Mathematical Physics, Lecture 9
|
|
|
- Elizabeth Wilkerson
- 9 years ago
- Views:
Transcription
1 Mathematical Physics, Lecture 9 Hoshang Heydari Fysikum April 25, 2012 Hoshang Heydari (Fysikum) Mathematical Physics, Lecture 9 April 25, / 42
2 Table of contents 1 Differentiable manifolds 2 Differential maps and curve 3 Tangent, cotangent and tensor spaces 4 Tangent map and submanifolds 5 Differential forms 6 Integration of forms Hoshang Heydari (Fysikum) Mathematical Physics, Lecture 9 April 25, / 42
3 Introduction In this lecture we give a short introduction to differentiable manifolds, differential forms and integration on manifolds. This topics are discussed in chapters of the main text book: Szekeres, Peter - A Course In Modern Mathematical Physics - Groups, Hilbert Spaces And Differential Geometry (2004) and in Dariusz Chruscinski, Andrzej Jamiolkowski, Geometric Phases in Classical and Quantum Mechanics, Progress in Mathematical Physics, Birkhäuser, Berlin Hoshang Heydari (Fysikum) Mathematical Physics, Lecture 9 April 25, / 42
4 Differentiable manifolds Differentiable manifolds Differentiable manifolds A topological manifold M of dimension n = dim M is a Hausdorff space in which every point x has a neighboring homeomorphic to an open subset of R n. A coordinate chart at a point of p of M is the pair (U, φ), where domain of the chart U is open subset of M and φ : U φ(u) R n is a homeomorphism between U and its image φ(u) which is also an open subset of R n. Let pr i : R n R be projection maps. Then the map or functions x = pr i φ : U R for i = 1, 2,..., n are called coordinate functions. Hoshang Heydari (Fysikum) Mathematical Physics, Lecture 9 April 25, / 42
5 Differentiable manifolds Differentiable manifolds Differentiable manifolds A family of charts A = {(U α, φ α ) : α A} with the coordinate neighborhoods U α that cover M and any pair of charts from A are C -compatible is called an atlas on M. If A and B are two atlas on M, then so is their union A B. Any atlas could be extended to maximal atlas by adding all charts that are C -compatible with charts of A. The maximal atlas is called a differentiable structure on M. A pair (M, A), M is a topological manifold of dimension n and A is a differential structure on M is called differential manifold. Example R n is a trivial manifold, since the charts (U = R n, φ = id) covers it and generates a unique atlas. Hoshang Heydari (Fysikum) Mathematical Physics, Lecture 9 April 25, / 42
6 Differentiable manifolds Differentiable manifolds Differentiable manifolds Example Any open subspace of R n is a differentiable manifold formed by giving it the relative topology and the differentiable structure is generated by the chart (U, id U : U R n ). Let (V, ψ) be a charts on R n. Then every charts on U is the restriction of a coordinate neighborhood and coordinate map on R n to the open region U, that is (U V, ψ U V ). This manifold is called open submanifold of R n. Example The circle S 1 R 2 defined by x 2 + y 2 = 1 is a one dimensional manifold (exercise). S 1 is not homeomorphic to R. Hoshang Heydari (Fysikum) Mathematical Physics, Lecture 9 April 25, / 42
7 and φ ± i = U ± i R n defined by Hoshang Heydari (Fysikum) Mathematical Physics, Lecture 9 April 25, / 42 Differentiable manifolds Differentiable manifolds Differentiable manifolds Example The sphere S 2 R 3 defined by x 2 + y 2 + z 2 = 1 is a two dimensional differentiable manifold (exercise). Example The n-sphere S n R n+1 defined by S n = {x R n+1 : (x 1 ) 2 + (x 2 ) (x n+1 ) 2 = 1} is a n dimensional differentiable manifold. Let U + i = {x S n : x i > 0}, U i = {x S n : x i < 0}
8 which provides φ : M(n, R) with Hausdorff topology inherited from R n2. Hoshang Heydari (Fysikum) Mathematical Physics, Lecture 9 April 25, / 42 Differentiable manifolds Differentiable manifolds Differentiable manifolds Example φ ± i (x) = (x 1, x 2,..., x i 1, x i+1,..., x n ). Then a set of charts providing an atlas is the set of rectangular on hemispheres (U + i, φ ± i ) and (U i, φ ± i ). Example There is a one-to-one correspondence between the set of n n real matrices M(n, R) and the points of R n2 through the map φ : M(n, R) R n2 defined by φ(a = (a ij )) = (a 11, a 12,..., a 1n, a 21, a 22,..., a nn )
9 Differentiable manifolds Differentiable manifolds Differentiable manifolds Example Moreover, the differential structure generated by (M(n, R), φ) converts M(n, R) into a differentiable manifolds of dimension n 2. Let M and N be differential manifolds of dimensions m and n respectively. Then their product M N is also differential manifold (exercise). Example The topological 2-torus T 2 = S 1 S 1 has a differential structure as a n times { }} { product manifold. And in general n-torus T n = S 1 S 1 S 1 is a product of n circles. Hoshang Heydari (Fysikum) Mathematical Physics, Lecture 9 April 25, / 42
10 Differential maps and curve Differential maps and curve Differential maps and curve Let M be a differential manifold of dimension n. Then a map f : M R is called differentiable at a point p M if for some coordinate chart (U, φ; x i ) at p the function f = f φ 1 : φ(u) R is differentiable at φ(p) = (x 1 (p), x 2 (p),..., x n (p)) = x(p). The definition is independent of choice of the chart at p. The set of all real- valued functions on M that are differentiable at p M are denoted by F p (M). Let V be an open subset of M. Then a real-valued function f : M R is called differentiable or smooth if it is differentiable at every point p V and it is denoted by F(V ). One can show that F(V ) is both a ring and a real vector space (exercise). Hoshang Heydari (Fysikum) Mathematical Physics, Lecture 9 April 25, / 42
11 Differential maps and curve Differential maps and curve Differential maps and curve If M and N are differential manifolds, then a map α : M N is differentiable at p M if for any pair of coordinate charts (U, φ; x i ) and (V, ψ; y j ) covering p and α(p) resp., its coordinate representation ψ α φ 1 : φ(u) ψ(v ) is differentiable at φ(p). A diffeomorphism is map α : M N that is injective and α and its inverse are differentiable. Two manifolds M and N are said to bee diffeomorphic, M = N if there exists a diffeomorphism α and m = dim M = dim N = n. A smooth parametrized curve on an manifold M is a differentiable map Λ : (a, b) M, where (a, b) R is open interval. The curve is said to pass through p at t = t 0 if Λ(t 0 ) = p for a < t 0 < b. Hoshang Heydari (Fysikum) Mathematical Physics, Lecture 9 April 25, / 42
12 Tangent, cotangent and tensor spaces Tangent, cotangent and tensor spaces Tangent vectors A directional derivative of a differentiable function f : R n R along the curve at x 0 is defined by Xf = df (x(t)) dt t=t0 = dx i (t) f (x) t=t0 dt x i x=x0, where X is a linear differential operator X = dx i (t) t=t0 dt x i x=x 0 X is a real-valued map on the algebra of differentiable function at x 0. The map X : F x0 (R n ) R has the following properties: Hoshang Heydari (Fysikum) Mathematical Physics, Lecture 9 April 25, / 42
13 Tangent, cotangent and tensor spaces Tangent, cotangent and tensor spaces Tangent vectors 1 It is linear on the space F x0 (R n ): for any pair of functions f and g we have X (af + bg) = axf + bxg, where a, b R. 2 It satisfies the Leibnitz rule X (fg) = f (x 0 )Xg + g(x 0 )Xf. A tangent vector X p at any point p of a differential manifold M is a linear map X p : F x0 (R n ) R that satisfies 1 Linearity: X p (af + bg) = ax p f + bx p g, where a, b R. 2 Leibnitz rule: X p (fg) = f (p)x p g + g(p)x p f. The set of tangent vector at p form a vector space T p (M) called tangent space at p. Hoshang Heydari (Fysikum) Mathematical Physics, Lecture 9 April 25, / 42
14 Tangent, cotangent and tensor spaces Tangent, cotangent and tensor spaces Tangent vectors If (U, φ) is any chart at p with coordinate functions x i, then the operators defined by ( x i ) p = x i p : F p (M) R ( x i ) p f = x i pf = f (x 1, x 2,..., x n ) x i x=φ(p), where f = f φ 1 : R n R. Thus any linear combination X p = X i x i p = n i=1 X i x i p, Hoshang Heydari (Fysikum) Mathematical Physics, Lecture 9 April 25, / 42
15 Tangent, cotangent and tensor spaces Tangent, cotangent and tensor spaces Tangent vectors where X i R is a tangent vector. The coefficient X j is computed by the action of X on coordinate functions x j X p x j = X i x j x i x=φ(p) = X i δ j i = X j. Theorem If (U, φ; x i ) is a chart at p M, then the operators ( x i ) p defined by ( x i ) p f = x i p f = f (x 1,x 2,...,x n ) x i x=φ(p), form a basis of tangent space T p M and its dimension is n = dim M. For the proof see page Hoshang Heydari (Fysikum) Mathematical Physics, Lecture 9 April 25, / 42
16 Tangent, cotangent and tensor spaces Tangent, cotangent and tensor spaces Cotangent and tensor spaces The cotangent space at p is the dual space T p (M) associated to the tangent space at p M and it consists of all linear functionals on T p (M), also called covectors or 1-forms at p. The action of covector ω p at p on tangent vector X p is denoted by ω p (X p ), ω p, X p or X p, ω p. Note also that dim T p (M) = dim T p (M) = dim M. If f is differentiable function at p, then its differential at p is defined by (df ) p which acts on tangent vector X p as follows (df ) p, X p = X p f. For a chart (U, φ; x i ) at p, the differential of the coordinate functions have the following property (dx i ) p, X p = X p x i = X i, Hoshang Heydari (Fysikum) Mathematical Physics, Lecture 9 April 25, / 42
17 Tangent, cotangent and tensor spaces Tangent, cotangent and tensor spaces Cotangent and tensor spaces where X i are components of X p = X i ( x i ) p. Applying (dx i ) p to ( x j ) p we get (dx i ) p, ( x j ) p = x j px i = x i x j φ(p) = δj i. Thus the linear functional (dx 1 ) p, (dx 2 ) p,..., (dx n ) p are the dual basis that span cotangent space. Every covector ω p has a unique expansion where w i = ω p, ( x i ) p. ω p = w i (dx i ) p, Vector and tensor field A vector field X is an assignment of tangent vector X p at each point Hoshang Heydari (Fysikum) Mathematical Physics, Lecture 9 April 25, / 42
18 Tangent, cotangent and tensor spaces Tangent, cotangent and tensor spaces Vector and tensor field p M. Or X is a map from M to the set p M T p(m) with the property that the image of every point, X (p) belong to the tangent space T p (M) at p. The vector field is called differentiable or smooth if for every differentiable function f F(M) the function Xf defined by defined by (Xf )(p) = X p f is differentiable, that is f F(M) = Xf F(M). The set of all differentiable vector fields on M will be denoted by T (M). Every smooth vector field defines a map X : F(M) F(M) which satisfies the following properties Hoshang Heydari (Fysikum) Mathematical Physics, Lecture 9 April 25, / 42
19 Tangent, cotangent and tensor spaces Tangent, cotangent and tensor spaces Vector and tensor field 1 Linearity: X (af + bg) = axf + bxg, where a, b R and f, g F(M). 2 Leibnitz rule: X (fg) = fxg + gxf. Conversely any map X with above properties defines a smooth vector field. The constructions of tangent and cotangent spaces enable we to introduce an arbitrary tensor field on M. Thus we call a smooth map x T (M) T (k,l) x M = T x M T x M T x M T x M, a tensor field of type (k, l). A vector field is a tensor field of type (1, 0). Any tensor field is uniquely defined by its components T = i 1i 2 i k j 1 j 2 j l x i 1 x i 2 x i k dx j 1 dx j l. Hoshang Heydari (Fysikum) Mathematical Physics, Lecture 9 April 25, / 42
20 Tangent, cotangent and tensor spaces Tangent, cotangent and tensor spaces Tensor bundles The tangent bundle on a manifold is defined by TM = T p (M). p M And there is a natural projection map π : TM M defined by π(u) = p for u T p (M). Moreover, for chart (U, φ; x i ) on M we define a chart (π 1 (U), φ) on TM where the coordinate map φ : π 1 (U) R 2n is defined by φ(v) = (x 1 (p),..., x n (p), v 1,..., v n ), where p = π(v) and v = n i=1 v i x i p. The cotangent bundle Tp (M) is defined in similar manner. Hoshang Heydari (Fysikum) Mathematical Physics, Lecture 9 April 25, / 42
21 Tangent map and submanifolds Tangent map and submanifolds The tangent map and pullback of a map Tangent map Let α : M N be a differentiable map. Then α induces a map α : T p (M) T α(p) (N) called the tangent map of α, where the tangent vector Y α(p) = α X p is defined by Y α(p) f = (α X p )f = X p (f α) for any function f F α(p) (N). Pullback of a map The map α : M N also induces a map Hoshang Heydari (Fysikum) Mathematical Physics, Lecture 9 April 25, / 42
22 Submanifolds Let α : M N be a differentiable map such that m = dim M n = dim N. Then the map α is called immersion if the tangent map Hoshang Heydari (Fysikum) Mathematical Physics, Lecture 9 April 25, / 42 Tangent map and submanifolds Tangent map and submanifolds The tangent map and pullback of a map Pullback of a map α : T α(p) (N) T p (M) between cotangent spaces which is called the pullback induced by α. The pullback of a 1-form ω α(p) is defined by for arbitrary tangent vectors X p. α ω α(p), X p = ω α(p), α X p
23 Tangent map and submanifolds Tangent map and submanifolds The tangent map and pullback of a map Submanifolds α : T p (M) T α(p) (N) is injective at every point p M, e.g., α is non-degenerate linear map everywhere. If the map α and the tangent map α are injective, then the map is called an embedding and the pair (M, α) are called an embedded submanifold of N. Hoshang Heydari (Fysikum) Mathematical Physics, Lecture 9 April 25, / 42
24 Differential forms Differential forms Differential forms Next we will review a class of tensor fields on differential manifold that play an important role in physical applications. A skew-symmetric tensor of type (0, k) is called a differential form of order k or a k-form. Let Λ k (M) be the space of k-form on M with Λ k (M) = { } for k > n. Then, the space of differential forms on M is defined by Λ k (M) = n Λ k (M) with Λ 0 (M) = C (M). The space Λ(M) equipped with the following operations: k=0 Hoshang Heydari (Fysikum) Mathematical Physics, Lecture 9 April 25, / 42
25 Differential forms Differential forms Differential forms 1 A wedge product: : Λ k (M) Λ l (M) Λ k+l (M). 2 The exterior derivative: d : Λ k (M) Λ k+1 (M) defined by dα = 1 k! α i1 i k x j dx j dx i 1 dx i k. Example A function on a differential manifold M is a zero-form which has the following one form as its exterior derivative df = f dx i. note also that x i d(df ) = 0. If M = R n and (x 1, x 2,..., x n ) are cartesian coordinates, then df gives the components of gradf. Hoshang Heydari (Fysikum) Mathematical Physics, Lecture 9 April 25, / 42
26 Differential forms Differential forms Differential forms Proposition The exterior derivative satisfies the following properties d 2 α = d(dα) = 0 for any α Λ(M). d(α β) = dα β + ( 1) k α dβ, for α, β Λ(M). Proposition The pullback operation commutes with exterior derivative and wedge product, that is φ (dα) = d(φ α), φ (α β) = φ α φ β for any differential form α and β on N. Hoshang Heydari (Fysikum) Mathematical Physics, Lecture 9 April 25, / 42
27 Integration of forms Integration of forms Integration of forms Let f : R n R be a function and (x 1,..., x n ) be cartesian coordinates of R n. Then, an n-dimensional integral id defined by f fdv = f (x 1,..., x n )dx 1 dx n. After a coordinate transformation we have =J { ( }} ) { x d x 1 d x n i = det x j dx 1 dx n, where J is the Jacobian of transformation. An n-dimensional manifold M is orientable if and only if there exists a nowhere vanishing n-form on it. Hoshang Heydari (Fysikum) Mathematical Physics, Lecture 9 April 25, / 42
28 Integration of forms Integration of forms Example A Riemannian manifold (M, g) is differentiable manifold M equipped with a smooth metric tensor g of type (0, 2) such that g is symmetric and for each x M, the bilinear form g x : T x M T x M R is nondegenerate. We call a Riemannian manifold proper if g x (v, v) > 0 v T x M, v 0. Otherwise a manifold is called pseodu-riemannian. The n dimensional Euclidean space R n is a proper Riemannian manifold and the Minkowski space R 1,3 is pseudo-riemannian. Hoshang Heydari (Fysikum) Mathematical Physics, Lecture 9 April 25, / 42
29 Integration of forms Integration of forms Hodge star Consider the space of differential forms on M with n = dim M. The so called Hodge operation of Hodge star : Λ k (M) Λ n k (M) defined by ( α) i1 i n k = 1 k! g ɛi1 i n k j 1 j k α j 1 j k, where g = det(g ij ) and α j 1 j k = g j 1m1 g j km k α m1 m k. The form α is called the Hodge dual of α and g il g lj = δj i. Let τ = g dx 1 dx n. Then if M is compact we define volume of M by Vol(M) = τ. M Hoshang Heydari (Fysikum) Mathematical Physics, Lecture 9 April 25, / 42
30 Integration of forms Integration of forms Hodge star Let K be a k dimensional orientable submanifold of M and j : K M be a canonical embedding. If (y 1,..., y k ) are local coordinates on K then j is defined by x 1 = x 1 (y 1,..., y k ) x 2 = x 2 (y 1,..., y k )... x n = x n (y 1,..., y k ) If α is a k-form on M, then j α is a k-form on K. Thus we can define an integral of K over j α (K, α) = j α K = 1 k! x i 1 ik x α i1 i k y 1 y k dy 1 dy k, Hoshang Heydari (Fysikum) Mathematical Physics, Lecture 9 April 25, / 42
31 Integration of forms Integration of forms Hodge star where α = 1 k! α i 1 i k dx i 1 dx i k. Let R n + = {(x 1,..., x n ) R n : x 1 0}. The we define the boundary of R n + by R n + = {(x 1,..., x n ) R n : x 1 = 0}. We call M a manifold with a boundary when there exists an open covering (U i, φ i ) such that φ i (U i ) defines an open subset of R n + and the boundary M is defined by M = i φ 1 i ( R n +). Hoshang Heydari (Fysikum) Mathematical Physics, Lecture 9 April 25, / 42
32 Integration of forms Integration of forms Hodge star Example As an example we consider the unit ball B n in R n B n = {(x 1,..., x n ) R n : n (x i ) 2 1}. i=1 The boundary of B n is a (n 1)-dimensional sphere B n = S n 1. Note also that for any manifold M = ( M) = { } and in particular S n = ( B n+1 ) = {}. A manifold without boundary is called a closed manifold. Hoshang Heydari (Fysikum) Mathematical Physics, Lecture 9 April 25, / 42
33 Integration of forms Integration of forms Hodge star Stokes theorem Let M be a n dimensional manifold with boundary M and let ω Λ n 1 (M). The we have dω = ω. M M Example Let Σ be two-dimensional surface in R 3 and A be a vector field. Then we have curla ds = A dl, where ds denotes a surface elements on σ. Σ C= Σ Hoshang Heydari (Fysikum) Mathematical Physics, Lecture 9 April 25, / 42
34 Integration of forms Integration of forms De Rham cohomology We call a k-form α a closed form if dα = 0, and an exact form if α = dβ for any (k 1)-form β. For a manifold M, the set of closed form is defined by Z k = {α Λ k (M) : dα = 0} and the set of exact form is defined by B k = {α Λ k (M) : β Λ k 1 (M), dβ = α}. Next we define the following equivalence relation in Λ k (M) α 1 α 2 β Λ k 1 (M), dβ = α 1 α 2 } Hoshang Heydari (Fysikum) Mathematical Physics, Lecture 9 April 25, / 42
35 Integration of forms Integration of forms De Rham cohomology Thus α 1 α 2 = dα 1 = dα 2 and we can define the space of equivalence classes by H k (M) = Z k (M) B k (M), is called the de Rham cohomology group of M and means that H k (M) is the set of closed forms that differ only by an exact k-form. de Rham cohomology group is an abelian group where the operation is the addition of k-forms. [ω] is the equivalence class containing ω and is called a cohomology class of ω. If [ω 1 ] H k (M) and [ω 2 ] H l (M), then we have Hoshang Heydari (Fysikum) Mathematical Physics, Lecture 9 April 25, / 42
36 defined by φ # ([ω]))[φ ω]. Hoshang Heydari (Fysikum) Mathematical Physics, Lecture 9 April 25, / 42 Integration of forms Integration of forms De Rham cohomology In R n all closed forms are exact. [ω 1 ω 2 ] = [ω 1 ] [ω 2 ] H k+l (M) Poincare lemma Let M be a differentiable manifold. Then any closed form on M is locally exact, that is if dα = 0, then for any x M, there is a neighborhood U containing x such that α = dβ on U. Thus only global properties ofm decide if de Rham cohomology grops are trivial or not. The smooth map φ : M N induces a linear transformation φ # : H K (M) H k (N)
37 Integration of forms Integration of forms De Rham cohomology If φ is a homeomorphism, then the induced map φ # is an isomorphism. Thus topologically equivalent manifolds have isomorphic cohomology groups and in particular we have b k (M) = dim H k (M) = dim H k (N) = b k (N), k = 0, 1, 2,..., n are called Betti numbers. From Betti numbers we can construct Euler characteristic n χ(m) = ( 1) k b k (M). k=0 The topological equivalent manifolds have same Euler characteristic. Example Let M = R 2. Then H 1 (R 2 ) = H 2 (R 2 ) = 0, H 0 (R 2 ) = R, and χ(r 2 ) = 1. Hoshang Heydari (Fysikum) Mathematical Physics, Lecture 9 April 25, / 42
38 Integration of forms Integration of forms De Rham cohomology Example Let M = S 2. Then H 0 (S 2 ) = H 2 (S 2 ) = R and all other cohomology groups are trivial. We have also χ(s 2 ) = 2. Example Let M = T 2 = S 1 S 1. Then H 0 (T 2 ) = H 2 (T 2 ) = R and all other cohomology groups are trivial (exercise). We have also χ(t 2 ) = 0. Proposition A contractible manifold M by which we mean a manifold that may be continuously contracted to single point has trivial de Rham cohomology groups H k (M) for all k 1. Hoshang Heydari (Fysikum) Mathematical Physics, Lecture 9 April 25, / 42
39 Integration of forms Integration of forms De Rham cohomology Proposition Let M be a manifold which is compact, connected, and orientable with n = dim M. Then we have H k (M) = H n k (M), k = 0, 1, 2,..., n. This important result is called the Poincare duality. Lie derivative Let X be a vector field on a manifold M. Then the flow of the X is the collection of maps F t : M M which satisfy d dt F t(x) = X (F t (x)), x X, t R. Hoshang Heydari (Fysikum) Mathematical Physics, Lecture 9 April 25, / 42
40 Integration of forms Integration of forms Lie derivative By fixing a point x X we obtain a map t R F t (x) M which defines a curve in M called the integral curve of X passing a point x. The flow F t also satisfies the following property F t F s = F t+s. Example Let A : R n R n be a vector field on R n defined by x Ax T x R n = R n, where x R n and the flow satisfies the following equation d dt F t(x) = AF t (x) = F t (x) = e At x. Hoshang Heydari (Fysikum) Mathematical Physics, Lecture 9 April 25, / 42
41 where the Lie bracket is defined by [X, Y ] i = X k k Y i Y k k X i. Hoshang Heydari (Fysikum) Mathematical Physics, Lecture 9 April 25, / 42 Integration of forms Integration of forms Lie derivative Let T be a tensor field on a manifold M and X be a vector field on M. Then the Lie derivative of T with respect to X is defined by (L X T )(x) = d dt (F t T )(x) t=0, where F t is the flow of vector field X. If f is a function on M then L X f is given by L X f = d dt (F t f )(x) t=0 = d dt (f F tt )(x) t=0 = X (f ), is the directional derivative of f along X. If X and Y are vector fields on M, then L X Y = [X, Y ],
42 Problems Integration of forms Problem 15.4 This is the first problem of the home assignment three. Problem 16.4 This is the second problem of the home assignment three. Problem 17.7 This is the third problem of the home assignment three. Hoshang Heydari (Fysikum) Mathematical Physics, Lecture 9 April 25, / 42
8.1 Examples, definitions, and basic properties
8 De Rham cohomology Last updated: May 21, 211. 8.1 Examples, definitions, and basic properties A k-form ω Ω k (M) is closed if dω =. It is exact if there is a (k 1)-form σ Ω k 1 (M) such that dσ = ω.
Mathematics Course 111: Algebra I Part IV: Vector Spaces
Mathematics Course 111: Algebra I Part IV: Vector Spaces D. R. Wilkins Academic Year 1996-7 9 Vector Spaces A vector space over some field K is an algebraic structure consisting of a set V on which are
MICROLOCAL ANALYSIS OF THE BOCHNER-MARTINELLI INTEGRAL
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 00, Number 0, Pages 000 000 S 0002-9939(XX)0000-0 MICROLOCAL ANALYSIS OF THE BOCHNER-MARTINELLI INTEGRAL NIKOLAI TARKHANOV AND NIKOLAI VASILEVSKI
Introduction to Topology
Introduction to Topology Tomoo Matsumura November 30, 2010 Contents 1 Topological spaces 3 1.1 Basis of a Topology......................................... 3 1.2 Comparing Topologies.......................................
14.11. Geodesic Lines, Local Gauss-Bonnet Theorem
14.11. Geodesic Lines, Local Gauss-Bonnet Theorem Geodesics play a very important role in surface theory and in dynamics. One of the main reasons why geodesics are so important is that they generalize
Chapter 2. Parameterized Curves in R 3
Chapter 2. Parameterized Curves in R 3 Def. A smooth curve in R 3 is a smooth map σ : (a, b) R 3. For each t (a, b), σ(t) R 3. As t increases from a to b, σ(t) traces out a curve in R 3. In terms of components,
Metric Spaces. Chapter 7. 7.1. Metrics
Chapter 7 Metric Spaces A metric space is a set X that has a notion of the distance d(x, y) between every pair of points x, y X. The purpose of this chapter is to introduce metric spaces and give some
Let H and J be as in the above lemma. The result of the lemma shows that the integral
Let and be as in the above lemma. The result of the lemma shows that the integral ( f(x, y)dy) dx is well defined; we denote it by f(x, y)dydx. By symmetry, also the integral ( f(x, y)dx) dy is well defined;
Fiber Bundles and Connections. Norbert Poncin
Fiber Bundles and Connections Norbert Poncin 2012 1 N. Poncin, Fiber bundles and connections 2 Contents 1 Introduction 4 2 Fiber bundles 5 2.1 Definition and first remarks........................ 5 2.2
Lecture 18 - Clifford Algebras and Spin groups
Lecture 18 - Clifford Algebras and Spin groups April 5, 2013 Reference: Lawson and Michelsohn, Spin Geometry. 1 Universal Property If V is a vector space over R or C, let q be any quadratic form, meaning
LECTURE 1: DIFFERENTIAL FORMS. 1. 1-forms on R n
LECTURE 1: DIFFERENTIAL FORMS 1. 1-forms on R n In calculus, you may have seen the differential or exterior derivative df of a function f(x, y, z) defined to be df = f f f dx + dy + x y z dz. The expression
The Tangent Bundle. Jimmie Lawson Department of Mathematics Louisiana State University. Spring, 2006
The Tangent Bundle Jimmie Lawson Department of Mathematics Louisiana State University Spring, 2006 1 The Tangent Bundle on R n The tangent bundle gives a manifold structure to the set of tangent vectors
4. Expanding dynamical systems
4.1. Metric definition. 4. Expanding dynamical systems Definition 4.1. Let X be a compact metric space. A map f : X X is said to be expanding if there exist ɛ > 0 and L > 1 such that d(f(x), f(y)) Ld(x,
NOTES ON MINIMAL SURFACES
NOTES ON MINIMAL SURFACES DANNY CALEGARI Abstract. These are notes on minimal surfaces, with an emphasis on the classical theory and its connection to complex analysis, and the topological applications
INVARIANT METRICS WITH NONNEGATIVE CURVATURE ON COMPACT LIE GROUPS
INVARIANT METRICS WITH NONNEGATIVE CURVATURE ON COMPACT LIE GROUPS NATHAN BROWN, RACHEL FINCK, MATTHEW SPENCER, KRISTOPHER TAPP, AND ZHONGTAO WU Abstract. We classify the left-invariant metrics with nonnegative
PROJECTIVE GEOMETRY. b3 course 2003. Nigel Hitchin
PROJECTIVE GEOMETRY b3 course 2003 Nigel Hitchin [email protected] 1 1 Introduction This is a course on projective geometry. Probably your idea of geometry in the past has been based on triangles
Extrinsic geometric flows
On joint work with Vladimir Rovenski from Haifa Paweł Walczak Uniwersytet Łódzki CRM, Bellaterra, July 16, 2010 Setting Throughout this talk: (M, F, g 0 ) is a (compact, complete, any) foliated, Riemannian
MATH 304 Linear Algebra Lecture 9: Subspaces of vector spaces (continued). Span. Spanning set.
MATH 304 Linear Algebra Lecture 9: Subspaces of vector spaces (continued). Span. Spanning set. Vector space A vector space is a set V equipped with two operations, addition V V (x,y) x + y V and scalar
BILINEAR FORMS KEITH CONRAD
BILINEAR FORMS KEITH CONRAD The geometry of R n is controlled algebraically by the dot product. We will abstract the dot product on R n to a bilinear form on a vector space and study algebraic and geometric
A QUICK GUIDE TO THE FORMULAS OF MULTIVARIABLE CALCULUS
A QUIK GUIDE TO THE FOMULAS OF MULTIVAIABLE ALULUS ontents 1. Analytic Geometry 2 1.1. Definition of a Vector 2 1.2. Scalar Product 2 1.3. Properties of the Scalar Product 2 1.4. Length and Unit Vectors
The Topology of Fiber Bundles Lecture Notes. Ralph L. Cohen Dept. of Mathematics Stanford University
The Topology of Fiber Bundles Lecture Notes Ralph L. Cohen Dept. of Mathematics Stanford University Contents Introduction v Chapter 1. Locally Trival Fibrations 1 1. Definitions and examples 1 1.1. Vector
The cover SU(2) SO(3) and related topics
The cover SU(2) SO(3) and related topics Iordan Ganev December 2011 Abstract The subgroup U of unit quaternions is isomorphic to SU(2) and is a double cover of SO(3). This allows a simple computation of
Almost Quaternionic Structures on Quaternionic Kaehler Manifolds. F. Özdemir
Almost Quaternionic Structures on Quaternionic Kaehler Manifolds F. Özdemir Department of Mathematics, Faculty of Arts and Sciences Istanbul Technical University, 34469 Maslak-Istanbul, TURKEY [email protected]
An Introduction to Riemannian Geometry
Lecture Notes in Mathematics An Introduction to Riemannian Geometry Sigmundur Gudmundsson (Lund University) (version 1.0304-30 March 2016) The latest version of this document can be found at http://www.matematik.lu.se/matematiklu/personal/sigma/
Invariant Metrics with Nonnegative Curvature on Compact Lie Groups
Canad. Math. Bull. Vol. 50 (1), 2007 pp. 24 34 Invariant Metrics with Nonnegative Curvature on Compact Lie Groups Nathan Brown, Rachel Finck, Matthew Spencer, Kristopher Tapp and Zhongtao Wu Abstract.
TOPOLOGY OF SINGULAR FIBERS OF GENERIC MAPS
TOPOLOGY OF SINGULAR FIBERS OF GENERIC MAPS OSAMU SAEKI Dedicated to Professor Yukio Matsumoto on the occasion of his 60th birthday Abstract. We classify singular fibers of C stable maps of orientable
RANDOM INTERVAL HOMEOMORPHISMS. MICHA L MISIUREWICZ Indiana University Purdue University Indianapolis
RANDOM INTERVAL HOMEOMORPHISMS MICHA L MISIUREWICZ Indiana University Purdue University Indianapolis This is a joint work with Lluís Alsedà Motivation: A talk by Yulij Ilyashenko. Two interval maps, applied
Linear Maps. Isaiah Lankham, Bruno Nachtergaele, Anne Schilling (February 5, 2007)
MAT067 University of California, Davis Winter 2007 Linear Maps Isaiah Lankham, Bruno Nachtergaele, Anne Schilling (February 5, 2007) As we have discussed in the lecture on What is Linear Algebra? one of
NOTES ON LINEAR TRANSFORMATIONS
NOTES ON LINEAR TRANSFORMATIONS Definition 1. Let V and W be vector spaces. A function T : V W is a linear transformation from V to W if the following two properties hold. i T v + v = T v + T v for all
Systems of Linear Equations
Systems of Linear Equations Beifang Chen Systems of linear equations Linear systems A linear equation in variables x, x,, x n is an equation of the form a x + a x + + a n x n = b, where a, a,, a n and
BANACH AND HILBERT SPACE REVIEW
BANACH AND HILBET SPACE EVIEW CHISTOPHE HEIL These notes will briefly review some basic concepts related to the theory of Banach and Hilbert spaces. We are not trying to give a complete development, but
DEFORMATION OF DIRAC STRUCTURES ALONG ISOTROPIC SUBBUNDLES. and MARCO ZAMBON
Vol. 65 (2010) REPORTS ON MATHEMATICAL PHYSICS No. 2 DEFORMATION OF DIRAC STRUCTURES ALONG ISOTROPIC SUBBUNDLES IVÁN CALVO Laboratorio Nacional de Fusión, Asociación EURATOM-CIEMAT, E-28040 Madrid, Spain
Metrics on SO(3) and Inverse Kinematics
Mathematical Foundations of Computer Graphics and Vision Metrics on SO(3) and Inverse Kinematics Luca Ballan Institute of Visual Computing Optimization on Manifolds Descent approach d is a ascent direction
Finite dimensional C -algebras
Finite dimensional C -algebras S. Sundar September 14, 2012 Throughout H, K stand for finite dimensional Hilbert spaces. 1 Spectral theorem for self-adjoint opertors Let A B(H) and let {ξ 1, ξ 2,, ξ n
Høgskolen i Narvik Sivilingeniørutdanningen STE6237 ELEMENTMETODER. Oppgaver
Høgskolen i Narvik Sivilingeniørutdanningen STE637 ELEMENTMETODER Oppgaver Klasse: 4.ID, 4.IT Ekstern Professor: Gregory A. Chechkin e-mail: [email protected] Narvik 6 PART I Task. Consider two-point
LECTURE III. Bi-Hamiltonian chains and it projections. Maciej B laszak. Poznań University, Poland
LECTURE III Bi-Hamiltonian chains and it projections Maciej B laszak Poznań University, Poland Maciej B laszak (Poznań University, Poland) LECTURE III 1 / 18 Bi-Hamiltonian chains Let (M, Π) be a Poisson
1 Sets and Set Notation.
LINEAR ALGEBRA MATH 27.6 SPRING 23 (COHEN) LECTURE NOTES Sets and Set Notation. Definition (Naive Definition of a Set). A set is any collection of objects, called the elements of that set. We will most
INTRODUCTION TO TOPOLOGY
INTRODUCTION TO TOPOLOGY ALEX KÜRONYA In preparation January 24, 2010 Contents 1. Basic concepts 1 2. Constructing topologies 13 2.1. Subspace topology 13 2.2. Local properties 18 2.3. Product topology
Fiber Bundles. 4.1 Product Manifolds: A Visual Picture
4 Fiber Bundles In the discussion of topological manifolds, one often comes across the useful concept of starting with two manifolds M ₁ and M ₂, and building from them a new manifold, using the product
CURVATURE. 1. Problems (1) Let S be a surface with a chart (φ, U) so that. + g11 g 22 x 1 and g 22 = φ
CURVTURE NDRÉ NEVES 1. Problems (1) Let S be a surface with a chart (φ, U) so that. = 0 x 1 x 2 for all (x 1, x 2 ) U. Show that [ 1 K φ = 2 g 11 g 22 x 2 where g 11 = x 1. x 1 ( ) x2 g 11 + g11 g 22 x
A numerable cover of a topological space X is one which possesses a partition of unity.
Chapter 1 I. Fibre Bundles 1.1 Definitions Definition 1.1.1 Let X be a topological space and let {U j } j J be an open cover of X. A partition of unity relative to the cover {U j } j J consists of a set
Similarity and Diagonalization. Similar Matrices
MATH022 Linear Algebra Brief lecture notes 48 Similarity and Diagonalization Similar Matrices Let A and B be n n matrices. We say that A is similar to B if there is an invertible n n matrix P such that
Vector and Matrix Norms
Chapter 1 Vector and Matrix Norms 11 Vector Spaces Let F be a field (such as the real numbers, R, or complex numbers, C) with elements called scalars A Vector Space, V, over the field F is a non-empty
Sets of Fibre Homotopy Classes and Twisted Order Parameter Spaces
Communications in Mathematical Physics Manuscript-Nr. (will be inserted by hand later) Sets of Fibre Homotopy Classes and Twisted Order Parameter Spaces Stefan Bechtluft-Sachs, Marco Hien Naturwissenschaftliche
Introduction to Algebraic Geometry. Bézout s Theorem and Inflection Points
Introduction to Algebraic Geometry Bézout s Theorem and Inflection Points 1. The resultant. Let K be a field. Then the polynomial ring K[x] is a unique factorisation domain (UFD). Another example of a
CITY UNIVERSITY LONDON. BEng Degree in Computer Systems Engineering Part II BSc Degree in Computer Systems Engineering Part III PART 2 EXAMINATION
No: CITY UNIVERSITY LONDON BEng Degree in Computer Systems Engineering Part II BSc Degree in Computer Systems Engineering Part III PART 2 EXAMINATION ENGINEERING MATHEMATICS 2 (resit) EX2005 Date: August
POLYNOMIAL HISTOPOLATION, SUPERCONVERGENT DEGREES OF FREEDOM, AND PSEUDOSPECTRAL DISCRETE HODGE OPERATORS
POLYNOMIAL HISTOPOLATION, SUPERCONVERGENT DEGREES OF FREEDOM, AND PSEUDOSPECTRAL DISCRETE HODGE OPERATORS N. ROBIDOUX Abstract. We show that, given a histogram with n bins possibly non-contiguous or consisting
Notes on metric spaces
Notes on metric spaces 1 Introduction The purpose of these notes is to quickly review some of the basic concepts from Real Analysis, Metric Spaces and some related results that will be used in this course.
1 Introduction to Matrices
1 Introduction to Matrices In this section, important definitions and results from matrix algebra that are useful in regression analysis are introduced. While all statements below regarding the columns
How To Prove The Dirichlet Unit Theorem
Chapter 6 The Dirichlet Unit Theorem As usual, we will be working in the ring B of algebraic integers of a number field L. Two factorizations of an element of B are regarded as essentially the same if
tr g φ hdvol M. 2 The Euler-Lagrange equation for the energy functional is called the harmonic map equation:
Notes prepared by Andy Huang (Rice University) In this note, we will discuss some motivating examples to guide us to seek holomorphic objects when dealing with harmonic maps. This will lead us to a brief
LINEAR ALGEBRA W W L CHEN
LINEAR ALGEBRA W W L CHEN c W W L Chen, 1997, 2008 This chapter is available free to all individuals, on understanding that it is not to be used for financial gain, and may be downloaded and/or photocopied,
Separation Properties for Locally Convex Cones
Journal of Convex Analysis Volume 9 (2002), No. 1, 301 307 Separation Properties for Locally Convex Cones Walter Roth Department of Mathematics, Universiti Brunei Darussalam, Gadong BE1410, Brunei Darussalam
SOME PROPERTIES OF FIBER PRODUCT PRESERVING BUNDLE FUNCTORS
SOME PROPERTIES OF FIBER PRODUCT PRESERVING BUNDLE FUNCTORS Ivan Kolář Abstract. Let F be a fiber product preserving bundle functor on the category FM m of the proper base order r. We deduce that the r-th
Singular fibers of stable maps and signatures of 4 manifolds
359 399 359 arxiv version: fonts, pagination and layout may vary from GT published version Singular fibers of stable maps and signatures of 4 manifolds OSAMU SAEKI TAKAHIRO YAMAMOTO We show that for a
A NEW CONSTRUCTION OF 6-MANIFOLDS
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 360, Number 8, August 2008, Pages 4409 4424 S 0002-9947(08)04462-0 Article electronically published on March 12, 2008 A NEW CONSTRUCTION OF 6-MANIFOLDS
3. Prime and maximal ideals. 3.1. Definitions and Examples.
COMMUTATIVE ALGEBRA 5 3.1. Definitions and Examples. 3. Prime and maximal ideals Definition. An ideal P in a ring A is called prime if P A and if for every pair x, y of elements in A\P we have xy P. Equivalently,
Allen Back. Oct. 29, 2009
Allen Back Oct. 29, 2009 Notation:(anachronistic) Let the coefficient ring k be Q in the case of toral ( (S 1 ) n) actions and Z p in the case of Z p tori ( (Z p )). Notation:(anachronistic) Let the coefficient
Level Set Framework, Signed Distance Function, and Various Tools
Level Set Framework Geometry and Calculus Tools Level Set Framework,, and Various Tools Spencer Department of Mathematics Brigham Young University Image Processing Seminar (Week 3), 2010 Level Set Framework
Surface bundles over S 1, the Thurston norm, and the Whitehead link
Surface bundles over S 1, the Thurston norm, and the Whitehead link Michael Landry August 16, 2014 The Thurston norm is a powerful tool for studying the ways a 3-manifold can fiber over the circle. In
MATH1231 Algebra, 2015 Chapter 7: Linear maps
MATH1231 Algebra, 2015 Chapter 7: Linear maps A/Prof. Daniel Chan School of Mathematics and Statistics University of New South Wales [email protected] Daniel Chan (UNSW) MATH1231 Algebra 1 / 43 Chapter
CLOSED AND EXACT DIFFERENTIAL FORMS IN R n
CLOSED AND EXACT DIFFERENTIAL FORMS IN R n PATRICIA R. CIRILO, JOSÉ REGIS A.V. FILHO, SHARON M. LUTZ [email protected], [email protected], [email protected] Abstract. We show in this paper that
A characterization of trace zero symmetric nonnegative 5x5 matrices
A characterization of trace zero symmetric nonnegative 5x5 matrices Oren Spector June 1, 009 Abstract The problem of determining necessary and sufficient conditions for a set of real numbers to be the
MA651 Topology. Lecture 6. Separation Axioms.
MA651 Topology. Lecture 6. Separation Axioms. This text is based on the following books: Fundamental concepts of topology by Peter O Neil Elements of Mathematics: General Topology by Nicolas Bourbaki Counterexamples
SOLUTIONS TO EXERCISES FOR. MATHEMATICS 205A Part 3. Spaces with special properties
SOLUTIONS TO EXERCISES FOR MATHEMATICS 205A Part 3 Fall 2008 III. Spaces with special properties III.1 : Compact spaces I Problems from Munkres, 26, pp. 170 172 3. Show that a finite union of compact subspaces
Introduction to Characteristic Classes
UNIVERSITY OF COPENHAGEN Faculty of Science Department of Mathematical Sciences Mauricio Esteban Gómez López Introduction to Characteristic Classes Supervisors: Jesper Michael Møller, Ryszard Nest 1 Abstract
University of Lille I PC first year list of exercises n 7. Review
University of Lille I PC first year list of exercises n 7 Review Exercise Solve the following systems in 4 different ways (by substitution, by the Gauss method, by inverting the matrix of coefficients
Finite dimensional topological vector spaces
Chapter 3 Finite dimensional topological vector spaces 3.1 Finite dimensional Hausdorff t.v.s. Let X be a vector space over the field K of real or complex numbers. We know from linear algebra that the
Quantum Mechanics and Representation Theory
Quantum Mechanics and Representation Theory Peter Woit Columbia University Texas Tech, November 21 2013 Peter Woit (Columbia University) Quantum Mechanics and Representation Theory November 2013 1 / 30
Lecture Notes on Topology for MAT3500/4500 following J. R. Munkres textbook. John Rognes
Lecture Notes on Topology for MAT3500/4500 following J. R. Munkres textbook John Rognes November 29th 2010 Contents Introduction v 1 Set Theory and Logic 1 1.1 ( 1) Fundamental Concepts..............................
The Math Circle, Spring 2004
The Math Circle, Spring 2004 (Talks by Gordon Ritter) What is Non-Euclidean Geometry? Most geometries on the plane R 2 are non-euclidean. Let s denote arc length. Then Euclidean geometry arises from the
T ( a i x i ) = a i T (x i ).
Chapter 2 Defn 1. (p. 65) Let V and W be vector spaces (over F ). We call a function T : V W a linear transformation form V to W if, for all x, y V and c F, we have (a) T (x + y) = T (x) + T (y) and (b)
MEASURE AND INTEGRATION. Dietmar A. Salamon ETH Zürich
MEASURE AND INTEGRATION Dietmar A. Salamon ETH Zürich 12 May 2016 ii Preface This book is based on notes for the lecture course Measure and Integration held at ETH Zürich in the spring semester 2014. Prerequisites
Lecture 4 Cohomological operations on theories of rational type.
Lecture 4 Cohomological operations on theories of rational type. 4.1 Main Theorem The Main Result which permits to describe operations from a theory of rational type elsewhere is the following: Theorem
9 More on differentiation
Tel Aviv University, 2013 Measure and category 75 9 More on differentiation 9a Finite Taylor expansion............... 75 9b Continuous and nowhere differentiable..... 78 9c Differentiable and nowhere monotone......
FUNCTIONAL ANALYSIS LECTURE NOTES: QUOTIENT SPACES
FUNCTIONAL ANALYSIS LECTURE NOTES: QUOTIENT SPACES CHRISTOPHER HEIL 1. Cosets and the Quotient Space Any vector space is an abelian group under the operation of vector addition. So, if you are have studied
and s n (x) f(x) for all x and s.t. s n is measurable if f is. REAL ANALYSIS Measures. A (positive) measure on a measurable space
RAL ANALYSIS A survey of MA 641-643, UAB 1999-2000 M. Griesemer Throughout these notes m denotes Lebesgue measure. 1. Abstract Integration σ-algebras. A σ-algebra in X is a non-empty collection of subsets
Linear Algebra Review. Vectors
Linear Algebra Review By Tim K. Marks UCSD Borrows heavily from: Jana Kosecka [email protected] http://cs.gmu.edu/~kosecka/cs682.html Virginia de Sa Cogsci 8F Linear Algebra review UCSD Vectors The length
Introduction to General and Generalized Linear Models
Introduction to General and Generalized Linear Models General Linear Models - part I Henrik Madsen Poul Thyregod Informatics and Mathematical Modelling Technical University of Denmark DK-2800 Kgs. Lyngby
CHAPTER 1 BASIC TOPOLOGY
CHAPTER 1 BASIC TOPOLOGY Topology, sometimes referred to as the mathematics of continuity, or rubber sheet geometry, or the theory of abstract topological spaces, is all of these, but, above all, it is
Metric Spaces. Chapter 1
Chapter 1 Metric Spaces Many of the arguments you have seen in several variable calculus are almost identical to the corresponding arguments in one variable calculus, especially arguments concerning convergence
Table of Contents. Introduction... 1 Chapter 1. Vector Bundles... 4. Chapter 2. K Theory... 38. Chapter 3. Characteristic Classes...
Table of Contents Introduction.............................. 1 Chapter 1. Vector Bundles.................... 4 1.1. Basic Definitions and Constructions............ 6 Sections 7. Direct Sums 9. Inner Products
(Basic definitions and properties; Separation theorems; Characterizations) 1.1 Definition, examples, inner description, algebraic properties
Lecture 1 Convex Sets (Basic definitions and properties; Separation theorems; Characterizations) 1.1 Definition, examples, inner description, algebraic properties 1.1.1 A convex set In the school geometry
Fiber bundles and non-abelian cohomology
Fiber bundles and non-abelian cohomology Nicolas Addington April 22, 2007 Abstract The transition maps of a fiber bundle are often said to satisfy the cocycle condition. If we take this terminology seriously
Math 241, Exam 1 Information.
Math 241, Exam 1 Information. 9/24/12, LC 310, 11:15-12:05. Exam 1 will be based on: Sections 12.1-12.5, 14.1-14.3. The corresponding assigned homework problems (see http://www.math.sc.edu/ boylan/sccourses/241fa12/241.html)
Samuel Omoloye Ajala
49 Kragujevac J. Math. 26 (2004) 49 60. SMOOTH STRUCTURES ON π MANIFOLDS Samuel Omoloye Ajala Department of Mathematics, University of Lagos, Akoka - Yaba, Lagos NIGERIA (Received January 19, 2004) Abstract.
Curves and Surfaces. Lecture Notes for Geometry 1. Henrik Schlichtkrull. Department of Mathematics University of Copenhagen
Curves and Surfaces Lecture Notes for Geometry 1 Henrik Schlichtkrull Department of Mathematics University of Copenhagen i ii Preface The topic of these notes is differential geometry. Differential geometry
Basic Concepts of Point Set Topology Notes for OU course Math 4853 Spring 2011
Basic Concepts of Point Set Topology Notes for OU course Math 4853 Spring 2011 A. Miller 1. Introduction. The definitions of metric space and topological space were developed in the early 1900 s, largely
1 VECTOR SPACES AND SUBSPACES
1 VECTOR SPACES AND SUBSPACES What is a vector? Many are familiar with the concept of a vector as: Something which has magnitude and direction. an ordered pair or triple. a description for quantities such
How To Understand The Theory Of Differential Geometry
Chapter 23 Fiber bundles Consider a manifold M with the tangent bundle T M = P M T P M. Let us look at this more closely. T M can be thought of as the original manifold M with a tangent space stuck at
MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS. + + x 2. x n. a 11 a 12 a 1n b 1 a 21 a 22 a 2n b 2 a 31 a 32 a 3n b 3. a m1 a m2 a mn b m
MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS 1. SYSTEMS OF EQUATIONS AND MATRICES 1.1. Representation of a linear system. The general system of m equations in n unknowns can be written a 11 x 1 + a 12 x 2 +
