Test1. Due Friday, March 13, 2015.



Similar documents
Lemma 5.2. Let S be a set. (1) Let f and g be two permutations of S. Then the composition of f and g is a permutation of S.

Homework until Test #2

I. GROUPS: BASIC DEFINITIONS AND EXAMPLES

Solutions to TOPICS IN ALGEBRA I.N. HERSTEIN. Part II: Group Theory

GENERATING SETS KEITH CONRAD

The last three chapters introduced three major proof techniques: direct,

6.2 Permutations continued

ABSTRACT ALGEBRA: A STUDY GUIDE FOR BEGINNERS

(0, 0) : order 1; (0, 1) : order 4; (0, 2) : order 2; (0, 3) : order 4; (1, 0) : order 2; (1, 1) : order 4; (1, 2) : order 2; (1, 3) : order 4.

= = 3 4, Now assume that P (k) is true for some fixed k 2. This means that

THE SIGN OF A PERMUTATION

CONSEQUENCES OF THE SYLOW THEOREMS

CS 103X: Discrete Structures Homework Assignment 3 Solutions

8 Primes and Modular Arithmetic

Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan

Lecture 13 - Basic Number Theory.

Today s Topics. Primes & Greatest Common Divisors

Abstract Algebra Cheat Sheet

2. Let H and K be subgroups of a group G. Show that H K G if and only if H K or K H.

Algebra of the 2x2x2 Rubik s Cube

Elementary Number Theory and Methods of Proof. CSE 215, Foundations of Computer Science Stony Brook University

CHAPTER 5. Number Theory. 1. Integers and Division. Discussion

a 11 x 1 + a 12 x a 1n x n = b 1 a 21 x 1 + a 22 x a 2n x n = b 2.

Lecture 3: Finding integer solutions to systems of linear equations

Number Theory. Proof. Suppose otherwise. Then there would be a finite number n of primes, which we may

4. FIRST STEPS IN THE THEORY 4.1. A

Discrete Mathematics, Chapter 4: Number Theory and Cryptography

Assignment 8: Selected Solutions

CONTENTS 1. Peter Kahn. Spring 2007

Kevin James. MTHSC 412 Section 2.4 Prime Factors and Greatest Comm

So let us begin our quest to find the holy grail of real analysis.

Chapter 3. if 2 a i then location: = i. Page 40

Algebra I: Section 3. Group Theory 3.1 Groups.

Number Theory: A Mathemythical Approach. Student Resources. Printed Version

8 Divisibility and prime numbers

Geometric Transformations

SUM OF TWO SQUARES JAHNAVI BHASKAR

Finite dimensional C -algebras

Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan

Group Fundamentals. Chapter Groups and Subgroups Definition

RSA and Primality Testing

1 Symmetries of regular polyhedra

U.C. Berkeley CS276: Cryptography Handout 0.1 Luca Trevisan January, Notes on Algebra

Section 4.2: The Division Algorithm and Greatest Common Divisors

Introduction to Modern Algebra

Linear Algebra I. Ronald van Luijk, 2012

POLYNOMIAL RINGS AND UNIQUE FACTORIZATION DOMAINS

Page 331, 38.4 Suppose a is a positive integer and p is a prime. Prove that p a if and only if the prime factorization of a contains p.

Continued Fractions and the Euclidean Algorithm

University of Lille I PC first year list of exercises n 7. Review

The Prime Numbers. Definition. A prime number is a positive integer with exactly two positive divisors.

Systems of Linear Equations

PYTHAGOREAN TRIPLES KEITH CONRAD

V Quantitative Reasoning: Computers, Number Theory and Cryptography

Applications of Fermat s Little Theorem and Congruences

Intermediate Math Circles March 7, 2012 Linear Diophantine Equations II

Handout NUMBER THEORY

The Euclidean Algorithm

LAMC Beginners Circle: Parity of a Permutation Problems from Handout by Oleg Gleizer Solutions by James Newton

of Nebraska - Lincoln

I = ad bc. be the set of A in GL(2, C) with real entries and with determinant equal to 1, 1, respectively. Note that A = T A : S S

Elementary Number Theory

Group Theory. Contents

RSA Question 2. Bob thinks that p and q are primes but p isn t. Then, Bob thinks Φ Bob :=(p-1)(q-1) = φ(n). Is this true?

NOTES ON GROUP THEORY

ON GENERALIZED RELATIVE COMMUTATIVITY DEGREE OF A FINITE GROUP. A. K. Das and R. K. Nath

Math 319 Problem Set #3 Solution 21 February 2002

Math 115 Spring 2011 Written Homework 5 Solutions

SYSTEMS OF PYTHAGOREAN TRIPLES. Acknowledgements. I would like to thank Professor Laura Schueller for advising and guiding me

SUBGROUPS OF CYCLIC GROUPS. 1. Introduction In a group G, we denote the (cyclic) group of powers of some g G by

Discrete Mathematics Problems

1 Homework 1. [p 0 q i+j p i 1 q j+1 ] + [p i q j ] + [p i+1 q j p i+j q 0 ]

Elements of Abstract Group Theory

Chapter 7: Products and quotients

26 Integers: Multiplication, Division, and Order

Breaking The Code. Ryan Lowe. Ryan Lowe is currently a Ball State senior with a double major in Computer Science and Mathematics and

26 Ideals and Quotient Rings

DIVISIBILITY AND GREATEST COMMON DIVISORS

COMBINATORIAL PROPERTIES OF THE HIGMAN-SIMS GRAPH. 1. Introduction

Abstract Algebra Theory and Applications. Thomas W. Judson Stephen F. Austin State University

On the generation of elliptic curves with 16 rational torsion points by Pythagorean triples

MATH 289 PROBLEM SET 4: NUMBER THEORY

GCDs and Relatively Prime Numbers! CSCI 2824, Fall 2014!

Galois representations with open image

Math 223 Abstract Algebra Lecture Notes

DECOMPOSING SL 2 (R)

Category 3 Number Theory Meet #1, October, 2000

Winter Camp 2011 Polynomials Alexander Remorov. Polynomials. Alexander Remorov

CONTINUED FRACTIONS AND PELL S EQUATION. Contents 1. Continued Fractions 1 2. Solution to Pell s Equation 9 References 12

(Q, ), (R, ), (C, ), where the star means without 0, (Q +, ), (R +, ), where the plus-sign means just positive numbers, and (U, ),

MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS

MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS. + + x 2. x n. a 11 a 12 a 1n b 1 a 21 a 22 a 2n b 2 a 31 a 32 a 3n b 3. a m1 a m2 a mn b m

Introduction to Programming (in C++) Loops. Jordi Cortadella, Ricard Gavaldà, Fernando Orejas Dept. of Computer Science, UPC

Example. Introduction to Programming (in C++) Loops. The while statement. Write the numbers 1 N. Assume the following specification:

Notes on Determinant

Math 3000 Section 003 Intro to Abstract Math Homework 2

God created the integers and the rest is the work of man. (Leopold Kronecker, in an after-dinner speech at a conference, Berlin, 1886)

Integer Factorization using the Quadratic Sieve

Combinatorial Proofs

Notes on Group Theory

Transcription:

1 Abstract Algebra Professor M. Zuker Test1. Due Friday, March 13, 2015. 1. Euclidean algorithm and related. (a) Suppose that a and b are two positive integers and that gcd(a, b) = d. Find all solutions m and n to am bn = 0. Hint: Note that for each solution, am and bn are common multiples of a and b. am bn = 0 am = bn. Thus, am and bn are common multiples of a and b for every solution. Let l = lcm(a, b) = ab d. Then all common multiples of a and b are of the form kl, where k is any integer. If am = bn, then am = bn = kl for some k Z. This is equivalent to m = kb/d and n = ka/d. On the other hand, for any k Z, m = kb/d and n = ka/d satisfy am = bn = kl. Thus all solutions are m = kb/d and n = ka/d for k Z. (b) If am bn = d, find all solutions m and n to am bn = d. Hint: Note that a(m m) b(n n) = 0. If am bn = d and am bn = d, then by subtraction, a(m m) b(n n) = d d = 0, so M m and N n must be of the form kb/d and ka/d, respectively, where k Z. That is, m = M kb/d and n = N ka/d. In words, if am bn = d, then a(m + kb/d) b(n + ka/d) = d, so (M + kb/d, N + kb/d) is a solution for every k Z and all solutions are of this form. (c) Show that 1966 and 2017 are relatively prime and compute integers m and n such that 1966m + 2017n = 1. 2017 = 1 1966 + 51 1966 = 38 51 + 28 51 = 1 28 + 23 28 = 1 23 + 5 23 = 4 5 + 3 5 = 1 3 + 2 3 = 1 2 + 1 2 = 2 1 + 0 so gcd(2017, 1966) = 1. A solution for m and n may be computed by backtracking in the above computation or by multiplying 2 2 matrices. Backtracking:

2 Abstract Algebra Professor M. Zuker 1 = 3 1 2 = 3 1 (5 1 3) = 2 3 1 5 = 2 (23 4 5) 1 5 = 2 23 9 5 = 2 23 9(28 1 23) = 11 23 9 28 = 11 (51 1 28) 9 28 = 11 51 20 28 = 11 51 20(1966 38 51) = 771 51 20 1966 = 771 (2017 1 1966) 20 1966 = 771 2017 21 1966 = ( 791) 1966 + 771 2017 Thus m = 791 and n = 771 is a solution. (d) Referring to (c) above, compute a solution where m > 0 and m is as small as possible and a solution where n > 0 and n is as small as possible. Hint: If you use the extended Euclidean algorithm, the solution you find will satisfy one of these conditions, so you need only compute a second solution. Any solution is of the form m = 791 + 2017k and n = 771 1966k. If k = 0, n is positive. The next smaller value of n is 771 1966 < 0, so ( 791, 771) is the solution with the smallest positive value for n. The next larger value of m is 791 + 2017 = 1226, for which n = 771 1966 = 1195, so (1226, 1195) is the solution with the smallest positive value for m. 2. True or false. (a) In the group Z m, if 0 a b < m, then a = b a = b. False. In fact, a = b gcd(a, m) = gcd(b, m). (b) If the least common multiple of two positive integers a and b equals a or b, then either a b or b a. True. ab/ gcd(a, b) = a gcd(a, b) = b, so b a. ab/ gcd(a, b) = b gcd(a, b) = a, so a b. (c) Suppose that gcd(a, b) = 1 for positive integers a and b. Then for any positive integers m and n, a m and b n are relatively prime. True. a = K i=i pk i i and b = L i=i ql i i, where each p i and each q i are distinct primes. We know that no p i equals some q i. Thus a m is a product of K distinct primes p i to higher powers and b n is a product of L distinct primes q i to higher powers. The primes remain distinct so gcd(a m, b n ) = 1.

3 Abstract Algebra Professor M. Zuker (d) For positive integers a, b and c, suppose that gcd(a, b) = 1 and that c ab. Then c = d 1 d 2 where d 1 a, d 2 b and gcd(d 1, d 2 ) = 1. True. a = K i=1 pk i i and b = L i=1 ql i i where the p i s and q i s are distinct primes. If d a, then d = d 1 d 2, where d 1 = K i=1 pk i i, 0 k i k i and d 2 = L i=1 ql i i, 0 l i l i. d 1 a, d 2 b and gcd(d 1, d 2 ) = 1. (e) If σ S n, then σ and σ 1 always have the same number of orbits. True. The inverse of a cycle (i 1, i 2,... i k ) is (i k, i k 1,... i 2, i 1 ), which is a cycle. σ(i) = i σ 1 (i) = i. Thus, σ and σ 1 have the same orbits. This is stronger than the same number of orbits. (f) If σ S n, then σ and σ 2 always have the same number of orbits. False. Counter-example. In S 4, σ = (1, 2, 3, 4) has one orbit, but σ 2 = (1, 3)(2, 4) has two orbits. (g) In D 5, let H = ρ 2, τρ 3. Then H = D 5. True Since gcd(2, 5) = gcd(1, 5) = 1, ρ = ρ 2, so H contains all powers of ρ. ρ 2 H and τρ 3 H implies that τρ 3 ρ 2 = τ H. Thus H contains ρ i and τρ i for 0 i < 5, so H = D 5. (h) If H and K are subgroups of G, then HK is a subgroup of G. False. If h 1, h 2 H and k 1, k 2 K, then there is no reason why (h 2 k 2 )(h 1 k 1 ) should equal h 3 k 3 for some h 3 H and k 3 K. Counter-example. In S 3, let H = {ι, (1, 2)} and let K = {ι, (1, 3)}. Then HK = {ι, (1, 2), (1, 3), (1, 3, 2)} However, (1, 2)(1, 3)(1, 2)(1, 3) = (1, 2, 3) / HK. (i) If H and K are normal subgroups of G, then HK is a subgroup of G. True. In fact, it s true if just one of H and K is normal. H normal implies that gh = Hg for all g G. In particular, kh = Hk for any k K. If h 1, h 2 H and k 1, k 2 K, then If h H and k K, (h 1 k 1 )(h 2 k 2 ) = h 1 (k 1 h 2 )k 2 = h 1 (h 3 k 1 )k 2 because H is normal. h 3 H = (h 1 h 3 )(k 1 k 2 ) HK. (hk) 1 = k 1 h 1 = h 1 k 1 because H is normal. h 1 H

4 Abstract Algebra Professor M. Zuker (j) If H and K are normal subgroups of G, then HK is a normal subgroup of G. True. HK is Normal if ghk = HKg for all g G. This is equivalent to ghkg 1 = HK for all g G. If ghkg 1 ghkg 1, then ghkg 1 = (gh)kg 1 = (h 1 g)kg 1 since H is normal = h 1 (gk)g 1 = h 1 (k 1 g)g 1 since K is normal = (h 1 k 1 )gg 1 = h 1 k 1 HK. In the above, h 1 H and k 1 K. To prove that HK is normal, we need H and K to be normal. 3. For each set G and binary operation, decide the following. Is G a group. If not, what properties fail? If so, is G Abelian? If it is Abelian, is it cyclic? (a) G = Q + and is ordinary multiplication. G is a non-cyclic Abelian group. {[ ] } 1 n (b) G = n Z and is matrix multiplication. 0 1 by G is a cyclic group. In fact (G, ) (Z, +). If f : Z G is defined f(n) = [ 1 n 0 1 then f is an isomorphism. {[ ] } a b (c) G = a, b, c, d Z and ad bc = ±1 and is matrix multiplication. c d G is a non-abelian group (and cannot be cyclic, of course). (d) G = {a + b 3 R a, b Q} and is ordinary multiplication. Note that G excludes 0. G is a non-cyclic Abelian group. The binary operation is well-defined, since a + b 3)(c + d 3) = (ac + 3bd) + (ad + bd) 3 G. (a + b 3)(a b 3) = a 2 3b 2. If a 2 3b 2 = 0, then a = 0 b = 0 and b = 0 a = 0. If ab 0, then 3 = a Q, which is false. Thus, a + b 3 = 0 b a = b = 0. Then (a + b 3) 1 = a b 3, where a = a and b = b. a 2 3b 2 a 2 3b 2 (e) G = {n Z 60 gcd(n, 60) = 1}. is addition. G is not a group. In fact, G is not even closed under addition, since gcd(7, 60) = gcd(13, 60) = 1, but gcd(7 + 13, 60) = gcd(20, 60) = 20. ],

5 Abstract Algebra Professor M. Zuker (f) G = {n Z 60 gcd(n, 60) = 1}. is multiplication. G is in fact an Abelian group. If m and n are both relatively prime to 60, then neither m nor n contain prime factors in common with 60. Thus, mn contains no prime factor in common with 60. is clearly commutative. If gcd(a, 60) = 1, then gcd(a n, 60) = 1 for all n 0 (see the appropriate true/false question above). If m is the smallest integer such that a m a h mod 60 for some h < m, then a m h 1 mod 60 = a 0, so h = 0. Thus a m 1 is the multiplicative inverse of a. G = ϕ(60) = ϕ(5)ϕ(3)ϕ(4) = 4 2 2 = 16. G is not cyclic. In fact, the maximum order of any a G is 4. 4. Let σ = ( i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 σ(i) 16 13 4 18 6 14 19 2 8 5 7 12 9 17 11 3 10 20 15 1 ) (a) Compute the decomposition of σ into disjoint cycles. σ = µ 1 µ 2 µ 3 µ 4, where µ 1 = (1, 16, 3, 4, 18, 20), µ 2 = (2, 13, 9, 8), µ 3 = (5, 6, 14, 17, 10) and µ 4 = (7, 19, 15, 11) (b) How many orbits does σ have. σ has 5 orbits. Each of the four disjoint cycles above comprise 19 of the 20 numbers between 1 and 12. σ(12) = 12, so {12} is the fifth orbit. (c) Is σ an even or an odd permutation? µ 1 is a 6-cycle (odd), mu 2 is a 4-cycle (odd), mu 3 is a 5-cycle (even) and mu 4 is a 4-cycle (odd). Thus, the sign of σ is ( 1)( 1)(1)( 1) = 1, so σ is odd. (d) Compute σ. µ 1, µ 2, µ 3 and µ 4 have orders 6, 4, 5 and 4, respectively. The least common multiple of these integers is the least common multiple of 4 and the least common multiple of 6 and 5, which is the least common multiple of 4 and 30, which is 60. Thus, σ = 60. (e) Compute the cycle decomposition of σ 2. Since the cycles permute disjoint sets of numbers, they commute. Thus, σ 2 = (µ 1 ) 2 (µ 2 ) 2 (µ 3 ) 2 (µ 4 ) 2. µ 2 1 = (1, 3, 18)(4, 20, 16) µ 2 2 = (2, 9)(8, 13) µ 2 3 = (5, 14, 10, 6, 17) µ 2 4 = (7, 15)(11, 19) Thus σ 2 = (1, 3, 18)(4, 20, 16)(2, 9)(8, 13)(5, 14, 10, 6, 17)(7, 15)(11, 19) (f) Let µ = (1, 13, 7, 18, 3, 20, 5, 11)(2, 15, 5, 9, 7, 1, 10, 19) Is µ even or odd. You must give a reason. µ is the product of two k-cycles, so it is even. The fact that k = 8, making both cycles odd permutations, is not relevant.

6 Abstract Algebra Professor M. Zuker 5. In S n for n > 2, let H = {ι, (1, 2)}, where ι is the identity in S n and (1, 2) is a transposition. H is clearly a subgroup of S n. Prove that H is not a normal subgroup of S n. Hint: It suffices to find a single π S n such that πh Hπ. (1, 3)H = {(1, 3), (1, 3)(1, 2)} = {(1, 3), (1, 2, 3)} and H(1, 3) = {(1, 3), (1, 2)(1, 3)} = {(1, 3), (1, 3, 2)}. Since (1, 3)H H(1, 3), H is not normal. 6. A n and 3-cycles. We know that 3-cycles are even permutations. The object is to show that A n is generated by 3-cycles. This problem is broken into parts to assist you. (a) In S 4, write the double transition (1, 2)(3, 4) as the product of two 3-cycles. Hint: A 3-cycle will leave one of the four numbers fixed. The hint is useful. Select the first 3-cycle to place 1 into position 2. Select the second 3-cycle to leave position 2 fixed and to place 2 into position 1. The first 3-cycle can be σ 1 = (1, 2, 3). The second 3-cycle σ 2 must satisfy (a) σ 2 (2) = 2 to keep position 2 fixed, and (b) σ 2 (3) = 1 to move 2 (which is in position 3 after σ 1 is applied) into position 1. That is, σ 2 = (3, 1, 4). There are choices for σ 1, but given σ 1, σ 2 is uniquely determined. Check: (3, 1, 4)(1, 2, 3) = (1, 2)(3, 4). It works! Of course, other choices for σ 1 are possible. They are: (1, 2, 4), (2, 1, 3), (2, 1, 4), (3, 4, 1), (3, 4, 2), (4, 3, 1), (4, 3, 2). (b) In S n for n > 3, suppose that i, j, k and l are distinct integers between 1 and n. Write µ = (i, j)(k, l) as the product of two 3-cycles. Replace 1, 2, 3 and 4 above by i, j, k and l. Then µ = (k, i, l)(i, j, k) = (i, j)(k, l). (c) In S n for n > 2, suppose that i, j and k are distinct integers between 1 and n. Let µ = (i, k)(i, j). Compute the cycle decomposition of µ. I did this one in class. µ = (i, j, k). (d) Show that any even permutation is a product of 3-cycles. Hint: If µ A n, then µ is a product of 2k transpositions for some k > 0 (unless µ = ι). Show that µ is a product of at most 2k 3-cycles. An even permutation µ can be written as a product of an even number of swaps (transpositions), say 2k swaps. Then µ is a product of k pairs of swaps. Consider each pair: Case 1: The two swaps involve just two distinct numbers, say i and j. This gives (i, j)(i, j) = ι, the identity permutation. That is, this pair may be deleted (or written as (i, j, k)(i, k, j) for some k not equal to i or j). Case 2. The two swaps involve three distinct numbers, say i, j and k. As shown above (i, k)(i, j) is a 3-cycle. Note that the first swap may be written as (i, j) without loss of generality where i is the number that is repeated in the second swap. Case 3 The two swaps involve four distinct numbers, say i, j, k and l. As shown above, this is the product of 2 3-cycles.

7 Abstract Algebra Professor M. Zuker Thus, µ may be written as the product of at most 2k 3-cycles. It may also be written as the product of exactly 2k 3-cycles. Why? Case 1, the trivial case, can be written as the product of 2 3-cycles. Case 2: A single 3-cycle (i, j, k) may also be written as (i, k, j)(i, k, j), which is the square of the inverse of (i, j, k). Case 3: This is already the product of 2 3-cyles.