in a Cental Foce Field. Since cental foces ae consevative foces, we know that total eneg ust be conseved. Now we deive epessions fo the total eneg of a paticle of ass in a cental foce field. We will do this in two was. Fist Method. Fist we copute the kinetic eneg. The velocit is given b: and theefoe: The kinetic eneg is given b: Theefoe we have: v = ṙ + θθ, v v = v = ṙ + θ. v + V = E. ( ) ṙ + θ f()d = E. (8) Second Method. The second ethod deals diectl with the equations of otion and ealizes the epession fo the total eneg as an integal of the equations of otion. We ultipl (4) b ṙ, ultipl (5) b θ, and add the esulting two equations to obtain: o, (ṙ + θ θ + ṙ θ ) = f()ṙ = ṙ d d f()d = d d dt d d ( ) ṙ + θ = d dt dt f()d. Integating both sides of this equation with espect to tie gives: ( ) ṙ + θ f()d = E = constant. f()d = d dt f()d, You can deive this elation b noting that =, and then coputing the diffeential of this equalit. 5
Mechanics 1: Work, Power and Kinetic Energy
Mechanics 1: Wok, Powe and Kinetic Eneg We fist intoduce the ideas of wok and powe. The notion of wok can be viewed as the bidge between Newton s second law, and eneg (which we have et to define and discuss).
2 r2 θ = r2 t. (3.59) The equal area law is the statement that the term in parentheses,
3.4. KEPLER S LAWS 145 3.4 Keple s laws You ae familia with the idea that one can solve some mechanics poblems using only consevation of enegy and (linea) momentum. Thus, some of what we see as objects
Physics 235 Chapter 5. Chapter 5 Gravitation
Chapte 5 Gavitation In this Chapte we will eview the popeties of the gavitational foce. The gavitational foce has been discussed in geat detail in you intoductoy physics couses, and we will pimaily focus
12. Rolling, Torque, and Angular Momentum
12. olling, Toque, and Angula Momentum 1 olling Motion: A motion that is a combination of otational and tanslational motion, e.g. a wheel olling down the oad. Will only conside olling with out slipping.
Gravitation and Kepler s Laws Newton s Law of Universal Gravitation in vectorial. Gm 1 m 2. r 2
F Gm Gavitation and Keple s Laws Newton s Law of Univesal Gavitation in vectoial fom: F 12 21 Gm 1 m 2 12 2 ˆ 12 whee the hat (ˆ) denotes a unit vecto as usual. Gavity obeys the supeposition pinciple,
2. TRIGONOMETRIC FUNCTIONS OF GENERAL ANGLES
. TRIGONOMETRIC FUNCTIONS OF GENERAL ANGLES In ode to etend the definitions of the si tigonometic functions to geneal angles, we shall make use of the following ideas: In a Catesian coodinate sstem, an
Vector Calculus: Are you ready? Vectors in 2D and 3D Space: Review
Vecto Calculus: Ae you eady? Vectos in D and 3D Space: Review Pupose: Make cetain that you can define, and use in context, vecto tems, concepts and fomulas listed below: Section 7.-7. find the vecto defined
Chapter 22. Outside a uniformly charged sphere, the field looks like that of a point charge at the center of the sphere.
Chapte.3 What is the magnitude of a point chage whose electic field 5 cm away has the magnitude of.n/c. E E 5.56 1 11 C.5 An atom of plutonium-39 has a nuclea adius of 6.64 fm and atomic numbe Z94. Assuming
Solution Derivations for Capa #8
Solution Deivations fo Capa #8 1) A ass spectoete applies a voltage of 2.00 kv to acceleate a singly chaged ion (+e). A 0.400 T field then bends the ion into a cicula path of adius 0.305. What is the ass
UNIT CIRCLE TRIGONOMETRY
UNIT CIRCLE TRIGONOMETRY The Unit Cicle is the cicle centeed at the oigin with adius unit (hence, the unit cicle. The equation of this cicle is + =. A diagam of the unit cicle is shown below: + = - - -
Coordinate Systems L. M. Kalnins, March 2009
Coodinate Sstems L. M. Kalnins, Mach 2009 Pupose of a Coodinate Sstem The pupose of a coodinate sstem is to uniquel detemine the position of an object o data point in space. B space we ma liteall mean
FXA 2008. Candidates should be able to : Describe how a mass creates a gravitational field in the space around it.
Candidates should be able to : Descibe how a mass ceates a gavitational field in the space aound it. Define gavitational field stength as foce pe unit mass. Define and use the peiod of an object descibing
Chapter 3 Savings, Present Value and Ricardian Equivalence
Chapte 3 Savings, Pesent Value and Ricadian Equivalence Chapte Oveview In the pevious chapte we studied the decision of households to supply hous to the labo maket. This decision was a static decision,
Gravitation. AP Physics C
Gavitation AP Physics C Newton s Law of Gavitation What causes YOU to be pulled down? THE EARTH.o moe specifically the EARTH S MASS. Anything that has MASS has a gavitational pull towads it. F α Mm g What
The Role of Gravity in Orbital Motion
! The Role of Gavity in Obital Motion Pat of: Inquiy Science with Datmouth Developed by: Chistophe Caoll, Depatment of Physics & Astonomy, Datmouth College Adapted fom: How Gavity Affects Obits (Ohio State
Moment and couple. In 3-D, because the determination of the distance can be tedious, a vector approach becomes advantageous. r r
Moment and couple In 3-D, because the detemination of the distance can be tedious, a vecto appoach becomes advantageous. o k j i M k j i M o ) ( ) ( ) ( + + M o M + + + + M M + O A Moment about an abita
Chapter 17 The Kepler Problem: Planetary Mechanics and the Bohr Atom
Chapte 7 The Keple Poblem: Planetay Mechanics and the Boh Atom Keple s Laws: Each planet moves in an ellipse with the sun at one focus. The adius vecto fom the sun to a planet sweeps out equal aeas in
The force between electric charges. Comparing gravity and the interaction between charges. Coulomb s Law. Forces between two charges
The foce between electic chages Coulomb s Law Two chaged objects, of chage q and Q, sepaated by a distance, exet a foce on one anothe. The magnitude of this foce is given by: kqq Coulomb s Law: F whee
Chapter 30: Magnetic Fields Due to Currents
d Chapte 3: Magnetic Field Due to Cuent A moving electic chage ceate a magnetic field. One of the moe pactical way of geneating a lage magnetic field (.1-1 T) i to ue a lage cuent flowing though a wie.
PY1052 Problem Set 8 Autumn 2004 Solutions
PY052 Poblem Set 8 Autumn 2004 Solutions H h () A solid ball stats fom est at the uppe end of the tack shown and olls without slipping until it olls off the ight-hand end. If H 6.0 m and h 2.0 m, what
Deflection of Electrons by Electric and Magnetic Fields
Physics 233 Expeiment 42 Deflection of Electons by Electic and Magnetic Fields Refeences Loain, P. and D.R. Coson, Electomagnetism, Pinciples and Applications, 2nd ed., W.H. Feeman, 199. Intoduction An
Displacement, Velocity And Acceleration
Displacement, Velocity And Acceleation Vectos and Scalas Position Vectos Displacement Speed and Velocity Acceleation Complete Motion Diagams Outline Scala vs. Vecto Scalas vs. vectos Scala : a eal numbe,
Lesson 8 Ampère s Law and Differential Operators
Lesson 8 Ampèe s Law and Diffeential Opeatos Lawence Rees 7 You ma make a single cop of this document fo pesonal use without witten pemission 8 Intoduction Thee ae significant diffeences between the electic
Analytical Proof of Newton's Force Laws
Analytical Poof of Newton s Foce Laws Page 1 1 Intouction Analytical Poof of Newton's Foce Laws Many stuents intuitively assume that Newton's inetial an gavitational foce laws, F = ma an Mm F = G, ae tue
Carter-Penrose diagrams and black holes
Cate-Penose diagams and black holes Ewa Felinska The basic intoduction to the method of building Penose diagams has been pesented, stating with obtaining a Penose diagam fom Minkowski space. An example
PHYSICS 111 HOMEWORK SOLUTION #13. May 1, 2013
PHYSICS 111 HOMEWORK SOLUTION #13 May 1, 2013 0.1 In intoductoy physics laboatoies, a typical Cavendish balance fo measuing the gavitational constant G uses lead sphees with masses of 2.10 kg and 21.0
Fluids Lecture 15 Notes
Fluids Lectue 15 Notes 1. Unifom flow, Souces, Sinks, Doublets Reading: Andeson 3.9 3.12 Unifom Flow Definition A unifom flow consists of a velocit field whee V = uî + vĵ is a constant. In 2-D, this velocit
PAN STABILITY TESTING OF DC CIRCUITS USING VARIATIONAL METHODS XVIII - SPETO - 1995. pod patronatem. Summary
PCE SEMINIUM Z PODSTW ELEKTOTECHNIKI I TEOII OBWODÓW 8 - TH SEMIN ON FUNDMENTLS OF ELECTOTECHNICS ND CICUIT THEOY ZDENĚK BIOLEK SPŠE OŽNO P.., CZECH EPUBLIC DLIBO BIOLEK MILITY CDEMY, BNO, CZECH EPUBLIC
CHAPTER 5 GRAVITATIONAL FIELD AND POTENTIAL
CHATER 5 GRAVITATIONAL FIELD AND OTENTIAL 5. Intoduction. This chapte deals with the calculation of gavitational fields and potentials in the vicinity of vaious shapes and sizes of massive bodies. The
NURBS Drawing Week 5, Lecture 10
CS 43/585 Compute Gaphics I NURBS Dawing Week 5, Lectue 1 David Been, William Regli and Maim Pesakhov Geometic and Intelligent Computing Laboato Depatment of Compute Science Deel Univesit http://gicl.cs.deel.edu
Voltage ( = Electric Potential )
V-1 of 9 Voltage ( = lectic Potential ) An electic chage altes the space aound it. Thoughout the space aound evey chage is a vecto thing called the electic field. Also filling the space aound evey chage
10. Collisions. Before During After
10. Collisions Use conseation of momentum and enegy and the cente of mass to undestand collisions between two objects. Duing a collision, two o moe objects exet a foce on one anothe fo a shot time: -F(t)
Exam 3: Equation Summary
MASSACHUSETTS INSTITUTE OF TECHNOLOGY Depatment of Physics Physics 8.1 TEAL Fall Tem 4 Momentum: p = mv, F t = p, Fext ave t= t f t= Exam 3: Equation Summay total = Impulse: I F( t ) = p Toque: τ = S S,P
Chapter 19: Electric Charges, Forces, and Fields ( ) ( 6 )( 6
Chapte 9 lectic Chages, Foces, an Fiels 6 9. One in a million (0 ) ogen molecules in a containe has lost an electon. We assume that the lost electons have been emove fom the gas altogethe. Fin the numbe
Gauss Law. Physics 231 Lecture 2-1
Gauss Law Physics 31 Lectue -1 lectic Field Lines The numbe of field lines, also known as lines of foce, ae elated to stength of the electic field Moe appopiately it is the numbe of field lines cossing
Classical Mechanics (CM):
Classical Mechanics (CM): We ought to have some backgound to aeciate that QM eally does just use CM and makes one slight modification that then changes the natue of the oblem we need to solve but much
9.5 Amortization. Objectives
9.5 Aotization Objectives 1. Calculate the payent to pay off an aotized loan. 2. Constuct an aotization schedule. 3. Find the pesent value of an annuity. 4. Calculate the unpaid balance on a loan. Congatulations!
(a) The centripetal acceleration of a point on the equator of the Earth is given by v2. The velocity of the earth can be found by taking the ratio of
Homewok VI Ch. 7 - Poblems 15, 19, 22, 25, 35, 43, 51. Poblem 15 (a) The centipetal acceleation of a point on the equato of the Eath is given by v2. The velocity of the eath can be found by taking the
Magnetic Field and Magnetic Forces. Young and Freedman Chapter 27
Magnetic Field and Magnetic Foces Young and Feedman Chapte 27 Intoduction Reiew - electic fields 1) A chage (o collection of chages) poduces an electic field in the space aound it. 2) The electic field
TORQUE AND ANGULAR MOMENTUM IN CIRCULAR MOTION
MISN-0-34 TORQUE AND ANGULAR MOMENTUM IN CIRCULAR MOTION shaft TORQUE AND ANGULAR MOMENTUM IN CIRCULAR MOTION by Kiby Mogan, Chalotte, Michigan 1. Intoduction..............................................
Multiple choice questions [60 points]
1 Multiple choice questions [60 points] Answe all o the ollowing questions. Read each question caeully. Fill the coect bubble on you scanton sheet. Each question has exactly one coect answe. All questions
Multiple choice questions [70 points]
Multiple choice questions [70 points] Answe all of the following questions. Read each question caefull. Fill the coect bubble on ou scanton sheet. Each question has exactl one coect answe. All questions
Worked Examples. v max =?
Exaple iction + Unifo Cicula Motion Cicula Hill A ca i diing oe a ei-cicula hill of adiu. What i the fatet the ca can die oe the top of the hill without it tie lifting off of the gound? ax? (1) Copehend
Uniform Rectilinear Motion
Engineeing Mechanics : Dynamics Unifom Rectilinea Motion Fo paticle in unifom ectilinea motion, the acceleation is zeo and the elocity is constant. d d t constant t t 11-1 Engineeing Mechanics : Dynamics
CHAPTER 9 THE TWO BODY PROBLEM IN TWO DIMENSIONS
9. Intoduction CHAPTER 9 THE TWO BODY PROBLEM IN TWO DIMENSIONS In this chapte we show how Keple s laws can be deived fom Newton s laws of motion and gavitation, and consevation of angula momentum, and
Chapter 4: Fluid Kinematics
Oveview Fluid kinematics deals with the motion of fluids without consideing the foces and moments which ceate the motion. Items discussed in this Chapte. Mateial deivative and its elationship to Lagangian
Pearson Physics Level 30 Unit VI Forces and Fields: Chapter 10 Solutions
Peason Physics Level 30 Unit VI Foces and Fields: hapte 10 Solutions Student Book page 518 oncept heck 1. It is easie fo ebonite to eove electons fo fu than fo silk.. Ebonite acquies a negative chage when
Voltage ( = Electric Potential )
V-1 Voltage ( = Electic Potential ) An electic chage altes the space aound it. Thoughout the space aound evey chage is a vecto thing called the electic field. Also filling the space aound evey chage is
Charges, Coulomb s Law, and Electric Fields
Q&E -1 Chages, Coulomb s Law, and Electic ields Some expeimental facts: Expeimental fact 1: Electic chage comes in two types, which we call (+) and ( ). An atom consists of a heavy (+) chaged nucleus suounded
Chapter 2. Electrostatics
Chapte. Electostatics.. The Electostatic Field To calculate the foce exeted by some electic chages,,, 3,... (the souce chages) on anothe chage Q (the test chage) we can use the pinciple of supeposition.
An Introduction to Omega
An Intoduction to Omega Con Keating and William F. Shadwick These distibutions have the same mean and vaiance. Ae you indiffeent to thei isk-ewad chaacteistics? The Finance Development Cente 2002 1 Fom
Symmetric polynomials and partitions Eugene Mukhin
Symmetic polynomials and patitions Eugene Mukhin. Symmetic polynomials.. Definition. We will conside polynomials in n vaiables x,..., x n and use the shotcut p(x) instead of p(x,..., x n ). A pemutation
Skills Needed for Success in Calculus 1
Skills Needed fo Success in Calculus Thee is much appehension fom students taking Calculus. It seems that fo man people, "Calculus" is snonmous with "difficult." Howeve, an teache of Calculus will tell
1240 ev nm 2.5 ev. (4) r 2 or mv 2 = ke2
Chapte 5 Example The helium atom has 2 electonic enegy levels: E 3p = 23.1 ev and E 2s = 20.6 ev whee the gound state is E = 0. If an electon makes a tansition fom 3p to 2s, what is the wavelength of the
The Electric Potential, Electric Potential Energy and Energy Conservation. V = U/q 0. V = U/q 0 = -W/q 0 1V [Volt] =1 Nm/C
Geneal Physics - PH Winte 6 Bjoen Seipel The Electic Potential, Electic Potential Enegy and Enegy Consevation Electic Potential Enegy U is the enegy of a chaged object in an extenal electic field (Unit
Lesson 7 Gauss s Law and Electric Fields
Lesson 7 Gauss s Law and Electic Fields Lawence B. Rees 7. You may make a single copy of this document fo pesonal use without witten pemission. 7. Intoduction While it is impotant to gain a solid conceptual
Graphs of Equations. A coordinate system is a way to graphically show the relationship between 2 quantities.
Gaphs of Equations CHAT Pe-Calculus A coodinate sstem is a wa to gaphicall show the elationship between quantities. Definition: A solution of an equation in two vaiables and is an odeed pai (a, b) such
Model Question Paper Mathematics Class XII
Model Question Pape Mathematics Class XII Time Allowed : 3 hous Maks: 100 Ma: Geneal Instuctions (i) The question pape consists of thee pats A, B and C. Each question of each pat is compulsoy. (ii) Pat
Newton s Law of Universal Gravitation and the Scale Principle
Newton s Law of Univesal avitation and the ale iniple RODOLO A. RINO July 0 Eletonis Enginee Degee fo the National Univesity of Ma del lata - Agentina ([email protected]) Ealie this yea I wote a pape
Forces & Magnetic Dipoles. r r τ = μ B r
Foces & Magnetic Dipoles x θ F θ F. = AI τ = U = Fist electic moto invented by Faaday, 1821 Wie with cuent flow (in cup of Hg) otates aound a a magnet Faaday s moto Wie with cuent otates aound a Pemanent
Structure and evolution of circumstellar disks during the early phase of accretion from a parent cloud
Cente fo Tubulence Reseach Annual Reseach Biefs 2001 209 Stuctue and evolution of cicumstella disks duing the ealy phase of accetion fom a paent cloud By Olusola C. Idowu 1. Motivation and Backgound The
Summary: Vectors. This theorem is used to find any points (or position vectors) on a given line (direction vector). Two ways RT can be applied:
Summ: Vectos ) Rtio Theoem (RT) This theoem is used to find n points (o position vectos) on given line (diection vecto). Two ws RT cn e pplied: Cse : If the point lies BETWEEN two known position vectos
The LCOE is defined as the energy price ($ per unit of energy output) for which the Net Present Value of the investment is zero.
Poject Decision Metics: Levelized Cost of Enegy (LCOE) Let s etun to ou wind powe and natual gas powe plant example fom ealie in this lesson. Suppose that both powe plants wee selling electicity into the
STUDENT RESPONSE TO ANNUITY FORMULA DERIVATION
Page 1 STUDENT RESPONSE TO ANNUITY FORMULA DERIVATION C. Alan Blaylock, Hendeson State Univesity ABSTRACT This pape pesents an intuitive appoach to deiving annuity fomulas fo classoom use and attempts
Episode 401: Newton s law of universal gravitation
Episode 401: Newton s law of univesal gavitation This episode intoduces Newton s law of univesal gavitation fo point masses, and fo spheical masses, and gets students pactising calculations of the foce
Lab #7: Energy Conservation
Lab #7: Enegy Consevation Photo by Kallin http://www.bungeezone.com/pics/kallin.shtml Reading Assignment: Chapte 7 Sections 1,, 3, 5, 6 Chapte 8 Sections 1-4 Intoduction: Pehaps one of the most unusual
Semipartial (Part) and Partial Correlation
Semipatial (Pat) and Patial Coelation his discussion boows heavily fom Applied Multiple egession/coelation Analysis fo the Behavioal Sciences, by Jacob and Paticia Cohen (975 edition; thee is also an updated
Spirotechnics! September 7, 2011. Amanda Zeringue, Michael Spannuth and Amanda Zeringue Dierential Geometry Project
Spiotechnics! Septembe 7, 2011 Amanda Zeingue, Michael Spannuth and Amanda Zeingue Dieential Geomety Poject 1 The Beginning The geneal consensus of ou goup began with one thought: Spiogaphs ae awesome.
Introduction to Fluid Mechanics
Chapte 1 1 1.6. Solved Examples Example 1.1 Dimensions and Units A body weighs 1 Ibf when exposed to a standad eath gavity g = 3.174 ft/s. (a) What is its mass in kg? (b) What will the weight of this body
Relativistic Quantum Mechanics
Chapte Relativistic Quantum Mechanics In this Chapte we will addess the issue that the laws of physics must be fomulated in a fom which is Loentz invaiant, i.e., the desciption should not allow one to
Phys101 Lectures 14, 15, 16 Momentum and Collisions
Phs0 Lectures 4, 5, 6 Moentu and ollisions Ke points: Moentu and ipulse ondition for conservation of oentu and wh How to solve collision probles entre of ass Ref: 9-,,3,4,5,6,7,8,9. Page Moentu is a vector:
Comparing Availability of Various Rack Power Redundancy Configurations
Compaing Availability of Vaious Rack Powe Redundancy Configuations By Victo Avela White Pape #48 Executive Summay Tansfe switches and dual-path powe distibution to IT equipment ae used to enhance the availability
Lecture 16: Color and Intensity. and he made him a coat of many colours. Genesis 37:3
Lectue 16: Colo and Intensity and he made him a coat of many colous. Genesis 37:3 1. Intoduction To display a pictue using Compute Gaphics, we need to compute the colo and intensity of the light at each
4a 4ab b 4 2 4 2 5 5 16 40 25. 5.6 10 6 (count number of places from first non-zero digit to
. Simplify: 0 4 ( 8) 0 64 ( 8) 0 ( 8) = (Ode of opeations fom left to ight: Paenthesis, Exponents, Multiplication, Division, Addition Subtaction). Simplify: (a 4) + (a ) (a+) = a 4 + a 0 a = a 7. Evaluate
Problem Set # 9 Solutions
Poblem Set # 9 Solutions Chapte 12 #2 a. The invention of the new high-speed chip inceases investment demand, which shifts the cuve out. That is, at evey inteest ate, fims want to invest moe. The incease
Figure 2. So it is very likely that the Babylonians attributed 60 units to each side of the hexagon. Its resulting perimeter would then be 360!
1. What ae angles? Last time, we looked at how the Geeks intepeted measument of lengths. Howeve, as fascinated as they wee with geomety, thee was a shape that was much moe enticing than any othe : the
PHYSICS 151 Notes for Online Lecture 2.2
PHYSICS 151 otes for Online Lecture. A free-bod diagra is a wa to represent all of the forces that act on a bod. A free-bod diagra akes solving ewton s second law for a given situation easier, because
Chapter 2 Coulomb s Law
Chapte Coulomb s Law.1 lectic Chage...-3. Coulomb's Law...-3 Animation.1: Van de Gaaff Geneato...-4.3 Pinciple of Supeposition...-5 xample.1: Thee Chages...-5.4 lectic Field...-7 Animation.: lectic Field
MULTIPLE SOLUTIONS OF THE PRESCRIBED MEAN CURVATURE EQUATION
MULTIPLE SOLUTIONS OF THE PRESCRIBED MEAN CURVATURE EQUATION K.C. CHANG AND TAN ZHANG In memoy of Pofesso S.S. Chen Abstact. We combine heat flow method with Mose theoy, supe- and subsolution method with
Techniques for Robotic Force Sensor Calibration
echniques fo Robotic Foce Senso Calibation D. Baun Institute fo Pocess Contol and Robotics Kalsuhe Institute fo echnolog (KI) Kalsuhe, Gean e-ail: [email protected] H. Wön Institute fo Pocess Contol
Chapter 4: Fluid Kinematics
4-1 Lagangian g and Euleian Desciptions 4-2 Fundamentals of Flow Visualization 4-3 Kinematic Desciption 4-4 Reynolds Tanspot Theoem (RTT) 4-1 Lagangian and Euleian Desciptions (1) Lagangian desciption
CHAPTER 10 Aggregate Demand I
CHAPTR 10 Aggegate Demand I Questions fo Review 1. The Keynesian coss tells us that fiscal policy has a multiplied effect on income. The eason is that accoding to the consumption function, highe income
Risk Sensitive Portfolio Management With Cox-Ingersoll-Ross Interest Rates: the HJB Equation
Risk Sensitive Potfolio Management With Cox-Ingesoll-Ross Inteest Rates: the HJB Equation Tomasz R. Bielecki Depatment of Mathematics, The Notheasten Illinois Univesity 55 Noth St. Louis Avenue, Chicago,
Channel selection in e-commerce age: A strategic analysis of co-op advertising models
Jounal of Industial Engineeing and Management JIEM, 013 6(1):89-103 Online ISSN: 013-0953 Pint ISSN: 013-843 http://dx.doi.og/10.396/jiem.664 Channel selection in e-commece age: A stategic analysis of
7 Circular Motion. 7-1 Centripetal Acceleration and Force. Period, Frequency, and Speed. Vocabulary
7 Cicula Motion 7-1 Centipetal Acceleation and Foce Peiod, Fequency, and Speed Vocabulay Vocabulay Peiod: he time it takes fo one full otation o evolution of an object. Fequency: he numbe of otations o
F G r. Don't confuse G with g: "Big G" and "little g" are totally different things.
G-1 Gavity Newton's Univesal Law of Gavitation (fist stated by Newton): any two masses m 1 and m exet an attactive gavitational foce on each othe accoding to m m G 1 This applies to all masses, not just
Lab M4: The Torsional Pendulum and Moment of Inertia
M4.1 Lab M4: The Tosional Pendulum and Moment of netia ntoduction A tosional pendulum, o tosional oscillato, consists of a disk-like mass suspended fom a thin od o wie. When the mass is twisted about the
Continuous Compounding and Annualization
Continuous Compounding and Annualization Philip A. Viton Januay 11, 2006 Contents 1 Intoduction 1 2 Continuous Compounding 2 3 Pesent Value with Continuous Compounding 4 4 Annualization 5 5 A Special Poblem
How To Find The Optimal Stategy For Buying Life Insuance
Life Insuance Puchasing to Reach a Bequest Ehan Bayakta Depatment of Mathematics, Univesity of Michigan Ann Abo, Michigan, USA, 48109 S. David Pomislow Depatment of Mathematics, Yok Univesity Toonto, Ontaio,
The Binomial Distribution
The Binomial Distibution A. It would be vey tedious if, evey time we had a slightly diffeent poblem, we had to detemine the pobability distibutions fom scatch. Luckily, thee ae enough similaities between
Lecture L9 - Linear Impulse and Momentum. Collisions
J. Peraire, S. Widnall 16.07 Dynaics Fall 009 Version.0 Lecture L9 - Linear Ipulse and Moentu. Collisions In this lecture, we will consider the equations that result fro integrating Newton s second law,
The Detection of Obstacles Using Features by the Horizon View Camera
The Detection of Obstacles Using Featues b the Hoizon View Camea Aami Iwata, Kunihito Kato, Kazuhiko Yamamoto Depatment of Infomation Science, Facult of Engineeing, Gifu Univesit [email protected]
Products of the Second Pillar Pension
Óbuda Univesity e-bulletin Vol. 4, No. 1, 2014 Poducts of the Second Pilla Pension Jana Špiková Depatent of Quantitative Methods and Infoation Systes, Faculty of Econoics, Matej Bel Univesity Tajovského
(Ch. 22.5) 2. What is the magnitude (in pc) of a point charge whose electric field 50 cm away has a magnitude of 2V/m?
Em I Solutions PHY049 Summe 0 (Ch..5). Two smll, positively chged sphees hve combined chge of 50 μc. If ech sphee is epelled fom the othe by n electosttic foce of N when the sphees e.0 m pt, wht is the
