G := γ. Introduction. σxy: shear stress. γ: shear strain. γ = yvx. Characteristic properties of granular matters They have a liquid and solid region.

Similar documents
Differential Relations for Fluid Flow. Acceleration field of a fluid. The differential equation of mass conservation

Asphalt Institute Technical Bulletin. Laboratory Mixing and Compaction Temperatures

1. Fluids Mechanics and Fluid Properties. 1.1 Objectives of this section. 1.2 Fluids

Contents. Microfluidics - Jens Ducrée Physics: Fluid Dynamics 1

Turbulence, Heat and Mass Transfer (THMT 09) Poiseuille flow of liquid methane in nanoscopic graphite channels by molecular dynamics simulation

Abaqus/CFD Sample Problems. Abaqus 6.10

CBE 6333, R. Levicky 1 Review of Fluid Mechanics Terminology

Scalars, Vectors and Tensors

The Viscosity of Fluids

Fluid Mechanics: Static s Kinematics Dynamics Fluid

Controlled release of proteins from self-assembling hydrogels based on oppositely charged dextran microspheres

Proposed Nomenclature for Steady Shear Flow and Linear Viscoelastic Behavior

Liquid Hydrogen Pressure Vessel Analysis

Numerical Analysis of Independent Wire Strand Core (IWSC) Wire Rope

Journal bearings/sliding bearings

Fatigue crack propagation

The ratio of inertial to viscous forces is commonly used to scale fluid flow, and is called the Reynolds number, given as:

Numerical Analysis of Transient Phenomena in Electromagnetic Forming Processes

Rheology of polymer systems/ Reologia dos sistemas poliméricos

Open channel flow Basic principle

Fluids and Solids: Fundamentals

High Performance Castable CL-20 Explosive

DESIGN OF SLABS. Department of Structures and Materials Engineering Faculty of Civil and Environmental Engineering University Tun Hussein Onn Malaysia

Mathematical Model of Blood Flow in Carotid Bifurcation. Phd student: Eng. Emanuel Muraca. 16/10/09 Milan

Polymer Melt Rheology. Introduction to Viscoelastic Behavior. Time-Temperature Equivalence

Mechanical Properties - Stresses & Strains

Chapter 7. Lyapunov Exponents. 7.1 Maps

CE 3500 Fluid Mechanics / Fall 2014 / City College of New York

7.2.4 Seismic velocity, attenuation and rock properties

TIE-31: Mechanical and thermal properties of optical glass

ENGINEERING COUNCIL CERTIFICATE LEVEL ENGINEERING SCIENCE C103 TUTORIAL 3 - TORSION

Improved fluid control by proper non-newtonian flow modeling

Unit 3 (Review of) Language of Stress/Strain Analysis

CE 204 FLUID MECHANICS

How To Determine The Fatigue Life Of An A380 Aluminum Alloy Casting

Damage due to fatigue occurs when loading is markedly varying in time. R decreases with time S T. MSÚ F max

Rheological Properties of Topical Formulations

arxiv: v1 [hep-ph] 5 Dec 2011

Appendix A Sub surface displacements around excavations Data presented in Xdisp sample file

AgoraLink Agora for Life Science Technologies Linköpings Universitet Kurs i Fysiologisk mätteknik Biofluidflöden

Estimation of the crack propagation direction in a mixed-mode geometry via multi-parameter fracture criteria

10.1 Powder mechanics

N 1. (q k+1 q k ) 2 + α 3. k=0

( ) = ( ) = {,,, } β ( ), < 1 ( ) + ( ) = ( ) + ( )

Tumour Growth Models

Viscosity experiments: physical controls and implications for volcanic hazards. Ben Edwards Dept of Geology, Dickinson College

OUTCOME 3 TUTORIAL 5 DIMENSIONAL ANALYSIS

A fundamental study of the flow past a circular cylinder using Abaqus/CFD

Finding Drag Coefficient using Solidworks Flow Simulation

Solution for Homework #1

10ème Congrès Français d'acoustique Lyon, Avril 2010

Notes on Polymer Rheology Outline

both double. A. T and v max B. T remains the same and v max doubles. both remain the same. C. T and v max

Physics Notes Class 11 CHAPTER 2 UNITS AND MEASUREMENTS

du u U 0 U dy y b 0 b

Unsteady Pressure Measurements

CFD SUPPORTED EXAMINATION OF BUOY DESIGN FOR WAVE ENERGY CONVERSION

Comparison of flow regime transitions with interfacial wave transitions

The Viscosity of Fluids

Data-Base Workflow. From Raw Material Data to Simulation input

Drained and Undrained Conditions. Undrained and Drained Shear Strength

MECHANICS OF SOLIDS - BEAMS TUTORIAL 1 STRESSES IN BEAMS DUE TO BENDING. On completion of this tutorial you should be able to do the following.

Physics 231 Lecture 15

Amodel AS-1133 HS. polyphthalamide. Technical Data Sheet

Fluid Dynamics Viscosity. Dave Foster Department of Chemical Engineering University of Rochester

Introduction to COMSOL. The Navier-Stokes Equations

Geomechanical Effects of Waterflooding

Stress Analysis, Strain Analysis, and Shearing of Soils

PVC PIPE PERFORMANCE FACTORS

NUMERICAL ANALYSIS OF THE EFFECTS OF WIND ON BUILDING STRUCTURES

Mechanical Engineering Technology

Stanford Rock Physics Laboratory - Gary Mavko. Basic Geophysical Concepts

Lecture 24 - Surface tension, viscous flow, thermodynamics

CHAPTER 2: LIQUID VISCOSITY MEASUREMENT

arxiv:hep-th/ v1 25 Jul 2005

Dynamics in nanoworlds

Drilling Problems. pull

High Rate, Low Temperature Testing and Modeling of Water Ice for High Speed Ballistic Probes

Instability, dispersion management, and pattern formation in the superfluid flow of a BEC in a cylindrical waveguide

CFD Modelling of Wet Flue Gas Desulphurization (WFGD) Unit: A New Era of Process System Control and Optimization

Preview of Period 2: Forms of Energy

PUMPS STEAM TURBINES BUILDING & FIRE WASTEWATER SERVICE PUMP CLINIC 22 VISCOSITY

CFD Analysis of Application of Phase Change Material in Automotive Climate Control Systems

Contents. Microfluidics - Jens Ducrée Physics: Navier-Stokes Equation 1

Stress variations near surfaces in diamond-like amorphous carbon

Physics for the Life Sciences: Fall 2008 Lecture #25

Adaptation of General Purpose CFD Code for Fusion MHD Applications*

q = 6.74x1 = mg/l x 3.78x10 L/d = 3.4x10 mg / day a) Single CMFR mg/g C Organic Load = Carbon requirement = 6.74 mg 1000 g C inf = 10 mg/l

Rate of convergence towards Hartree dynamics

Steady Heat Conduction

Measuring Optical and Thermal Properties of High Temperature Receivers

Understanding Plastics Engineering Calculations

PUBLIC TRANSPORT SYSTEMS IN POLAND: FROM BIAŁYSTOK TO ZIELONA GÓRA BY BUS AND TRAM USING UNIVERSAL STATISTICS OF COMPLEX NETWORKS

Theory overview of flow measurement using differential pressure devices based on ISO-5167 standard.

Earthquake Magnitude

Lecture 14. Chapter 8-1

Ingeniería y Georiesgos Ingeniería Geotécnica Car 19 a Nº of 204 ; TEL : igr@ingeoriesgos.com

CHAPTER 9 FEM MODELING OF SOIL-SHEET PILE WALL INTERACTION

DIESEL EFFECT PROBLEM SOLVING DURING INJECTION MOULDING

Diffusione e perfusione in risonanza magnetica. E. Pagani, M. Filippi

Transcription:

1

Introduction Characteristic properties of granular matters They have a liquid and solid region. "https://www.youtube.com/watch?v=50_-zqsgda4" In the liquid region we use the viscosity η. σxy η := γ σxy: shear stress shear rate γ: y Shear Velocity In the solid region we use the shear modulus G. G := σxy γ γ: shear strain Ly!2 γ = yvx x δx Shear γ = δx/ly

G = G + ig. σ G = lim γ γ G G = ω lim γ 0 (σ 0) σ γ, η = G ω G (, μ) G (ϕ ϕ J ) 1/2 ( 0) ΔZ = Z ΔZ 3 = Z 3 C. S. O Hern, et al., Phys. Rev. Lett. 88, 7 (2002). E. Somfai, et al., Phys. Rev. E 75, 020301 (2007). M. Otsuki & H. Hayakawa, Phys. Rev. E 95, 062902 (2017). G ΔZ ( 0) G/G (lin) = ( μ b 1(ϕ ϕ c ) b 2 )!3

f ij = ( f ij,n + f ij,n = k n ξ ij f ij,t = { k t ζ ij n ij η n μ c f ij,n f ij,t ) Θ(r ij x ij ) t ij η t t ij v ij,n r i v ij,t ( f ij,t < μ c f ij,n ) (otherwise) ω i t ij ξ ij ω j n ij r j S. Luding, Granular Matter 10, 235 (2008). η n / mk n = 1 (restitution coefficient 0.043) k t /k n = 0.25 η t /η n = 0.5 μ c = 0 1!4

Oscillatory shear system We explain how to apply oscillatory shear. Lx P A sin(ωt) In 2 dimensional N = 4000 (tetradisperse) 2 10 5 P/kn 6 10 2 1 10 6 γ0 1 A γ0 := (A : amplitude) Lx /2 A sin(ωt) y x P We press the walls with a pressure P and they move according to ± A sin(ωt)!5

= 6 10 1, P/k n = 2 10 3. = 6 10 1, P/k n = 2 10 3.!6

1 10 1 G = lim γ σ γ. ( σ = σ σ ) μ = 1 μ = 1 G = ω lim γ 0( σ 0) σ γ. ( σ = σ σ ) G /G res 1 10-5 1 10-6 P=2 10-5 G res = lim 0 /P β 1 1 1 10 2 1 10 4 G > 0, β 1 = 1. M. Otsuki & H. Hayakawa, Phys. Rev. E 95, 062902 (2017). G P (ϕ ϕ J )? P M. Otsuki & H. Hayakawa, Phys. Rev. E 80, 011308 (2009).!7 G /P α 1 1 10-5 1 10-6 1 10-7 P=2 10-5 /P β 1 1 1 10 2 1 10 4 α 1 = 0.2, β 1 = 1.05. G

G G = lim γ σ γ. ( σ = σ σ ) G = ω lim γ 0( σ 0) P = 2 10 3 1 µ=0 µ=0.1 µ=0.25 µ=0.5 µ=0.75 µ=1 1 10-6 G G G μ=0 μ=0 μ G μ α μ 0 1 10-1 σ γ. ( σ = σ σ ) P = 2 10 3 /μ β μ γ 1 0 µ=0 µ=0.1 1 10-5 1 10-5 µ=0.25 µ=0.5 µ=0.75 1 10-6 µ=1 1 10-6 1 10-4 1 10-2 α μ = 0.3, β μ = 0.75. μ G G μ 0.1 μ 0.1!8

G γ 1 0 σ σ / lim 0 1 10 5 1 10 4 1 10 3 1 10 2 1 10 1 P=2 10-5 1 10-6 σ(t) σ(t) P = 2 10 2 γ(t)/ P = 2 10 4 γ(t)/ max σ(t) const ( >,c ). G = lim γ σ γ 1!9

G < 0 P = 2 10 2 σ(t) P = 2 10 4 γ(t)/ω G eff /Pα 1 1 10-5 1 10-6 1 10-7 P=2 10-5 1 1 10 2 1 10 4 σ(t) γ /P β 0 1 γ(t)/ω G < 0 G G eff = ω α 1 = 0.2, β 1 = 1.05. lim γ 0( σ 0) eff σ γ. ( σ = σ σ )!10

G G G (Z) G /k n G eff /k n Z 1 10-5 1 10-6 P=2 10-5 1 10-6 5.5 5 4.5 4 1 10-5 1 10-6 1 10-7 1 10-8 P=2 10-5 1 10-6 3.5 3 2.5 2 P=2 10-5 1.5 1 10-6!11

G ϕ<ϕj > 0.!12 1 10 1 UJ DI 1 10-5 1 10-6 P=2 10-5 0.74 0.76 0.78 0.8 0.82 0.84 0.86 0.88 0.9 ϕ J

G G /G res 1 10 1 1 10-5 1 10-6 /P β 1 1 1 10 2 1 10 4 G eff /Pα 1 1 10-5 1 10-6 P=2 10-5 1 10-7 P=2 10-5!13 /P β 1 1 1 10 2 1 10 4

!14

G /P α 0 1 10 1 1 10-5 G = lim γ σ γ. /P β 0 α 0 = 0.5, β 0 = 1. G ( σ = σ σ ) μ = 0 μ = 0 P=2 10-5 1/2 1 1 10 2 1 10 4 G /P α 0 M. Otsuki, H. Hayakawa, Phys. Rev. E 90, 042202 (2014). M. Otsuki, H. Hayakawa, Phys. Rev. E 95, 062902 (2017). P!15 1 10-5 1 10-6 P=2 10-5 1 10 2 1 10 4 γ /P β 0 0 α 0 = 0.35, β 0 = 1.2. P (ϕ ϕ J )? M. Otsuki, H. Hayakawa, Phys. Rev. E 80, 011308 (2009). 1

1 10 1 SJ J 1 10 1 SJ J UJ 1 10-5 1 10-6 P=2 10-5 0.74 0.76 0.78 0.8 0.82 0.84 0.86 0.88 0.9 ϕ UJ 1 10-5 1 10-6 P=2 10-5 0.8 0.82 0.84 0.86 0.88 0.9 ϕ G ϕ<ϕj > 0.!16

G res G res := lim 0 G. 0.55 0.5 0.45 0.4 G res a log P + b, G res 0.35 0.3 0.25 a = 0.04 ± 0.01, b = 0.62 ± 0.03. 0.2 0.15 0.1 P G res!17