RIGIDITY OF HOLOMORPHIC MAPS BETWEEN FIBER SPACES
|
|
|
- Theodore Flynn
- 10 years ago
- Views:
Transcription
1 RIGIDITY OF HOLOMORPHIC MAPS BETWEEN FIBER SPACES GAUTAM BHARALI AND INDRANIL BISWAS Abstract. In the study of holomorphic maps, the term rigidity refers to certain types of results that give us very specific information about a general class of holomorphic maps owing to the geometry of their domains or target spaces. Under this theme, we begin by studying when, given two compact connected complex manifolds X and Y, a degree-one holomorphic map f : Y X is a biholomorphism. Given that the real manifolds underlying X and Y are diffeomorphic, we provide a condition under which f is a biholomorphism. Using this result, we deduce a rigidity result for holomorphic self-maps of the total space of a holomorphic fiber space. Lastly, we consider products X = X 1 X 2 and Y = Y 1 Y 2 of compact connected complex manifolds. When X 1 is a Riemann surface of genus 2, we show that any non-constant holomorphic map F : Y X is of a special form. 1. Introduction The degree of a continuous map f : Y X between compact connected oriented smooth manifolds of dimension n is defined as follows: f (1 X ) = degree(f) 1 Y, where 1 X (respectively, 1 Y ) is the unique generator of H n (X, Z) (respectively, H n (Y, Z)) compatible with the orientation. When X and Y are compact connected complex manifolds and f : Y X is holomorphic, there are natural situations in which, if f is a degree-one map, then it is automatically a biholomorphism. If X = Y is a compact Riemann surface, this follows from the Riemann Hurwitz formula. We encounter a significant obstacle when dim C X = dim C Y 2. Note that degree(f) as defined is precisely the topological degree of of f. When degree(f) = 1, it follows that the pre-image of a generic point in X but not necessarily every point is a singleton. Thus, it may happen (and it does: consider the case when f : Y X is a blow-up) that there exists a non-empty proper subvariety of Y on which f fails to be injective. Hence, one must impose some conditions on X and Y for f to be a biholomorphism. We explore this phenomenon when it is known a priori that the real manifolds underlying X and Y are diffeomorphic. We prove the following: Theorem 1.1. Let X and Y be compact connected complex manifolds such that the underlying real manifolds are diffeomorphic, and let f : Y X be a degree-one holomorphic map. If dim H 1 (X, O X ) = dim H 1 (Y, O Y ), then f is a biholomorphism Mathematics Subject Classification. Primary 32L05, 53C24; Secondary 55R05. Key words and phrases. Degree-one maps, holomorphic fiber spaces, rigidity. The first author is supported in part by a UGC Centre of Advanced Study grant. 1
2 2 GAUTAM BHARALI AND INDRANIL BISWAS Remark 1.2. One expects some restrictions on the complex geometry of X and Y for a degree-one map f : Y X to be biholomorphic. The assumption on cohomology in Theorem 1.1 is a restriction of this sort. It is a rather mild condition: it is satisfied, for instance, whenever X and Y are Kähler (this follows from the Hodge decomposition and the fact that X and Y in Theorem 1.1 are diffeomorphic as real manifolds). The above theorem forms the key final step in the following rigidity result for a holomorphic self-map of a fiber space. Loosely speaking, if a holomorphic map of the total space sends just a single fiber of a fiber space to another fiber, then it must be a map of fiber spaces. More precisely: Proposition 1.3. Let X and Y be complex manifolds, let p : Y X be a proper holomorphic surjective submersion having connected fibers, and let X be connected. Let F : Y Y be a holomorphic map such that there exist points a, b X with the property that F maps the fiber Y a := p 1 {a} into the fiber Y b := p 1 {b}. Then: a) The map F is a map of fiber spaces: i.e., there exists a holomorphic map f : X X such that p F = f p. b) If, additionally, F Ya is a degree-one map from Y a to Y b and if dim H 1 (Y x, O Yx ) is independent of x X, then F is a fiberwise biholomorphism. The term rigidity for holomorphic maps often refers to the phenomenon of a holomorphic map being structurally simple owing to the geometry of its domain or target space; see, for example, results by Remmert Stein [6, Satz 12, 13], Kaup [3, Satz 5.2] or Kobayashi [4, Theorem ]. In the set-up of Proposition 1.3, a rigidity result in this sense would require one to determine, for instance, conditions on (Y, X, p) that would cause any F : Y Y to preserve at least one fiber. This seems to be a difficult requirement. However, in the simpler set-up of certain product spaces, we do get a rigidity result of the above-mentioned style. It comes as a corollary of the following: Proposition 1.4. Let Y = Y 1 Y 2 be a product of compact connected complex manifolds and let f : Y X be a holomorphic map into a compact Riemann surface of genus 2. Then (denoting each y Y as (y 1, y 2 ), y j Y j, j = 1, 2) f depends on at most one of y 1 and y 2. This has the obvious corollary: Corollary 1.5. Let Y = Y 1 Y 2 and X = X 1 X 2 be products of compact connected complex manifolds. Assume that X 1 is a compact Riemann surface of genus 2. Let F = (F 1, F 2 ) : Y X be a holomorphic map. Then, there is a j {1, 2} such that F has the form F (y 1, y 2 ) = (F 1 (y j ), F 2 (y 1, y 2 )). One may compare the above to a result by Janardhanan [2]. The hypothesis of Corollary 1.5 is weakened to allow the factors of Y to have arbitrary dimension; but with dim C Y j = dim C X j = 1, Janardhanan is also able to handle the case when some of the factors are non-compact. Remark 1.6. The assumptions in Proposition 1.4 and Corollary 1.5 cannot be weakened appreciably. Suppose Y 1 Y 2 are two holomorphically distinct compact connected complex manifolds and suppose X is a compact Riemann surface of genus 2 such that there are non-constant holomorphic maps f j : Y j X, j = 1, 2. Then, just
3 RIGIDITY 3 taking X = X X and f = (f 1, f 2 ) in Proposition 1.4 shows that it cannot be true in general if dim C X 2 (more involved examples can be constructed in which dim C X 2 and is not a product). As for the requirement on the genus of X being essential: the reader is referred to [2, Remark 1.7]. 2. The proof of Theorem 1.1 Let n be the complex dimension of X (also of Y ). Let f : H (X, Q) H (Y, Q) (2.1) be the pullback homomorphism for f. We will show that f is an isomorphism. To do so, given any non-zero class c H i (X, Q), take c H 2n i (X, Q) such that c c 0. Since ((f c) (f c )) [Y ] = f (c c ) [Y ] = degree(f) (c c ) [X], we conclude that f c 0 for c 0. Hence f is injective. We have dim H (X, Q) = dim H (Y, Q) because X and Y are diffeomorphic as real manifolds. Hence the injective homomorphism f is an isomorphism. The differential of f produces a holomorphic section of the holomorphic line bundle Ω n Y f (Ω n X ) on Y. This section will be denoted by s. Let D := Divisor(s) Y (2.2) be the effective divisor of this section. We note that f is a biholomorphism from Y \ D to X \ f(d). So to prove the theorem, it suffices to show that D is the zero divisor. To prove that D is the zero divisor, we first note that f(d) X is of complex codimension at least two. Indeed, the given condition that the degree of f is one implies that if, for an irreducible component D of D, the image f(d ) is a divisor in X, then f is an isomorphism on a neighborhood of D. But this implies that D is not contained in D. Therefore, f(d) X is of complex codimension at least two. Let c(d) H 2 (Y, Q) be the cohomology class of D. Since f(d) X is of complex codimension at least two, and f in (2.1) is an isomorphism, it follows that Now consider the short exact sequence of sheaves on Y c(d) = 0. (2.3) 0 Z O Y exp O Y 0. Let H 1 β (Y, O Y ) H 1 (Y, OY q ) H 2 (Y, Z) (2.4) be the long exact sequence of cohomologies associated to it. The class in H 1 (Y, OY ) for the holomorphic line bundle Ω n Y f (Ω n X ) (this is the line bundle associated to D) will be denoted by γ(d). For any positive integer m, the class in H 1 (Y, OY ) for the holomorphic line bundle (Ω n Y f (Ω n X ) ) m is γ(d) m. From (2.3) if follows that there is a positive integer N such that q(γ(d) N ) = 0, where q is the homomorphism in (2.4). Therefore, there is a cohomology class α H 1 (Y, O Y ) such that β(α) = γ(d) N. (2.5)
4 4 GAUTAM BHARALI AND INDRANIL BISWAS Consider the pullback homomorphism F : H 1 (X, O X ) H 1 (Y, f O X ) = H 1 (Y, O Y ) (2.6) for f. We will show that F is injective. To prove this, first note that f O Y = O X. Using this isomorphism, the natural homomorphism H 1 (X, f O Y ) H 1 (Y, O Y ) (2.7) coincides with F in (2.6). But the homomorphism in (2.7) is injective. Hence F is injective. We now invoke the assumption that dim H 1 (X, O X ) = dim H 1 (Y, O Y ). Since F is an injective homomorphism between vector spaces of same dimension, we conclude that F is an isomorphism. Take α H 1 (X, O X ) such that α = F (α ), (2.8) where α is the cohomology class in (2.5). Let L be the holomorphic line bundle on X corresponding to the element β (α ) H 1 (X, OX ), where β : H 1 (X, O X ) H 1 (X, O X) is the homomorphism given by exp : O X OX. From (2.5) and (2.8) it follows that (Ω n Y f (Ω n X) ) N = f L. The holomorphic line bundle (Ω n Y f (Ω n X ) ) N is holomorphically trivial on Y \ D. Consequently, L is holomorphically trivial on X \f(d) (recall that f is a biholomorphism from Y \ D to X \ f(d)). Since L is holomorphically trivial on X \ f(d), and f(d) X is of complex codimension at least two, the holomorphic line bundle L on X is holomorphically trivial. Therefore, the holomorphic line bundle (Ω n Y f (Ω n X ) ) N = f L on Y is holomorphically trivial. Finally, consider the section s in (2.2). Note that s N is a holomorphic section of (Ω n Y f (Ω n X ) ) N vanishing on D and nonzero elsewhere. On the other hand, any holomorphic section of the holomorphically trivial line bundle on Y is either nowhere zero, or it is identically zero. Therefore, we conclude that D is the zero divisor. This completes the proof of Theorem The proof of Proposition 1.3 Given the conditions on p, it follows from Ehresmann s theorem [1] that the triple (Y, X, p) is a C -smooth fiber bundle with fiber F. Thus, for each x X, there is a connected open neighborhood U x of x and a diffeomorphism ϕ x : p 1 (U x ) U x F such that the diagram p 1 (U x ) ϕ x U x F p proj 1 U x
5 RIGIDITY 5 commutes (here, proj 1 denotes the projection of U x F onto the first factor). Write S := {x X : x X such that F (Y x ) Y x }. We shall first show that S is an open set. Suppose x 0 S, whence there is a point x X such that F (Y x0 ) Y x. Let B x be a neighborhood around x that is biholomorphic to a ball. By continuity of F and p, and due to compactness of Y x0, we can find an open neighborhood V x0 of x 0 such that p F (p 1 (V x0 )) B x. Recall that, by hypothesis, the fibers of p are connected. Thus, for each x V x0 : Y x is a connected, compact complex manifold. p F maps each Y x into an Euclidean open set. It follows from the maximum modulus theorem that p F Yx is constant for each x V x0. This means: x 0 S V x0 S. In other words, S is an open set. We now argue that S is closed. Write d = dim C X and k = dim C Y. There is a C -atlas {(W y ; x y 1,..., xy 2d, Φy 1,..., Φy 2k ) : y Y } of Y, where W y is a coordinate patch centered at y such that Y p(z) W y and where each C p(z) j We claim that = {x y 1 = Cp(z) 1,..., x y 2d = Cp(z) 2d } z W y, R is a constant that depends only on p(z). Let Ω y := the connected component of W y F 1 (W F (y) ) containing y. p 1 (S) Ω y = 2d i=1 α N 2k \{(0,...,0)} {z Ω y : α ( x F (y) i F ) } Φ y,α (z) = 0. (3.1) (The abbreviated notation α g/ Φ y,α for any C -smooth R-valued function g defined on an open subset of Y has the usual meaning that involves an implied composition with a local chart.) That p 1 (S) Ω y is a subset of the set on the right-hand side of (3.1) (call it K y ) is clear. Now, if z K y, it implies that there is a small open neighborhood N z of z such that the holomorphic map p F : Y p(z) X is constant on the set N z Y p(z). By the principle of analytic continuation, p F must be constant on Y p(z). So, p(z) S and hence K y p 1 (S) Ω y. This establishes (3.1). By (3.1), the intersection p 1 (S) Ω y is closed relative to each Ω y. As {Ω y : y Y } is an open cover of Y, we see that p 1 (S) is closed. It is now easy to see, as (Y, X, p) is locally trivial, that S is closed. By hypothesis, S. As X is connected, it follows that S = X. Since S = X, the map f : X X given by f(x) := p F (y) for any y Y x is well-defined. Clearly p F = f p. Let us now fix a point p F. For any x 0 X, f U x 0 (x) = p F ϕ 1 x 0 (x, p) x U x 0, whence f is C -smooth. Therefore, relative to any local holomorphic coordinate system, we can apply the Cauchy Riemann operator to the equation p F = f p to conclude that f is holomorphic. This establishes part (a) of Proposition 1.3. To prove part (b), recall that given any set Σ C(F; F) where the latter denotes the space of all continuous self-maps of F endowed with the compact-open topology
6 6 GAUTAM BHARALI AND INDRANIL BISWAS the function from Σ to Z defined by ψ degree(ψ) is locally constant. Hence, as X is connected and, by hypothesis, degree(f Ya ) = 1, we have From our hypothesis, it follows that degree(f Yx ) = 1 x X. (3.2) dim H 1 (Y x, O Yx ) = dim H 1 (Y f(x), O Yf(x) ) x X. In view of this, (3.2), and the fact that fibers are connected, we may apply Theorem 1.1 to conclude that F is a fiberwise biholomorphism. This completes the proof of Proposition Concerning Proposition 1.4 and Corollary 1.5 Corollary 1.5 is an absolutely obvious consequence of Proposition 1.4. Thus, we shall only discuss the latter. The proof of Proposition 1.4 relies upon the following result of Kobayashi Ochiai: Result 4.1 (Theorem 7.6.1, [4]). Let X and Y be two compact complex-analytic spaces. If Y is of general type, then the set of all dominant meromorphic maps of X to Y is finite. The proof of Proposition 1.4. Since there is nothing to prove if f is constant, we shall assume that f is non-constant. For each y = (y 1, y 2 ) Y, we define: f y 2 := f(, y 2 ), f y 1 := f(y 1, ). Assume that both f y 2 and f y 1 are non-surjective for each y Y. As f y 2 is a holomorphic map between compact complex manifolds, for each fixed y 2 Y 2, f y 2 (Y 1 ) X is a complex-analytic subvariety. Thus, f y 2 is a constant map for each y 2 Y 2 ; call this constant c(y 2 ). Fix a point a Y 1. By the same argument as above, we have c(y 2 ) = f(a, y 2 ) = C y 2 Y 2, where C is a constant. This contradicts the fact that f is non-constant. Hence, there exists a j {1, 2} and a point a = (a 1, a 2 ) Y such that f a j is surjective. There is no loss of generality in taking j = 1. By continuity of f and compactness of Y 2, it follows that there is an open neighborhood U Y 1 of a 1 such that the maps f(z, ) : Y 2 X are surjective for each z U. Since X has genus 2, it is of general type. It follows from Result 4.1 (which is a refinement of an argument of Kobayashi Ochiai [5]) that the surjective holomorphic maps from Y 2 to X form a finite set. Hence, f restricted to the open set π 1 Y, 1 (U) (where π Y, k denotes the projection of Y onto its kth factor) is independent of y 1. By the principle of analytic continuation, it follows that f is independent of y 1. Hence the desired result. Acknowledgements. proof of Theorem 1.1. We are very grateful to N. Fakhruddin for his help with the
7 RIGIDITY 7 References [1] C. Ehresmann, Les connexions infinitésimales dans un espace fibré différentiable, Colloque de Topologie, Bruxelles (1950), [2] J. Janardhanan, Proper holomorphic mappings between hyperbolic product manifolds, arxiv preprint arxiv: v2. [3] W. Kaup, Hyperbolische komplexe Räume, Ann. Inst. Fourier 18 (1968), [4] S. Kobayashi, Hyperbolic Complex Spaces, Grundlehren der mathematischen Wissenschaften, vol. 318, Springer-Verlag, Berlin, [5] S. Kobayashi and T. Ochiai, Meromorphic mappings onto compact complex spaces of general type, Invent. Math. 31 (1975), [6] R. Remmert and K. Stein, Eigentliche holomorphe Abbildungen, Math. Z. 73 (1960), Department of Mathematics, Indian Institute of Science, Bangalore , India address: [email protected] School of Mathematics, Tata Institute of Fundamental Research, Mumbai , India address: [email protected]
THE FUNDAMENTAL THEOREM OF ALGEBRA VIA PROPER MAPS
THE FUNDAMENTAL THEOREM OF ALGEBRA VIA PROPER MAPS KEITH CONRAD 1. Introduction The Fundamental Theorem of Algebra says every nonconstant polynomial with complex coefficients can be factored into linear
1. Introduction. PROPER HOLOMORPHIC MAPPINGS BETWEEN RIGID POLYNOMIAL DOMAINS IN C n+1
Publ. Mat. 45 (2001), 69 77 PROPER HOLOMORPHIC MAPPINGS BETWEEN RIGID POLYNOMIAL DOMAINS IN C n+1 Bernard Coupet and Nabil Ourimi Abstract We describe the branch locus of proper holomorphic mappings between
Singular fibers of stable maps and signatures of 4 manifolds
359 399 359 arxiv version: fonts, pagination and layout may vary from GT published version Singular fibers of stable maps and signatures of 4 manifolds OSAMU SAEKI TAKAHIRO YAMAMOTO We show that for a
Mathematics Course 111: Algebra I Part IV: Vector Spaces
Mathematics Course 111: Algebra I Part IV: Vector Spaces D. R. Wilkins Academic Year 1996-7 9 Vector Spaces A vector space over some field K is an algebraic structure consisting of a set V on which are
8.1 Examples, definitions, and basic properties
8 De Rham cohomology Last updated: May 21, 211. 8.1 Examples, definitions, and basic properties A k-form ω Ω k (M) is closed if dω =. It is exact if there is a (k 1)-form σ Ω k 1 (M) such that dσ = ω.
FOUNDATIONS OF ALGEBRAIC GEOMETRY CLASS 22
FOUNDATIONS OF ALGEBRAIC GEOMETRY CLASS 22 RAVI VAKIL CONTENTS 1. Discrete valuation rings: Dimension 1 Noetherian regular local rings 1 Last day, we discussed the Zariski tangent space, and saw that it
Sets of Fibre Homotopy Classes and Twisted Order Parameter Spaces
Communications in Mathematical Physics Manuscript-Nr. (will be inserted by hand later) Sets of Fibre Homotopy Classes and Twisted Order Parameter Spaces Stefan Bechtluft-Sachs, Marco Hien Naturwissenschaftliche
TOPOLOGY OF SINGULAR FIBERS OF GENERIC MAPS
TOPOLOGY OF SINGULAR FIBERS OF GENERIC MAPS OSAMU SAEKI Dedicated to Professor Yukio Matsumoto on the occasion of his 60th birthday Abstract. We classify singular fibers of C stable maps of orientable
Math 231b Lecture 35. G. Quick
Math 231b Lecture 35 G. Quick 35. Lecture 35: Sphere bundles and the Adams conjecture 35.1. Sphere bundles. Let X be a connected finite cell complex. We saw that the J-homomorphism could be defined by
On The Existence Of Flips
On The Existence Of Flips Hacon and McKernan s paper, arxiv alg-geom/0507597 Brian Lehmann, February 2007 1 Introduction References: Hacon and McKernan s paper, as above. Kollár and Mori, Birational Geometry
Row Ideals and Fibers of Morphisms
Michigan Math. J. 57 (2008) Row Ideals and Fibers of Morphisms David Eisenbud & Bernd Ulrich Affectionately dedicated to Mel Hochster, who has been an inspiration to us for many years, on the occasion
Fiber sums of genus 2 Lefschetz fibrations
Proceedings of 9 th Gökova Geometry-Topology Conference, pp, 1 10 Fiber sums of genus 2 Lefschetz fibrations Denis Auroux Abstract. Using the recent results of Siebert and Tian about the holomorphicity
MA651 Topology. Lecture 6. Separation Axioms.
MA651 Topology. Lecture 6. Separation Axioms. This text is based on the following books: Fundamental concepts of topology by Peter O Neil Elements of Mathematics: General Topology by Nicolas Bourbaki Counterexamples
I. GROUPS: BASIC DEFINITIONS AND EXAMPLES
I GROUPS: BASIC DEFINITIONS AND EXAMPLES Definition 1: An operation on a set G is a function : G G G Definition 2: A group is a set G which is equipped with an operation and a special element e G, called
ANALYTICITY OF SETS ASSOCIATED TO LELONG NUMBERS AND THE EXTENSION OF MEROMORPHIC MAPS 1
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY Volume 79, Number 6, November 1973 ANALYTICITY OF SETS ASSOCIATED TO LELONG NUMBERS AND THE EXTENSION OF MEROMORPHIC MAPS 1 BY YUM-TONG SIU 2 Communicated
Chapter 4, Arithmetic in F [x] Polynomial arithmetic and the division algorithm.
Chapter 4, Arithmetic in F [x] Polynomial arithmetic and the division algorithm. We begin by defining the ring of polynomials with coefficients in a ring R. After some preliminary results, we specialize
NOTES ON CATEGORIES AND FUNCTORS
NOTES ON CATEGORIES AND FUNCTORS These notes collect basic definitions and facts about categories and functors that have been mentioned in the Homological Algebra course. For further reading about category
Basic Concepts of Point Set Topology Notes for OU course Math 4853 Spring 2011
Basic Concepts of Point Set Topology Notes for OU course Math 4853 Spring 2011 A. Miller 1. Introduction. The definitions of metric space and topological space were developed in the early 1900 s, largely
Nonzero degree tangential maps between dual symmetric spaces
ISSN 1472-2739 (on-line) 1472-2747 (printed) 709 Algebraic & Geometric Topology Volume 1 (2001) 709 718 Published: 30 November 2001 ATG Nonzero degree tangential maps between dual symmetric spaces Boris
Mathematics for Computer Science/Software Engineering. Notes for the course MSM1F3 Dr. R. A. Wilson
Mathematics for Computer Science/Software Engineering Notes for the course MSM1F3 Dr. R. A. Wilson October 1996 Chapter 1 Logic Lecture no. 1. We introduce the concept of a proposition, which is a statement
Prime Numbers and Irreducible Polynomials
Prime Numbers and Irreducible Polynomials M. Ram Murty The similarity between prime numbers and irreducible polynomials has been a dominant theme in the development of number theory and algebraic geometry.
it is easy to see that α = a
21. Polynomial rings Let us now turn out attention to determining the prime elements of a polynomial ring, where the coefficient ring is a field. We already know that such a polynomial ring is a UF. Therefore
The Tangent Bundle. Jimmie Lawson Department of Mathematics Louisiana State University. Spring, 2006
The Tangent Bundle Jimmie Lawson Department of Mathematics Louisiana State University Spring, 2006 1 The Tangent Bundle on R n The tangent bundle gives a manifold structure to the set of tangent vectors
ON COMPLETELY CONTINUOUS INTEGRATION OPERATORS OF A VECTOR MEASURE. 1. Introduction
ON COMPLETELY CONTINUOUS INTEGRATION OPERATORS OF A VECTOR MEASURE J.M. CALABUIG, J. RODRÍGUEZ, AND E.A. SÁNCHEZ-PÉREZ Abstract. Let m be a vector measure taking values in a Banach space X. We prove that
Separation Properties for Locally Convex Cones
Journal of Convex Analysis Volume 9 (2002), No. 1, 301 307 Separation Properties for Locally Convex Cones Walter Roth Department of Mathematics, Universiti Brunei Darussalam, Gadong BE1410, Brunei Darussalam
ADDITIVE GROUPS OF RINGS WITH IDENTITY
ADDITIVE GROUPS OF RINGS WITH IDENTITY SIMION BREAZ AND GRIGORE CĂLUGĂREANU Abstract. A ring with identity exists on a torsion Abelian group exactly when the group is bounded. The additive groups of torsion-free
CURVES WHOSE SECANT DEGREE IS ONE IN POSITIVE CHARACTERISTIC. 1. Introduction
Acta Math. Univ. Comenianae Vol. LXXXI, 1 (2012), pp. 71 77 71 CURVES WHOSE SECANT DEGREE IS ONE IN POSITIVE CHARACTERISTIC E. BALLICO Abstract. Here we study (in positive characteristic) integral curves
11 Ideals. 11.1 Revisiting Z
11 Ideals The presentation here is somewhat different than the text. In particular, the sections do not match up. We have seen issues with the failure of unique factorization already, e.g., Z[ 5] = O Q(
FIXED POINT SETS OF FIBER-PRESERVING MAPS
FIXED POINT SETS OF FIBER-PRESERVING MAPS Robert F. Brown Department of Mathematics University of California Los Angeles, CA 90095 e-mail: [email protected] Christina L. Soderlund Department of Mathematics
FIBER PRODUCTS AND ZARISKI SHEAVES
FIBER PRODUCTS AND ZARISKI SHEAVES BRIAN OSSERMAN 1. Fiber products and Zariski sheaves We recall the definition of a fiber product: Definition 1.1. Let C be a category, and X, Y, Z objects of C. Fix also
LINEAR ALGEBRA W W L CHEN
LINEAR ALGEBRA W W L CHEN c W W L Chen, 1997, 2008 This chapter is available free to all individuals, on understanding that it is not to be used for financial gain, and may be downloaded and/or photocopied,
ON THE NUMBER OF REAL HYPERSURFACES HYPERTANGENT TO A GIVEN REAL SPACE CURVE
Illinois Journal of Mathematics Volume 46, Number 1, Spring 2002, Pages 145 153 S 0019-2082 ON THE NUMBER OF REAL HYPERSURFACES HYPERTANGENT TO A GIVEN REAL SPACE CURVE J. HUISMAN Abstract. Let C be a
You know from calculus that functions play a fundamental role in mathematics.
CHPTER 12 Functions You know from calculus that functions play a fundamental role in mathematics. You likely view a function as a kind of formula that describes a relationship between two (or more) quantities.
ON SEQUENTIAL CONTINUITY OF COMPOSITION MAPPING. 0. Introduction
ON SEQUENTIAL CONTINUITY OF COMPOSITION MAPPING Abstract. In [1] there was proved a theorem concerning the continuity of the composition mapping, and there was announced a theorem on sequential continuity
4. Expanding dynamical systems
4.1. Metric definition. 4. Expanding dynamical systems Definition 4.1. Let X be a compact metric space. A map f : X X is said to be expanding if there exist ɛ > 0 and L > 1 such that d(f(x), f(y)) Ld(x,
SOME PROPERTIES OF FIBER PRODUCT PRESERVING BUNDLE FUNCTORS
SOME PROPERTIES OF FIBER PRODUCT PRESERVING BUNDLE FUNCTORS Ivan Kolář Abstract. Let F be a fiber product preserving bundle functor on the category FM m of the proper base order r. We deduce that the r-th
Introduction to Algebraic Geometry. Bézout s Theorem and Inflection Points
Introduction to Algebraic Geometry Bézout s Theorem and Inflection Points 1. The resultant. Let K be a field. Then the polynomial ring K[x] is a unique factorisation domain (UFD). Another example of a
Cartesian Products and Relations
Cartesian Products and Relations Definition (Cartesian product) If A and B are sets, the Cartesian product of A and B is the set A B = {(a, b) :(a A) and (b B)}. The following points are worth special
Degree Hypergroupoids Associated with Hypergraphs
Filomat 8:1 (014), 119 19 DOI 10.98/FIL1401119F Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat Degree Hypergroupoids Associated
WHAT ARE MATHEMATICAL PROOFS AND WHY THEY ARE IMPORTANT?
WHAT ARE MATHEMATICAL PROOFS AND WHY THEY ARE IMPORTANT? introduction Many students seem to have trouble with the notion of a mathematical proof. People that come to a course like Math 216, who certainly
tr g φ hdvol M. 2 The Euler-Lagrange equation for the energy functional is called the harmonic map equation:
Notes prepared by Andy Huang (Rice University) In this note, we will discuss some motivating examples to guide us to seek holomorphic objects when dealing with harmonic maps. This will lead us to a brief
Finite covers of a hyperbolic 3-manifold and virtual fibers.
Claire Renard Institut de Mathématiques de Toulouse November 2nd 2011 Some conjectures. Let M be a hyperbolic 3-manifold, connected, closed and oriented. Theorem (Kahn, Markovic) The fundamental group
Metric Spaces. Chapter 1
Chapter 1 Metric Spaces Many of the arguments you have seen in several variable calculus are almost identical to the corresponding arguments in one variable calculus, especially arguments concerning convergence
BANACH AND HILBERT SPACE REVIEW
BANACH AND HILBET SPACE EVIEW CHISTOPHE HEIL These notes will briefly review some basic concepts related to the theory of Banach and Hilbert spaces. We are not trying to give a complete development, but
On deformation of nef values. Jaros law A. Wiśniewski
On deformation of nef values Jaros law A. Wiśniewski Introduction. Let L be an ample line bundle over a smooth projective variety X. It follows from a theorem of Kawamata that if the canonical divisor
FACTORING POLYNOMIALS IN THE RING OF FORMAL POWER SERIES OVER Z
FACTORING POLYNOMIALS IN THE RING OF FORMAL POWER SERIES OVER Z DANIEL BIRMAJER, JUAN B GIL, AND MICHAEL WEINER Abstract We consider polynomials with integer coefficients and discuss their factorization
MICROLOCAL ANALYSIS OF THE BOCHNER-MARTINELLI INTEGRAL
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 00, Number 0, Pages 000 000 S 0002-9939(XX)0000-0 MICROLOCAL ANALYSIS OF THE BOCHNER-MARTINELLI INTEGRAL NIKOLAI TARKHANOV AND NIKOLAI VASILEVSKI
Chapter 13: Basic ring theory
Chapter 3: Basic ring theory Matthew Macauley Department of Mathematical Sciences Clemson University http://www.math.clemson.edu/~macaule/ Math 42, Spring 24 M. Macauley (Clemson) Chapter 3: Basic ring
Hodge type of projective varieties of low degree
Math. Ann. 293, 1-6 (1992) Am O Springer-Verlag 1992 Hodge type of projective varieties of low degree H6l+ne Esnault 1, M. V. Nori z, and V. Srinivas 3 ' Universit~it Essen, FB 6, Mathematik, W-4300 Essen-1,
Finite dimensional topological vector spaces
Chapter 3 Finite dimensional topological vector spaces 3.1 Finite dimensional Hausdorff t.v.s. Let X be a vector space over the field K of real or complex numbers. We know from linear algebra that the
How To Know If A Domain Is Unique In An Octempo (Euclidean) Or Not (Ecl)
Subsets of Euclidean domains possessing a unique division algorithm Andrew D. Lewis 2009/03/16 Abstract Subsets of a Euclidean domain are characterised with the following objectives: (1) ensuring uniqueness
POLYNOMIAL RINGS AND UNIQUE FACTORIZATION DOMAINS
POLYNOMIAL RINGS AND UNIQUE FACTORIZATION DOMAINS RUSS WOODROOFE 1. Unique Factorization Domains Throughout the following, we think of R as sitting inside R[x] as the constant polynomials (of degree 0).
SMALL SKEW FIELDS CÉDRIC MILLIET
SMALL SKEW FIELDS CÉDRIC MILLIET Abstract A division ring of positive characteristic with countably many pure types is a field Wedderburn showed in 1905 that finite fields are commutative As for infinite
1 Sets and Set Notation.
LINEAR ALGEBRA MATH 27.6 SPRING 23 (COHEN) LECTURE NOTES Sets and Set Notation. Definition (Naive Definition of a Set). A set is any collection of objects, called the elements of that set. We will most
INDISTINGUISHABILITY OF ABSOLUTELY CONTINUOUS AND SINGULAR DISTRIBUTIONS
INDISTINGUISHABILITY OF ABSOLUTELY CONTINUOUS AND SINGULAR DISTRIBUTIONS STEVEN P. LALLEY AND ANDREW NOBEL Abstract. It is shown that there are no consistent decision rules for the hypothesis testing problem
SINTESI DELLA TESI. Enriques-Kodaira classification of Complex Algebraic Surfaces
Università degli Studi Roma Tre Facoltà di Scienze Matematiche, Fisiche e Naturali Corso di Laurea Magistrale in Matematica SINTESI DELLA TESI Enriques-Kodaira classification of Complex Algebraic Surfaces
Mathematische Zeitschrift
Math. Z. (212 27:871 887 DOI 1.17/s29-1-83-2 Mathematische Zeitschrift Modular properties of nodal curves on K3 surfaces Mihai Halic Received: 25 April 21 / Accepted: 28 November 21 / Published online:
CONTRIBUTIONS TO ZERO SUM PROBLEMS
CONTRIBUTIONS TO ZERO SUM PROBLEMS S. D. ADHIKARI, Y. G. CHEN, J. B. FRIEDLANDER, S. V. KONYAGIN AND F. PAPPALARDI Abstract. A prototype of zero sum theorems, the well known theorem of Erdős, Ginzburg
(a) Write each of p and q as a polynomial in x with coefficients in Z[y, z]. deg(p) = 7 deg(q) = 9
Homework #01, due 1/20/10 = 9.1.2, 9.1.4, 9.1.6, 9.1.8, 9.2.3 Additional problems for study: 9.1.1, 9.1.3, 9.1.5, 9.1.13, 9.2.1, 9.2.2, 9.2.4, 9.2.5, 9.2.6, 9.3.2, 9.3.3 9.1.1 (This problem was not assigned
1 if 1 x 0 1 if 0 x 1
Chapter 3 Continuity In this chapter we begin by defining the fundamental notion of continuity for real valued functions of a single real variable. When trying to decide whether a given function is or
MOP 2007 Black Group Integer Polynomials Yufei Zhao. Integer Polynomials. June 29, 2007 Yufei Zhao [email protected]
Integer Polynomials June 9, 007 Yufei Zhao [email protected] We will use Z[x] to denote the ring of polynomials with integer coefficients. We begin by summarizing some of the common approaches used in dealing
CHAPTER II THE LIMIT OF A SEQUENCE OF NUMBERS DEFINITION OF THE NUMBER e.
CHAPTER II THE LIMIT OF A SEQUENCE OF NUMBERS DEFINITION OF THE NUMBER e. This chapter contains the beginnings of the most important, and probably the most subtle, notion in mathematical analysis, i.e.,
FUNCTIONAL ANALYSIS LECTURE NOTES: QUOTIENT SPACES
FUNCTIONAL ANALYSIS LECTURE NOTES: QUOTIENT SPACES CHRISTOPHER HEIL 1. Cosets and the Quotient Space Any vector space is an abelian group under the operation of vector addition. So, if you are have studied
INTRODUCTORY SET THEORY
M.Sc. program in mathematics INTRODUCTORY SET THEORY Katalin Károlyi Department of Applied Analysis, Eötvös Loránd University H-1088 Budapest, Múzeum krt. 6-8. CONTENTS 1. SETS Set, equal sets, subset,
GROUP ALGEBRAS. ANDREI YAFAEV
GROUP ALGEBRAS. ANDREI YAFAEV We will associate a certain algebra to a finite group and prove that it is semisimple. Then we will apply Wedderburn s theory to its study. Definition 0.1. Let G be a finite
Linear Algebra. A vector space (over R) is an ordered quadruple. such that V is a set; 0 V ; and the following eight axioms hold:
Linear Algebra A vector space (over R) is an ordered quadruple (V, 0, α, µ) such that V is a set; 0 V ; and the following eight axioms hold: α : V V V and µ : R V V ; (i) α(α(u, v), w) = α(u, α(v, w)),
α = u v. In other words, Orthogonal Projection
Orthogonal Projection Given any nonzero vector v, it is possible to decompose an arbitrary vector u into a component that points in the direction of v and one that points in a direction orthogonal to v
GROUPS ACTING ON A SET
GROUPS ACTING ON A SET MATH 435 SPRING 2012 NOTES FROM FEBRUARY 27TH, 2012 1. Left group actions Definition 1.1. Suppose that G is a group and S is a set. A left (group) action of G on S is a rule for
Math 241, Exam 1 Information.
Math 241, Exam 1 Information. 9/24/12, LC 310, 11:15-12:05. Exam 1 will be based on: Sections 12.1-12.5, 14.1-14.3. The corresponding assigned homework problems (see http://www.math.sc.edu/ boylan/sccourses/241fa12/241.html)
Computing divisors and common multiples of quasi-linear ordinary differential equations
Computing divisors and common multiples of quasi-linear ordinary differential equations Dima Grigoriev CNRS, Mathématiques, Université de Lille Villeneuve d Ascq, 59655, France [email protected]
Handout #1: Mathematical Reasoning
Math 101 Rumbos Spring 2010 1 Handout #1: Mathematical Reasoning 1 Propositional Logic A proposition is a mathematical statement that it is either true or false; that is, a statement whose certainty or
Group Theory. Contents
Group Theory Contents Chapter 1: Review... 2 Chapter 2: Permutation Groups and Group Actions... 3 Orbits and Transitivity... 6 Specific Actions The Right regular and coset actions... 8 The Conjugation
THE BANACH CONTRACTION PRINCIPLE. Contents
THE BANACH CONTRACTION PRINCIPLE ALEX PONIECKI Abstract. This paper will study contractions of metric spaces. To do this, we will mainly use tools from topology. We will give some examples of contractions,
On the existence of G-equivariant maps
CADERNOS DE MATEMÁTICA 12, 69 76 May (2011) ARTIGO NÚMERO SMA# 345 On the existence of G-equivariant maps Denise de Mattos * Departamento de Matemática, Instituto de Ciências Matemáticas e de Computação,
IRREDUCIBLE OPERATOR SEMIGROUPS SUCH THAT AB AND BA ARE PROPORTIONAL. 1. Introduction
IRREDUCIBLE OPERATOR SEMIGROUPS SUCH THAT AB AND BA ARE PROPORTIONAL R. DRNOVŠEK, T. KOŠIR Dedicated to Prof. Heydar Radjavi on the occasion of his seventieth birthday. Abstract. Let S be an irreducible
COMMUTATIVITY DEGREES OF WREATH PRODUCTS OF FINITE ABELIAN GROUPS
COMMUTATIVITY DEGREES OF WREATH PRODUCTS OF FINITE ABELIAN GROUPS IGOR V. EROVENKO AND B. SURY ABSTRACT. We compute commutativity degrees of wreath products A B of finite abelian groups A and B. When B
Surface bundles over S 1, the Thurston norm, and the Whitehead link
Surface bundles over S 1, the Thurston norm, and the Whitehead link Michael Landry August 16, 2014 The Thurston norm is a powerful tool for studying the ways a 3-manifold can fiber over the circle. In
Associativity condition for some alternative algebras of degree three
Associativity condition for some alternative algebras of degree three Mirela Stefanescu and Cristina Flaut Abstract In this paper we find an associativity condition for a class of alternative algebras
Linear Maps. Isaiah Lankham, Bruno Nachtergaele, Anne Schilling (February 5, 2007)
MAT067 University of California, Davis Winter 2007 Linear Maps Isaiah Lankham, Bruno Nachtergaele, Anne Schilling (February 5, 2007) As we have discussed in the lecture on What is Linear Algebra? one of
Notes V General Equilibrium: Positive Theory. 1 Walrasian Equilibrium and Excess Demand
Notes V General Equilibrium: Positive Theory In this lecture we go on considering a general equilibrium model of a private ownership economy. In contrast to the Notes IV, we focus on positive issues such
Lecture 4 Cohomological operations on theories of rational type.
Lecture 4 Cohomological operations on theories of rational type. 4.1 Main Theorem The Main Result which permits to describe operations from a theory of rational type elsewhere is the following: Theorem
ON FIBER DIAMETERS OF CONTINUOUS MAPS
ON FIBER DIAMETERS OF CONTINUOUS MAPS PETER S. LANDWEBER, EMANUEL A. LAZAR, AND NEEL PATEL Abstract. We present a surprisingly short proof that for any continuous map f : R n R m, if n > m, then there
A CONSTRUCTION OF THE UNIVERSAL COVER AS A FIBER BUNDLE
A CONSTRUCTION OF THE UNIVERSAL COVER AS A FIBER BUNDLE DANIEL A. RAMRAS In these notes we present a construction of the universal cover of a path connected, locally path connected, and semi-locally simply
5. Linear algebra I: dimension
5. Linear algebra I: dimension 5.1 Some simple results 5.2 Bases and dimension 5.3 Homomorphisms and dimension 1. Some simple results Several observations should be made. Once stated explicitly, the proofs
A NOTE ON TRIVIAL FIBRATIONS
A NOTE ON TRIVIAL FIBRATIONS Petar Pavešić Fakulteta za Matematiko in Fiziko, Univerza v Ljubljani, Jadranska 19, 1111 Ljubljana, Slovenija [email protected] Abstract We study the conditions
Rotation Rate of a Trajectory of an Algebraic Vector Field Around an Algebraic Curve
QUALITATIVE THEORY OF DYAMICAL SYSTEMS 2, 61 66 (2001) ARTICLE O. 11 Rotation Rate of a Trajectory of an Algebraic Vector Field Around an Algebraic Curve Alexei Grigoriev Department of Mathematics, The
FINITE DIMENSIONAL ORDERED VECTOR SPACES WITH RIESZ INTERPOLATION AND EFFROS-SHEN S UNIMODULARITY CONJECTURE AARON TIKUISIS
FINITE DIMENSIONAL ORDERED VECTOR SPACES WITH RIESZ INTERPOLATION AND EFFROS-SHEN S UNIMODULARITY CONJECTURE AARON TIKUISIS Abstract. It is shown that, for any field F R, any ordered vector space structure
1 The Concept of a Mapping
Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan 1 The Concept of a Mapping The concept of a mapping (aka function) is important throughout mathematics. We have been dealing
No: 10 04. Bilkent University. Monotonic Extension. Farhad Husseinov. Discussion Papers. Department of Economics
No: 10 04 Bilkent University Monotonic Extension Farhad Husseinov Discussion Papers Department of Economics The Discussion Papers of the Department of Economics are intended to make the initial results
Introduction to Topology
Introduction to Topology Tomoo Matsumura November 30, 2010 Contents 1 Topological spaces 3 1.1 Basis of a Topology......................................... 3 1.2 Comparing Topologies.......................................
Irreducibility criteria for compositions and multiplicative convolutions of polynomials with integer coefficients
DOI: 10.2478/auom-2014-0007 An. Şt. Univ. Ovidius Constanţa Vol. 221),2014, 73 84 Irreducibility criteria for compositions and multiplicative convolutions of polynomials with integer coefficients Anca
