CSSE463: Image Recognition Day 27
|
|
|
- Rebecca Patterson
- 10 years ago
- Views:
Transcription
1 CSSE463: Image Recogto Da 27 Ths week Toda: Alcatos of PCA Suda ght: roject las ad relm work due Questos?
2 Prcal Comoets Aalss weght grth c ( )( ) ( )( ( )( ) ) heght sze Gve a set of samles, fd the drecto(s) of greatest varace. We ve doe ths! Eamle: Satal momets Prcal aes are egevectors of covarace matr Egevalues gave relatve mortace of each dmeso Note that each ot ca be rereseted 2D usg the ew coordate sstem defed b the egevectors The D reresetato obtaed b rojectg the ot oto the rcal as s a reasoabl-good aromato
3 Covarace Matr (usg matr oeratos) Place the ots ther ow colum. Fd the mea of each row. Subtract t. Multl N * N T You wll get a 22 matr, whch each etr s a summato over all ots. You could the dvde b c ) )( ( ) )( ( ) )( ( F N Q
4 Geerc rocess The covarace matr of a set of data gves the was whch the set vares. The egevectors corresodg to the largest egevalues gve the drectos whch t vares most. Two alcatos Egefaces Tme-elased hotograh
5 Egefaces Questo: what are the rmar was whch faces var? What haes whe we al PCA? For each face, create a colum vector that cotas the test of all the els from that face Ths s a ot a hgh dmesoal sace (e.g., for a el mage) Create a matr F of all M faces the trag set. Subtract off the average face, m, to get N Comute the rc rc covarace matr C = N*N T. F, 2, 3, rc,,2 2,2 3,2 rc,2,3 2,3 3,3 rc,3, M 2, M 3, M rc, M M. Turk ad A. Petlad, Egefaces for Recogto, J Cog Neurosc, 3()
6 Questo: what are the rmar was whch faces var? What haes whe we al PCA? The egevectors are the drectos of greatest varablt Note that these are D; thus form a face. Ths s a egeface Here are the frst 4 from the ORL face dataset. Egefaces Q2-3
7 Questo: what are the rmar was whch faces var? What haes whe we al PCA? The egevectors are the drectos of greatest varablt Note that these are D; thus form a face. Ths s a egeface Here are the frst 4 from the ORL face dataset. Egefaces htt://uload.wkmeda.org/wkeda/commos/6/67/egefaces.g; from the ORL face database, AT&T Laboratores Cambrdge Q2-3
8 Iterlude: Projectg ots oto les weght grth sze We ca roject each ot oto the rcal as. How? heght
9 Iterlude: Projectg a ot oto a le Assumg the as s rereseted b a ut vector u, we ca just take the dot-roduct of the ot ad the vector. u* = u T (whch s D) Eamle: Project (5,2) oto le =. If we wat to roject oto two vectors, u ad v smultaeousl: Create w = [u v], the comute w T, whch s 2D. Result: s ow terms of u ad v. Ths geeralzes to arbtrar dmesos. Q4
10 Alcato: Face detecto If we wat to roject a ot oto two vectors, u ad v smultaeousl: Create w = [u v], the comute w T, whch s 2D. Result: s ow terms of u ad v. I arbtrar dmesos, stll take the dot roduct wth egevectors! You ca rereset a face terms of ts egefaces; t s just a dfferet bass. The M most mortat egevectors cature most of the varablt: Igore the rest! Istead of 65k dmesos, we ol have M (~50 ractce) Call these 50 dmesos face-sace
11 Egefaces Questo: what are the rmar was whch faces var? What haes whe we al PCA? Kee ol the to M egefaces for face sace. We ca roject a face oto these egevectors. Thus, a face s a lear combato of the egefaces. Ca classf faces ths lower-d sace. There are comutatoal trcks to make the comutato feasble
12 Tme-elased hotograh Questo: what are the was that outdoor mages var over tme? Form a matr whch each colum s a mage Fd egs of covarace matr See eamle mages o Dr. B s lato or at the lk below. N Jacobs, N Roma, R Pless, Cosstet Temoral Varatos Ma Outdoor Scees. IEEE Comuter Vso ad Patter Recogto, Meaols, MN, Jue 2007.
13 Tme-elased hotograh Questo: what are the was that outdoor mages var over tme? The mea ad to 3 egevectors (scaled): Iterretato? N Jacobs, N Roma, R Pless, Cosstet Temoral Varatos Ma Outdoor Scees. IEEE Comuter Vso ad Patter Recogto, Meaols, MN, Jue Q5-6
14 Tme-elased hotograh Recall that each mage the dataset s a lear combato of the egemages. mea PC PC2 PC3 = + 492* - 27* +393* = * + 308* +885* N Jacobs, N Roma, R Pless, Cosstet Temoral Varatos Ma Outdoor Scees. IEEE Comuter Vso ad Patter Recogto, Meaols, MN, Jue 2007.
15 Tme-elased hotograh Ever mage s rojecto oto the frst egevector N Jacobs, N Roma, R Pless, Cosstet Temoral Varatos Ma Outdoor Scees. IEEE Comuter Vso ad Patter Recogto, Meaols, MN, Jue 2007.
16 Research dea Doe: Fdg the PCs Usg to detect lattude ad logtude gve mages from camera Yet to do: Classfg mages based o ther rojecto to ths sace, as was doe for egefaces
STATISTICAL PROPERTIES OF LEAST SQUARES ESTIMATORS. x, where. = y - ˆ " 1
STATISTICAL PROPERTIES OF LEAST SQUARES ESTIMATORS Recall Assumpto E(Y x) η 0 + η x (lear codtoal mea fucto) Data (x, y ), (x 2, y 2 ),, (x, y ) Least squares estmator ˆ E (Y x) ˆ " 0 + ˆ " x, where ˆ
ANOVA Notes Page 1. Analysis of Variance for a One-Way Classification of Data
ANOVA Notes Page Aalss of Varace for a Oe-Wa Classfcato of Data Cosder a sgle factor or treatmet doe at levels (e, there are,, 3, dfferet varatos o the prescrbed treatmet) Wth a gve treatmet level there
Simple Linear Regression
Smple Lear Regresso Regresso equato a equato that descrbes the average relatoshp betwee a respose (depedet) ad a eplaator (depedet) varable. 6 8 Slope-tercept equato for a le m b (,6) slope. (,) 6 6 8
MDM 4U PRACTICE EXAMINATION
MDM 4U RCTICE EXMINTION Ths s a ractce eam. It does ot cover all the materal ths course ad should ot be the oly revew that you do rearato for your fal eam. Your eam may cota questos that do ot aear o ths
Robust Realtime Face Recognition And Tracking System
JCS& Vol. 9 No. October 9 Robust Realtme Face Recogto Ad rackg System Ka Che,Le Ju Zhao East Cha Uversty of Scece ad echology Emal:[email protected] Abstract here s some very mportat meag the study of realtme
Preprocess a planar map S. Given a query point p, report the face of S containing p. Goal: O(n)-size data structure that enables O(log n) query time.
Computatoal Geometry Chapter 6 Pot Locato 1 Problem Defto Preprocess a plaar map S. Gve a query pot p, report the face of S cotag p. S Goal: O()-sze data structure that eables O(log ) query tme. C p E
6.7 Network analysis. 6.7.1 Introduction. References - Network analysis. Topological analysis
6.7 Network aalyss Le data that explctly store topologcal formato are called etwork data. Besdes spatal operatos, several methods of spatal aalyss are applcable to etwork data. Fgure: Network data Refereces
Chapter Eight. f : R R
Chapter Eght f : R R 8. Itroducto We shall ow tur our atteto to the very mportat specal case of fuctos that are real, or scalar, valued. These are sometmes called scalar felds. I the very, but mportat,
How To Value An Annuity
Future Value of a Auty After payg all your blls, you have $200 left each payday (at the ed of each moth) that you wll put to savgs order to save up a dow paymet for a house. If you vest ths moey at 5%
Average Price Ratios
Average Prce Ratos Morgstar Methodology Paper August 3, 2005 2005 Morgstar, Ic. All rghts reserved. The formato ths documet s the property of Morgstar, Ic. Reproducto or trascrpto by ay meas, whole or
The simple linear Regression Model
The smple lear Regresso Model Correlato coeffcet s o-parametrc ad just dcates that two varables are assocated wth oe aother, but t does ot gve a deas of the kd of relatoshp. Regresso models help vestgatg
Numerical Methods with MS Excel
TMME, vol4, o.1, p.84 Numercal Methods wth MS Excel M. El-Gebely & B. Yushau 1 Departmet of Mathematcal Sceces Kg Fahd Uversty of Petroleum & Merals. Dhahra, Saud Araba. Abstract: I ths ote we show how
Lecture 7. Norms and Condition Numbers
Lecture 7 Norms ad Codto Numbers To dscuss the errors umerca probems vovg vectors, t s usefu to empo orms. Vector Norm O a vector space V, a orm s a fucto from V to the set of o-egatve reas that obes three
FINANCIAL MATHEMATICS 12 MARCH 2014
FINNCIL MTHEMTICS 12 MRCH 2014 I ths lesso we: Lesso Descrpto Make use of logarthms to calculate the value of, the tme perod, the equato P1 or P1. Solve problems volvg preset value ad future value autes.
IDENTIFICATION OF THE DYNAMICS OF THE GOOGLE S RANKING ALGORITHM. A. Khaki Sedigh, Mehdi Roudaki
IDENIFICAION OF HE DYNAMICS OF HE GOOGLE S RANKING ALGORIHM A. Khak Sedgh, Mehd Roudak Cotrol Dvso, Departmet of Electrcal Egeerg, K.N.oos Uversty of echology P. O. Box: 16315-1355, ehra, Ira [email protected],
Geometric Motion Planning and Formation Optimization for a Fleet of Nonholonomic Wheeled Mobile Robots
Proceedgs of the 4 IEEE Iteratoal Coferece o Robotcs & Automato New Orleas, LA Arl 4 Geometrc oto Plag ad Formato Otmzato for a Fleet of Noholoomc Wheeled oble Robots Rajakumar Bhatt echacal & Aerosace
OPTIMAL KNOWLEDGE FLOW ON THE INTERNET
İstabul Tcaret Üverstes Fe Blmler Dergs Yıl: 5 Sayı:0 Güz 006/ s. - OPTIMAL KNOWLEDGE FLOW ON THE INTERNET Bura ORDİN *, Urfat NURİYEV ** ABSTRACT The flow roblem ad the mmum sag tree roblem are both fudametal
10.5 Future Value and Present Value of a General Annuity Due
Chapter 10 Autes 371 5. Thomas leases a car worth $4,000 at.99% compouded mothly. He agrees to make 36 lease paymets of $330 each at the begg of every moth. What s the buyout prce (resdual value of the
Abraham Zaks. Technion I.I.T. Haifa ISRAEL. and. University of Haifa, Haifa ISRAEL. Abstract
Preset Value of Autes Uder Radom Rates of Iterest By Abraham Zas Techo I.I.T. Hafa ISRAEL ad Uversty of Hafa, Hafa ISRAEL Abstract Some attempts were made to evaluate the future value (FV) of the expected
CIS603 - Artificial Intelligence. Logistic regression. (some material adopted from notes by M. Hauskrecht) CIS603 - AI. Supervised learning
CIS63 - Artfcal Itellgece Logstc regresso Vasleos Megalookoomou some materal adopted from otes b M. Hauskrecht Supervsed learg Data: D { d d.. d} a set of eamples d < > s put vector ad s desred output
T = 1/freq, T = 2/freq, T = i/freq, T = n (number of cash flows = freq n) are :
Bullets bods Let s descrbe frst a fxed rate bod wthout amortzg a more geeral way : Let s ote : C the aual fxed rate t s a percetage N the otoal freq ( 2 4 ) the umber of coupo per year R the redempto of
CH. V ME256 STATICS Center of Gravity, Centroid, and Moment of Inertia CENTER OF GRAVITY AND CENTROID
CH. ME56 STTICS Ceter of Gravt, Cetrod, ad Momet of Ierta CENTE OF GITY ND CENTOID 5. CENTE OF GITY ND CENTE OF MSS FO SYSTEM OF PTICES Ceter of Gravt. The ceter of gravt G s a pot whch locates the resultat
Raport końcowy Zadanie nr 8:
Opracowae: Polsko- Japońska Wższa Szkoła Techk Komputerowch Wdzał amejscow Iformatk w tomu Raport końcow adae r 8: Przeprowadzee badań opracowae algortmów do projektu: adae 4 Idetfkacja zachowaa terakcj
STATIC ANALYSIS OF TENSEGRITY STRUCTURES
SI NYSIS O ENSEGIY SUUES JUIO ES OE HESIS PESENED O HE GDUE SHOO O HE UNIVESIY O OID IN PI UIEN O HE EQUIEENS O HE DEGEE O SE O SIENE UNIVESIY O OID o m mother for her fte geerost. KNOWEDGENS I wat to
Chapter 3. AMORTIZATION OF LOAN. SINKING FUNDS R =
Chapter 3. AMORTIZATION OF LOAN. SINKING FUNDS Objectves of the Topc: Beg able to formalse ad solve practcal ad mathematcal problems, whch the subjects of loa amortsato ad maagemet of cumulatve fuds are
n. We know that the sum of squares of p independent standard normal variables has a chi square distribution with p degrees of freedom.
UMEÅ UNIVERSITET Matematsk-statstska sttutoe Multvarat dataaalys för tekologer MSTB0 PA TENTAMEN 004-0-9 LÖSNINGSFÖRSLAG TILL TENTAMEN I MATEMATISK STATISTIK Multvarat dataaalys för tekologer B, 5 poäg.
CHAPTER 2. Time Value of Money 6-1
CHAPTER 2 Tme Value of Moey 6- Tme Value of Moey (TVM) Tme Les Future value & Preset value Rates of retur Autes & Perpetutes Ueve cash Flow Streams Amortzato 6-2 Tme les 0 2 3 % CF 0 CF CF 2 CF 3 Show
Classic Problems at a Glance using the TVM Solver
C H A P T E R 2 Classc Problems at a Glace usg the TVM Solver The table below llustrates the most commo types of classc face problems. The formulas are gve for each calculato. A bref troducto to usg the
1. The Time Value of Money
Corporate Face [00-0345]. The Tme Value of Moey. Compoudg ad Dscoutg Captalzato (compoudg, fdg future values) s a process of movg a value forward tme. It yelds the future value gve the relevat compoudg
Key players and activities across the ERP life cycle: A temporal perspective
126 Revsta Iformatca Ecoomcă, r. 4 (44)/2007 Key layers ad actvtes across the ERP lfe cycle: A temoral ersectve Iulaa SCORŢA, Bucharest, Romaa Eterrse Resource Plag (ERP) systems are eterrse wde systems
Relaxation Methods for Iterative Solution to Linear Systems of Equations
Relaxato Methods for Iteratve Soluto to Lear Systems of Equatos Gerald Recktewald Portlad State Uversty Mechacal Egeerg Departmet [email protected] Prmary Topcs Basc Cocepts Statoary Methods a.k.a. Relaxato
Constrained Cubic Spline Interpolation for Chemical Engineering Applications
Costraed Cubc Sple Iterpolato or Chemcal Egeerg Applcatos b CJC Kruger Summar Cubc sple terpolato s a useul techque to terpolate betwee kow data pots due to ts stable ad smooth characterstcs. Uortuatel
Settlement Prediction by Spatial-temporal Random Process
Safety, Relablty ad Rs of Structures, Ifrastructures ad Egeerg Systems Furuta, Fragopol & Shozua (eds Taylor & Fracs Group, Lodo, ISBN 978---77- Settlemet Predcto by Spatal-temporal Radom Process P. Rugbaapha
Approximation Algorithms for Scheduling with Rejection on Two Unrelated Parallel Machines
(ICS) Iteratoal oural of dvaced Comuter Scece ad lcatos Vol 6 No 05 romato lgorthms for Schedulg wth eecto o wo Urelated Parallel aches Feg Xahao Zhag Zega Ca College of Scece y Uversty y Shadog Cha 76005
THE McELIECE CRYPTOSYSTEM WITH ARRAY CODES. MATRİS KODLAR İLE McELIECE ŞİFRELEME SİSTEMİ
SAÜ e Blmler Dergs, 5 Clt, 2 Sayı, THE McELIECE CRYPTOSYSTEM WITH ARRAY CODES Vedat ŞİAP* *Departmet of Mathematcs, aculty of Scece ad Art, Sakarya Uversty, 5487, Serdva, Sakarya-TURKEY vedatsap@gmalcom
Speeding up k-means Clustering by Bootstrap Averaging
Speedg up -meas Clusterg by Bootstrap Averagg Ia Davdso ad Ashw Satyaarayaa Computer Scece Dept, SUNY Albay, NY, USA,. {davdso, ashw}@cs.albay.edu Abstract K-meas clusterg s oe of the most popular clusterg
Statistical Pattern Recognition (CE-725) Department of Computer Engineering Sharif University of Technology
I The Name of God, The Compassoate, The ercful Name: Problems' eys Studet ID#:. Statstcal Patter Recogto (CE-725) Departmet of Computer Egeerg Sharf Uversty of Techology Fal Exam Soluto - Sprg 202 (50
Session 4: Descriptive statistics and exporting Stata results
Itrduct t Stata Jrd Muñz (UAB) Sess 4: Descrptve statstcs ad exprtg Stata results I ths sess we are gg t wrk wth descrptve statstcs Stata. Frst, we preset a shrt trduct t the very basc statstcal ctets
where p is the centroid of the neighbors of p. Consider the eigenvector problem
Vrtual avgato of teror structures by ldar Yogja X a, Xaolg L a, Ye Dua a, Norbert Maerz b a Uversty of Mssour at Columba b Mssour Uversty of Scece ad Techology ABSTRACT I ths project, we propose to develop
Chapter 3 0.06 = 3000 ( 1.015 ( 1 ) Present Value of an Annuity. Section 4 Present Value of an Annuity; Amortization
Chapter 3 Mathematcs of Face Secto 4 Preset Value of a Auty; Amortzato Preset Value of a Auty I ths secto, we wll address the problem of determg the amout that should be deposted to a accout ow at a gve
Finite Dimensional Vector Spaces.
Lctur 5. Ft Dmsoal Vctor Spacs. To b rad to th musc of th group Spac by D.Maruay DEFINITION OF A LINEAR SPACE Dfto: a vctor spac s a st R togthr wth a oprato calld vctor addto ad aothr oprato calld scalar
Curve Fitting and Solution of Equation
UNIT V Curve Fttg ad Soluto of Equato 5. CURVE FITTING I ma braches of appled mathematcs ad egeerg sceces we come across epermets ad problems, whch volve two varables. For eample, t s kow that the speed
On Error Detection with Block Codes
BULGARIAN ACADEMY OF SCIENCES CYBERNETICS AND INFORMATION TECHNOLOGIES Volume 9, No 3 Sofa 2009 O Error Detecto wth Block Codes Rostza Doduekova Chalmers Uversty of Techology ad the Uversty of Gotheburg,
M. Salahi, F. Mehrdoust, F. Piri. CVaR Robust Mean-CVaR Portfolio Optimization
M. Salah, F. Mehrdoust, F. Pr Uversty of Gula, Rasht, Ira CVaR Robust Mea-CVaR Portfolo Optmzato Abstract: Oe of the most mportat problems faced by every vestor s asset allocato. A vestor durg makg vestmet
21 Vectors: The Cross Product & Torque
21 Vectors: The Cross Product & Torque Do not use our left hand when applng ether the rght-hand rule for the cross product of two vectors dscussed n ths chapter or the rght-hand rule for somethng curl
Credibility Premium Calculation in Motor Third-Party Liability Insurance
Advaces Mathematcal ad Computatoal Methods Credblty remum Calculato Motor Thrd-arty Lablty Isurace BOHA LIA, JAA KUBAOVÁ epartmet of Mathematcs ad Quattatve Methods Uversty of ardubce Studetská 95, 53
AP Statistics 2006 Free-Response Questions Form B
AP Statstcs 006 Free-Respose Questos Form B The College Board: Coectg Studets to College Success The College Board s a ot-for-proft membershp assocato whose msso s to coect studets to college success ad
APPENDIX III THE ENVELOPE PROPERTY
Apped III APPENDIX III THE ENVELOPE PROPERTY Optmzato mposes a very strog structure o the problem cosdered Ths s the reaso why eoclasscal ecoomcs whch assumes optmzg behavour has bee the most successful
The Digital Signature Scheme MQQ-SIG
The Dgtal Sgature Scheme MQQ-SIG Itellectual Property Statemet ad Techcal Descrpto Frst publshed: 10 October 2010, Last update: 20 December 2010 Dalo Glgorosk 1 ad Rue Stesmo Ødegård 2 ad Rue Erled Jese
The analysis of annuities relies on the formula for geometric sums: r k = rn+1 1 r 1. (2.1) k=0
Chapter 2 Autes ad loas A auty s a sequece of paymets wth fxed frequecy. The term auty orgally referred to aual paymets (hece the ame), but t s ow also used for paymets wth ay frequecy. Autes appear may
A Covariance Analysis Model for DDoS Attack Detection*
A Covarace Aayss Mode or DDoS Attac Detecto* Shuyua J Deartmet o Comutg HogKog Poytechc Uversty HogKog Cha [email protected] Dae S. Yeug Deartmet o Comutg HogKog Poytechc Uversty HogKog Cha [email protected]
ECONOMIC CHOICE OF OPTIMUM FEEDER CABLE CONSIDERING RISK ANALYSIS. University of Brasilia (UnB) and The Brazilian Regulatory Agency (ANEEL), Brazil
ECONOMIC CHOICE OF OPTIMUM FEEDER CABE CONSIDERING RISK ANAYSIS I Camargo, F Fgueredo, M De Olvera Uversty of Brasla (UB) ad The Brazla Regulatory Agecy (ANEE), Brazl The choce of the approprate cable
The Time Value of Money
The Tme Value of Moey 1 Iversemet Optos Year: 1624 Property Traded: Mahatta Islad Prce : $24.00, FV of $24 @ 6%: FV = $24 (1+0.06) 388 = $158.08 bllo Opto 1 0 1 2 3 4 5 t ($519.37) 0 0 0 0 $1,000 Opto
Optimal multi-degree reduction of Bézier curves with constraints of endpoints continuity
Computer Aded Geometrc Desg 19 (2002 365 377 wwwelsevercom/locate/comad Optmal mult-degree reducto of Bézer curves wth costrats of edpots cotuty Guo-Dog Che, Guo-J Wag State Key Laboratory of CAD&CG, Isttute
Banking (Early Repayment of Housing Loans) Order, 5762 2002 1
akg (Early Repaymet of Housg Loas) Order, 5762 2002 y vrtue of the power vested me uder Secto 3 of the akg Ordace 94 (hereafter, the Ordace ), followg cosultato wth the Commttee, ad wth the approval of
Fractal-Structured Karatsuba`s Algorithm for Binary Field Multiplication: FK
Fractal-Structured Karatsuba`s Algorthm for Bary Feld Multplcato: FK *The authors are worg at the Isttute of Mathematcs The Academy of Sceces of DPR Korea. **Address : U Jog dstrct Kwahadog Number Pyogyag
Lecture 13 Time Series: Stationarity, AR(p) & MA(q)
RS C - ecure 3 ecure 3 Tme Seres: Saoar AR & MAq Tme Seres: Iroduco I he earl 97 s was dscovered ha smle me seres models erformed beer ha he comlcaed mulvarae he oular 96s macro models FRB-MIT-Pe. See
A Parallel Transmission Remote Backup System
2012 2d Iteratoal Coferece o Idustral Techology ad Maagemet (ICITM 2012) IPCSIT vol 49 (2012) (2012) IACSIT Press, Sgapore DOI: 107763/IPCSIT2012V495 2 A Parallel Trasmsso Remote Backup System Che Yu College
Cyber Journals: Multidisciplinary Journals in Science and Technology, Journal of Selected Areas in Telecommunications (JSAT), January Edition, 2011
Cyber Jourals: Multdscplary Jourals cece ad Techology, Joural of elected Areas Telecommucatos (JAT), Jauary dto, 2011 A ovel rtual etwork Mappg Algorthm for Cost Mmzg ZHAG hu-l, QIU Xue-sog tate Key Laboratory
Load and Resistance Factor Design (LRFD)
53:134 Structural Desg II Load ad Resstace Factor Desg (LRFD) Specfcatos ad Buldg Codes: Structural steel desg of buldgs the US s prcpally based o the specfcatos of the Amerca Isttute of Steel Costructo
Web Services Wind Tunnel: On Performance Testing Large-scale Stateful Web Services
Web Servces Wd Tuel: O Performace Testg Large-scale Stateful Web Servces Marcelo De Barros, Jg Shau, Che Shag, Keto Gdewall, Hu Sh, Joe Forsma Mcrosoft Cororato {marcelod,shau,cshag,ketog,hush,osehfo}@mcrosoft.com
Vibration and Speedy Transportation
Research Paper EAEF (3) : 8-5, 9 Path Plag of Tomato Cluster Harvestg Robot for Realzg Low Vbrato ad Speedy Trasportato Naosh KONDO *, Koch TANIHARA *, Tomowo SHIIGI *, Hrosh SHIMIZU *, Mtsutaka KURITA
16. Mean Square Estimation
6 Me Sque stmto Gve some fomto tht s elted to uow qutty of teest the poblem s to obt good estmte fo the uow tems of the obseved dt Suppose epeset sequece of dom vbles bout whom oe set of obsevtos e vlble
Luby s Alg. for Maximal Independent Sets using Pairwise Independence
Lecture Notes for Randomzed Algorthms Luby s Alg. for Maxmal Independent Sets usng Parwse Independence Last Updated by Erc Vgoda on February, 006 8. Maxmal Independent Sets For a graph G = (V, E), an ndependent
SHAPIRO-WILK TEST FOR NORMALITY WITH KNOWN MEAN
SHAPIRO-WILK TEST FOR NORMALITY WITH KNOWN MEAN Wojcech Zelńsk Departmet of Ecoometrcs ad Statstcs Warsaw Uversty of Lfe Sceces Nowoursyowska 66, -787 Warszawa e-mal: wojtekzelsk@statystykafo Zofa Hausz,
ON SLANT HELICES AND GENERAL HELICES IN EUCLIDEAN n -SPACE. Yusuf YAYLI 1, Evren ZIPLAR 2. [email protected]. evrenziplar@yahoo.
ON SLANT HELICES AND ENERAL HELICES IN EUCLIDEAN -SPACE Yusuf YAYLI Evre ZIPLAR Departmet of Mathematcs Faculty of Scece Uversty of Akara Tadoğa Akara Turkey yayl@sceceakaraedutr Departmet of Mathematcs
A Study of Unrelated Parallel-Machine Scheduling with Deteriorating Maintenance Activities to Minimize the Total Completion Time
Joural of Na Ka, Vol. 0, No., pp.5-9 (20) 5 A Study of Urelated Parallel-Mache Schedulg wth Deteroratg Mateace Actvtes to Mze the Total Copleto Te Suh-Jeq Yag, Ja-Yuar Guo, Hs-Tao Lee Departet of Idustral
Simple Interest Loans (Section 5.1) :
Chapter 5 Fnance The frst part of ths revew wll explan the dfferent nterest and nvestment equatons you learned n secton 5.1 through 5.4 of your textbook and go through several examples. The second part
CHAPTER 13. Simple Linear Regression LEARNING OBJECTIVES. USING STATISTICS @ Sunflowers Apparel
CHAPTER 3 Smple Lear Regresso USING STATISTICS @ Suflowers Apparel 3 TYPES OF REGRESSION MODELS 3 DETERMINING THE SIMPLE LINEAR REGRESSION EQUATION The Least-Squares Method Vsual Exploratos: Explorg Smple
Reinsurance and the distribution of term insurance claims
Resurace ad the dstrbuto of term surace clams By Rchard Bruyel FIAA, FNZSA Preseted to the NZ Socety of Actuares Coferece Queestow - November 006 1 1 Itroducto Ths paper vestgates the effect of resurace
10/19/2011. Financial Mathematics. Lecture 24 Annuities. Ana NoraEvans 403 Kerchof [email protected] http://people.virginia.
Math 40 Lecture 24 Autes Facal Mathematcs How ready do you feel for the quz o Frday: A) Brg t o B) I wll be by Frday C) I eed aother week D) I eed aother moth Aa NoraEvas 403 Kerchof [email protected] http://people.vrga.edu/~as5k/
Efficient Traceback of DoS Attacks using Small Worlds in MANET
Effcet Traceback of DoS Attacks usg Small Worlds MANET Yog Km, Vshal Sakhla, Ahmed Helmy Departmet. of Electrcal Egeerg, Uversty of Souther Calfora, U.S.A {yogkm, sakhla, helmy}@ceg.usc.edu Abstract Moble
of the relationship between time and the value of money.
TIME AND THE VALUE OF MONEY Most agrbusess maagers are famlar wth the terms compoudg, dscoutg, auty, ad captalzato. That s, most agrbusess maagers have a tutve uderstadg that each term mples some relatoshp
Group Nearest Neighbor Queries
Group Nearest Neghbor Queres Dmtrs Papadas Qogmao She Yufe Tao Kyrakos Mouratds Departmet of Computer Scece Hog Kog Uversty of Scece ad Techology Clear Water Bay, Hog Kog {dmtrs, qmshe, kyrakos}@cs.ust.hk
An Introduction To Error Propagation: Derivation, Meaning and Examples C Y
SWISS FEDERAL INSTITUTE OF TECHNOLOGY LAUSANNE EIDGENÖSSISCHE TECHNISCHE HOCHSCHULE LAUSANNE POLITECNICO FEDERALE DI LOSANNA DÉPARTEMENT DE MICROTECHNIQUE INSTITUT DE SYSTÈMES ROBOTIQUE Autoomous Systems
Face Verification Problem. Face Recognition Problem. Application: Access Control. Biometric Authentication. Face Verification (1:1 matching)
Face Recognton Problem Face Verfcaton Problem Face Verfcaton (1:1 matchng) Querymage face query Face Recognton (1:N matchng) database Applcaton: Access Control www.vsage.com www.vsoncs.com Bometrc Authentcaton
1. Math 210 Finite Mathematics
1. ath 210 Fnte athematcs Chapter 5.2 and 5.3 Annutes ortgages Amortzaton Professor Rchard Blecksmth Dept. of athematcal Scences Northern Illnos Unversty ath 210 Webste: http://math.nu.edu/courses/math210
Automated Event Registration System in Corporation
teratoal Joural of Advaces Computer Scece ad Techology JACST), Vol., No., Pages : 0-0 0) Specal ssue of CACST 0 - Held durg 09-0 May, 0 Malaysa Automated Evet Regstrato System Corporato Zafer Al-Makhadmee
Forecasting the Direction and Strength of Stock Market Movement
Forecastng the Drecton and Strength of Stock Market Movement Jngwe Chen Mng Chen Nan Ye [email protected] [email protected] [email protected] Abstract - Stock market s one of the most complcated systems
ENTROPİ OPTİMİZASYON ÖLÇÜSÜ İLE OPTİMAL PORTFÖY SEÇİMİ VE BİST ULUSAL-30 ENDEKSİ ÜZERİNE BİR ÇALIŞMA
Dumluıar Üverstes Sosyal Blmler Dergs EYİ 203 Özel Sayısı ENTROPİ OPTİMİZASYON ÖLÇÜSÜ İLE OPTİMAL PORTFÖY SEÇİMİ VE BİST ULUSAL-30 ENDEKSİ ÜZERİNE BİR ÇALIŞMA Doktora Öğrecs Görkem SARIKAYA Başket Üverstes
Optimal Packetization Interval for VoIP Applications Over IEEE 802.16 Networks
Optmal Packetzato Iterval for VoIP Applcatos Over IEEE 802.16 Networks Sheha Perera Harsha Srsea Krzysztof Pawlkowsk Departmet of Electrcal & Computer Egeerg Uversty of Caterbury New Zealad [email protected]
Three Dimensional Interpolation of Video Signals
Three Dmesoal Iterpolato of Vdeo Sgals Elham Shahfard March 0 th 006 Outle A Bref reve of prevous tals Dgtal Iterpolato Bascs Upsamplg D Flter Desg Issues Ifte Impulse Respose Fte Impulse Respose Desged
Performance Attribution. Methodology Overview
erformace Attrbuto Methodology Overvew Faba SUAREZ March 2004 erformace Attrbuto Methodology 1.1 Itroducto erformace Attrbuto s a set of techques that performace aalysts use to expla why a portfolo's performace
ADAPTATION OF SHAPIRO-WILK TEST TO THE CASE OF KNOWN MEAN
Colloquum Bometrcum 4 ADAPTATION OF SHAPIRO-WILK TEST TO THE CASE OF KNOWN MEAN Zofa Hausz, Joaa Tarasńska Departmet of Appled Mathematcs ad Computer Scece Uversty of Lfe Sceces Lubl Akademcka 3, -95 Lubl
Sequences and Series
Secto 9. Sequeces d Seres You c thk of sequece s fucto whose dom s the set of postve tegers. f ( ), f (), f (),... f ( ),... Defto of Sequece A fte sequece s fucto whose dom s the set of postve tegers.
The Gompertz-Makeham distribution. Fredrik Norström. Supervisor: Yuri Belyaev
The Gompertz-Makeham dstrbuto by Fredrk Norström Master s thess Mathematcal Statstcs, Umeå Uversty, 997 Supervsor: Yur Belyaev Abstract Ths work s about the Gompertz-Makeham dstrbuto. The dstrbuto has
Fast, Secure Encryption for Indexing in a Column-Oriented DBMS
Fast, Secure Ecrypto for Idexg a Colum-Oreted DBMS Tgja Ge, Sta Zdok Brow Uversty {tge, sbz}@cs.brow.edu Abstract Networked formato systems requre strog securty guaratees because of the ew threats that
Fundamentals of Mass Transfer
Chapter Fudametals of Mass Trasfer Whe a sgle phase system cotas two or more speces whose cocetratos are ot uform, mass s trasferred to mmze the cocetrato dffereces wth the system. I a mult-phase system
