INTRODUCTION TO ALGEBRAIC GEOMETRY, CLASS 24



Similar documents
FOUNDATIONS OF ALGEBRAIC GEOMETRY CLASS 22

INTRODUCTION TO ALGEBRAIC GEOMETRY, CLASS 16

On The Existence Of Flips

Math 4310 Handout - Quotient Vector Spaces

1 Chapter I Solutions

Metric Spaces. Chapter Metrics

INTRODUCTION TO MORI THEORY. Cours de M2 2010/2011. Université Paris Diderot

Introduction to Algebraic Geometry. Bézout s Theorem and Inflection Points

Factoring Polynomials

POLYNOMIAL RINGS AND UNIQUE FACTORIZATION DOMAINS

4. Expanding dynamical systems

Mathematics Course 111: Algebra I Part IV: Vector Spaces

ON THE NUMBER OF REAL HYPERSURFACES HYPERTANGENT TO A GIVEN REAL SPACE CURVE

Solutions to Homework 10

14.1. Basic Concepts of Integration. Introduction. Prerequisites. Learning Outcomes. Learning Style

FIBER PRODUCTS AND ZARISKI SHEAVES

THE DIMENSION OF A VECTOR SPACE

THE FUNDAMENTAL THEOREM OF ALGEBRA VIA PROPER MAPS

7. Some irreducible polynomials

RESEARCH STATEMENT AMANDA KNECHT

MATH 52: MATLAB HOMEWORK 2

Real Roots of Univariate Polynomials with Real Coefficients

Polynomial Invariants

3. Prime and maximal ideals Definitions and Examples.

I. GROUPS: BASIC DEFINITIONS AND EXAMPLES

To give it a definition, an implicit function of x and y is simply any relationship that takes the form:

SINTESI DELLA TESI. Enriques-Kodaira classification of Complex Algebraic Surfaces

Continued Fractions and the Euclidean Algorithm

(a) Write each of p and q as a polynomial in x with coefficients in Z[y, z]. deg(p) = 7 deg(q) = 9

Chapter 20. Vector Spaces and Bases

Chapter 4, Arithmetic in F [x] Polynomial arithmetic and the division algorithm.

RIGIDITY OF HOLOMORPHIC MAPS BETWEEN FIBER SPACES

3. Mathematical Induction

MATH10212 Linear Algebra. Systems of Linear Equations. Definition. An n-dimensional vector is a row or a column of n numbers (or letters): a 1.

it is easy to see that α = a

8 Square matrices continued: Determinants

Solving Linear Systems, Continued and The Inverse of a Matrix

PYTHAGOREAN TRIPLES KEITH CONRAD

Mathematical Induction. Mary Barnes Sue Gordon

8.1 Examples, definitions, and basic properties

OSTROWSKI FOR NUMBER FIELDS

Synthetic Projective Treatment of Cevian Nests and Graves Triangles

Algebraic Geometry. Keerthi Madapusi

Galois Theory III Splitting fields.

On the generation of elliptic curves with 16 rational torsion points by Pythagorean triples

LECTURE 1: DIFFERENTIAL FORMS forms on R n

MATH Fundamental Mathematics IV

1 if 1 x 0 1 if 0 x 1

Linear Algebra I. Ronald van Luijk, 2012

Mathematical Physics, Lecture 9

GEOMETRIC PROPERTIES OF PROJECTIVE MANIFOLDS OF SMALL DEGREE

Mechanics 1: Conservation of Energy and Momentum

LINEAR ALGEBRA W W L CHEN

Walrasian Demand. u(x) where B(p, w) = {x R n + : p x w}.

0.8 Rational Expressions and Equations

Inner Product Spaces

The Division Algorithm for Polynomials Handout Monday March 5, 2012

ELLIPTIC CURVES AND LENSTRA S FACTORIZATION ALGORITHM

Au = = = 3u. Aw = = = 2w. so the action of A on u and w is very easy to picture: it simply amounts to a stretching by 3 and 2, respectively.

Math 21a Curl and Divergence Spring, Define the operator (pronounced del ) by. = i

MOP 2007 Black Group Integer Polynomials Yufei Zhao. Integer Polynomials. June 29, 2007 Yufei Zhao

Rotation Rate of a Trajectory of an Algebraic Vector Field Around an Algebraic Curve

Class Meeting # 1: Introduction to PDEs

Solving Systems of Linear Equations

Quotient Rings and Field Extensions

Critically Periodic Cubic Polynomials

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.436J/15.085J Fall 2008 Lecture 5 9/17/2008 RANDOM VARIABLES

PROJECTIVE GEOMETRY. b3 course Nigel Hitchin

CHAPTER 3. Methods of Proofs. 1. Logical Arguments and Formal Proofs

88 CHAPTER 2. VECTOR FUNCTIONS. . First, we need to compute T (s). a By definition, r (s) T (s) = 1 a sin s a. sin s a, cos s a

Short Programs for functions on Curves

The Factor Theorem and a corollary of the Fundamental Theorem of Algebra

Integer roots of quadratic and cubic polynomials with integer coefficients

MATH 425, PRACTICE FINAL EXAM SOLUTIONS.

5.3 Improper Integrals Involving Rational and Exponential Functions

The last three chapters introduced three major proof techniques: direct,

Gröbner Bases and their Applications

4.5 Linear Dependence and Linear Independence

Math 319 Problem Set #3 Solution 21 February 2002

Row Ideals and Fibers of Morphisms

Kenji Matsuki and Martin Olsson

Chapter 17. Orthogonal Matrices and Symmetries of Space

Chapter 3. Cartesian Products and Relations. 3.1 Cartesian Products

Chapter 13: Basic ring theory

1. First-order Ordinary Differential Equations

LEARNING OBJECTIVES FOR THIS CHAPTER

MATH10040 Chapter 2: Prime and relatively prime numbers

Numerical Analysis Lecture Notes

The Kolchin Topology

A characterization of trace zero symmetric nonnegative 5x5 matrices

Multi-variable Calculus and Optimization

x 2 + y 2 = 1 y 1 = x 2 + 2x y = x 2 + 2x + 1

Chapter 2. Parameterized Curves in R 3

Application. Outline. 3-1 Polynomial Functions 3-2 Finding Rational Zeros of. Polynomial. 3-3 Approximating Real Zeros of.

Notes V General Equilibrium: Positive Theory. 1 Walrasian Equilibrium and Excess Demand

CURVES WHOSE SECANT DEGREE IS ONE IN POSITIVE CHARACTERISTIC. 1. Introduction

5.1 Radical Notation and Rational Exponents

Lecture 4 Cohomological operations on theories of rational type.

The Mean Value Theorem

Practice with Proofs

Transcription:

INTRODUCTION TO ALGEBRAIC GEOMETRY, CLASS 24 RAVI VAKIL Contents 1. Degree of a line bundle / invertible sheaf 1 1.1. Last time 1 1.2. New material 2 2. The sheaf of differentials of a nonsingular curve 3 PS9backontoday;PS12out. PS10 back, PS11 due Thurs. Dec. 9. PS12 due Monday December 13. Show them a moebius strip, with sections. 1. Degree of a line bundle / invertible sheaf 1.1. Last time. Last time, I defined the Picard group of a variety X, denoted Pic(X), as the group of invertible sheaves on X. In the case when X was a nonsingular curve, I defined the Weil divisor class group of X, denoted Cl(X) = Div(X)/ Lin(X), and sketched why Pic(X) = Cl(X). Let me remind you of the two morphisms. For Pic(X) Cl(X), take your invertible sheaf L, and take any non-zero rational section s. Then take the class of (s) in Cl(X). For Cl(X) Pic(X), take any Weil divisor D representing your element of the class group. Then O C (D) defined last time is an invertible sheaf. Here s how O C ( n p p) was defined. Basically, sections over any open set are rational sections over that open set, where you are allowed to have certain poles and required to have certain zeros, depending on the n p for p in your open set. Precisely: O C ( n p p)(u) ={x k(c) v p (x)+n p 0 for all p U}. You will essentially check on PS11 that the order of vanishing at p of the section corresponding to x is v p (x)+n p. Date: Tuesday, December 7, 1999. 1

1.2. New material. Assume from now on that C is projective (and still nonsingular). In this case, we can define the degree of an invertible sheaf. The key technical result is: Theorem. Suppose s is a non-zero rational function on C. Let (s) = p C n pp. Then n p =0. Notice that we earlier proved this result when C = P 1. This theorem is not too tricky, but for the sake of time, I ll omit the proof. Let s look at its consequences. Definition / Easy Proposition. Define the degree function deg : Div Z, by deg( n p p)= n p. Then for D Lin, deg D = 0 (the theorem). Hence deg descends to give a function deg : Cl(C) Z and hence deg : Pic(C) Z. If you unwind the identification of the Picard group and the Class group, you get the following recipe to calculate the degree of an invertible sheaf L: find any non-zero rational section, and calculate find the sums of the orders of its zeros (and poles). 2. Example (not on problem set). Use this recipe to check that O P 1(2) has degree Suppose L were an invertible sheaf with a non-zero section s. Then this section s would have no poles, and possibly some zeros, so its degree would be non-negative. Moreover, if s had no zeros, then it would be invertible, so L would be the trivial sheaf. Hence: Proposition. An invertible sheaf of negative degree has no non-zero sections. An invertible sheaf of degree 0 has no non-zero sections unless it is the trivial sheaf, in which case it has a one-dimensional family of sections. Proof. All that s left to prove is that the trivial sheaf has precisely a onedimensional family of sections. In other words, C has a one-dimensional vector space of regular functions, the constants. This will follow from the next result. Proposition. Let C be a nonsingular projective curve. Then there are no nonconstant regular functions on C. (You proved this when C = P 1.) Proof. Suppose s were a nonconstant regular function on C. Let p be a point on C, and suppose s(p) = a k. Then s(p) a is another nonconstant regular function, and it has a zero at p. Hence its divisor (s a) has at least one zero and no poles, which has positive degree. But this is a rational function with positive degree, contradicting our Theorem. 2

2. The sheaf of differentials of a nonsingular curve I m going to describe this sheaf in a down-to-earth way. The best way to understand this sheaf is very explicitly. The best way to prove things is by describing it very abstractly. So I ll prove fewer things in the hope that you ll still understand what s going on. What I d most like is for you to be able to calculate things. Cotangent line bundle (= the sheaf of differentials). Definition of this sheaf. On an affine variety, say what it is: Ω 1 (U) isthea(u)- module generated by ds where r, s A(U). Rules: ds =0ifs k. d(r+s)= dr + ds. d(rs) = rds + sdr. Exercise. r A(U). Show d(r n )=nr n 1 dr if n 0. If r A(U), i.e. r is invertible, dr n = nr n 1 dr. Proposition. This is a finitely-generated module generated by dx 1,..., dx n, where x i are generators of A(U). Proof. ds(x 1,...,x n )= n i=1 s x i dx i. Example. If U = A 1 with coordinate x, then the global differentials on U are of the form f(x)dx where f(x) A(U) =k[x]. Clearly it is an A(U)-module. dx is the generator of this module. It doesn t vanish anywhere. If the variety is a nonsingular curve, this describes an invertible sheaf. I ll make this precise soon; assume it for now. But I first want to make some calculations, to show you that they are reasonable and straightforward. I won t explicitly explain why it is a sheaf, but I ll wave my hands in that direction. The following proposition will show how restriction maps from affines to distinguished opens work. Proposition. Ω 1 (D(f)) = Ω 1 (U) f. More precisely: there is a canonical isomorphism. Proof. Suppose A(U) is generated by x 1,..., x n as an algebra. Then Ω 1 (U) is generated by dx 1,..., dx n as an A(U)-algebra. Now A(D(f)) = A(U) f algebra. = A(U)[1/f] is generated by x 1,..., x n,1/f as an Ω 1 (D(f)) is generated by dx 1,..., dx n, d(1/f) = (1/f 2 )df 1 f 2 Ω 1 (U )asan A(D(f))-algebra. This is isomorphic to Ω 1 (U) f (explain). 3

The restriction map Ω 1 (U) Ω 1 (D(f)) is just the inclusion Ω 1 (U) Ω 1 (U) f. Remark. This description is the cotangent sheaf Ω X/k for any scheme X. Not invertible sheaf in general; it is a coherent sheaf, whatever that is. Note that it is an O X -module. Vector bundle if X is nonsingular. Dual to tangent bundle. The dualizing or canonical sheaf in that case is the top wedge power of the cotangent sheaf. Exercise. Calculate Ω 1 P n. In the case we re interested in, that of a nonsingular curve, this sheaf is actually an invertible sheaf. I ll wave my hands about that in a moment. But first, calculation: Proposition. Ω 1 P 1 = O P 1( 2). Proof. Assuming that Ω 1 P is an invertible sheaf, we need only find a non-zero 1 rational section and calculate its degree. Once again, let s set out our coordinates. Let [x 0 ; x 1 ] be projective coordinates on P 1.Lety 1 be the coordinate on standard affine U 0,so[x 0 ;x 1 ] = [1; y 1 ]. Let z 0 be the coordinate on standard affine U 1,so[x 0 ;x 1 ]=[z 0 ; 1]. Hence y 1 = x 1 /x 0, z 0 = x 0 /x 1 =1/y 1. Consider the differential dy 1 on U 0, that doesn t vanish anywhere. This will give a (rational) differential f(z 0 )dz 0 on U 1 ; we must figure out f. What to do: dy 1 = d(1/z 0 )=( 1/z 2 0)dz 0. Hence this has a double pole at z 0 = 0; the degree of this invertible sheaf is -2. Proposition. Ω 1 is invertible sheaf. Proof. I ll only prove this for plane curves (i.e. lying in A 2 ), but you ll see how the proof generalizes. Consider first the curve C given by f(x, y) =y 2 x 3 +x=0ina 2 ; suppose we re in characteristic 0. (Draw it.) We know that df =2ydy +(1 3x 2 )dx =0. Hence on the locus where 2y 0,dy is a multiple of dx. (We ve thrown out the locus where the tangent space is vertical. Precisely: Consider the distinguished open D(y). Then A(D(y)) = A(C)[1/y]. Also, Ω 1 (D(y)) is generated (as an A(D(y))-module) by dx and dy, anddy is in A(D(y))dx, soω 1 (D(y)) is generated by dx. Similarly, on the locus where 1 3x 2 0,dx is a multiple of dy These two open sets cover our curve C. 4

More generally, suppose C were a plane curve given by f(x, y) =0. Weknow that df = f x dx + f y dy. Hence on the locus where f x 0, dx is a multiple of dy, and on the locus where f y 0, dy is a multiple of dx. Ask them: how do we know we ve hit all points, i.e. how do we know that for all points p of C, eitherf x 0 or f y 0? Answer: C is nonsingular, so this is just the Jacobian condition! Remark. Let s go back to the plane curve example y 2 x 3 + x = 0. (Draw picture.) Notice that dx is a section of Ω 1 X. It is a uniformizer everywhere but where 2y = 0, and there we can take dy as the uniformizer. Then dx vanishes only where 2y = 0, and there it vanishes to order 1. Hence (dx) =( 1, 0) +(0, 0) +(1, 0). Proposition. Suppose C is a nonsingular plane cubic. Then Ω 1 C = O C. Immediately, we have a third or fourth proof of the corollary: Corollary. A nonsingular plane cubic is not isomorphic to P 1. (This is because deg Ω 1 C = 0, deg Ω1 P 1 = 2.) By the same method, you can prove that: Exercise. Suppose C is a nonsingular degree d curve in P 2.ThenΩ 1 C =O C (d 3). Proof of Proposition. I m going to make some reductions. They won t make the proof much easier, but they will make the proof of the above exercise more tractable. First of all, assume there is some line meeting the plane cubic at 3 distinct points (transversely, i.e. with multiplicity 1). This isn t hard; feel free to make this assumption in the exercise. Then choose coordinates [x 0 ; x 1 ; x 2 ], so this line is the line at infinity x 2 =0, and none of the 3 points are [0; 1; 0]. I ll do the rest of the proof in a particular case: f(x, y, z) =x 2 2x 0 x 3 1+x 1 x 2 0 =0. This is the projectivization of the curve a 2 = b 3 b, with appropriate choice of coordinates. Notice where it meets the line at infinity x 2 = 0: precisely where x 3 1 + x 1x 2 0 = 0, i.e. at the points [1; 1; 0], [1; 1; 0], [1; 0; 0]. (The conditions correspond to the fact that x 3 1 has a nonzero coefficient in the expression, and the cubic you get by setting x 2 = 0 has distinct roots.) Consider the standard affine U 2, with coordinates (x; y;1)=(x 0 ;x 1 ;x 2 ), and the standard affine U 0, with coordinates (1; w; z) =(x 0 ;x 1 ;x 2 ). (Note that they cover the curve; the only point of P 2 missed by these standard affines is (0; 1; 0), which we assumed wasn t on the curve.) Then consider the differential dx on U 2. It has no poles (on U 2 ). Let s find its zeros. We know that x y 3 + yx 2 =0,so(1 2xy)dx +( 3y 2 +x 2 )dy =0. The zeros of dx on U 2 are precisely where 3y 2 + x 2 = 0. We could find their 5

coordinates, but we don t have to: note that this is precisely where f x1 (x, y, 1) = 0: f x1 = 3x 2 1 + x 2 0. Equivalently, this is precisely where f x1 (x 0,x 1,x 2 ) = 0 (just check that there are no places where this vanishes at infinity). Thus O(dx) = O(2); it vanishes at 6 points (with appropriate multiplicity). Next, let s extend this to a rational differential over all of C. Let s see how to extend dx over U 0. Note that x =1/z, sodx = 1/z 2 dz. Where does dz vanish? The same argument shows that dz vanishes precisely where f x1 (x 0,x 1,x 2 ) = 0 vanishes; we ve already counted these points. z = 0 vanishes at our 3 points on the line at infinity, so O((1/z 2 )) = O( 2) (explain that statement!). Hence this rational section vanishes at the 6 points in the plane, and has a pole to order 2 at each of the 3 points at infinity, so it has total degree 0. More generally, this line bundle is trivial: those 6 points are in the class of O(2), and those poles are in the class of O( 2). Exercise. Suppose X is a nonsingular curve, and p a point on X. Let U be an affine neighborhood of p, and let mbe the maximal ideal of A(U) corresponding to p. Then we earlier identified the cotangent space to X at p with m/m 2. As Ω 1 is the cotangent sheaf, there should be a natural map (of A(U)-modules) from Ω 1 (U) m/m 2. Describe this map explicitly. (Hence there is a natural map from the stalk of Ω 1 p to m/m 2.) Exercise: Pullback of differentials. Suppose π : X Y is a morphism of nonsingular curves. Show that there is a natural map from global differentials on Y (i.e. global sections of Ω 1 Y ) to global differentials on X. The naturality of your construction will show that there is a natural morphism of invertible sheaves on X, π 1 Ω 1 Y Ω1 X. (Equivalently, there is a natural morphism of sheaves on Y, Ω 1 Y π Ω 1 X ; but π Ω 1 X isn t an invertible sheaf, so we don t yet have the language to effectively discuss it.) Exercise: Residues. In complex analysis, a differential on a one-dimensional complex manifold with a simple pole at a point p has a naturally-defined residue at that point: in any analytic coordinate z at p (i.e. p corresponds to z = 0), if the differential is of the form (a 1 /z + f(z))dz where f(z) is analytic, then the residue is a 1, and this is independent of the choice of analytic coordinate. Show that the same is true in algebraic geometry: suppose X is a nonsingular curve, p a point of X, andsa differential on X with simple pole at p; define the residue of s at p (and show that it is well-defined, i.e. that it doesn t depend on any choice). Coming soon: The genus of a nonsingular projective curve. The Riemann-Roch theorem with applications but no proof. 6