Comparison of flow regime transitions with interfacial wave transitions
|
|
|
- Cornelia Dortha Sutton
- 10 years ago
- Views:
Transcription
1 Comparison of flow regime transitions with interfacial wave transitions M. J. McCready & M. R. King Chemical Engineering University of Notre Dame
2 Flow geometry of interest Two-fluid stratified flow gas liquid We will consider the transition from a stratified state in this talk. Examining (linear) stability of other structures (e.g., slugs) is also a viable way to formulate the flow regime problem.
3 Points of this talk Examine the use of linear stability models for flow regime transition Long-wave stability is most appropriate based on transition data Models from different studies don t agree Explore the importance of nonlinear effects on the transition using a well-defined system Yes, there are some nonlinear effects that do change the predicted transition. But -- linear stability might be a good engineering model if done correctly. It is certainly a useful limiting point.
4 Some regime transition models Slug transition models Kelvin-Helmholtz Wallis & Dobson (1973) Taitel & Dukler (1976) Lin & Hanratty (1986) Barnea (1991) Crowley et.al (1993) Bendiksen & Espedal (1992) Lin & Hanratty (1987) data slugs Long wave linear stability laminar-laminar differential 1 superficial liquid velocity, m/s channel=2.54 cm liquid gas ρ L =1 g/cm 3 ρ G =.112 g/cm 3 µ L =1 cp µ G =.18 cp superficial gas velocity, m/s
5 Oil-Gas at 2 Atm. channel=2 cm liquid gas ρ L =.9 g/cm 3 ρ G =.232 g/cm 3 µ L =5 cp µ G =.371 cp Barnea (1991) Kelvin-Helmholtz Taitel-Dulker (1976) Wallis & Dobson (1973) Crowley et al. (1992) Lin & Hanratty (1986) Differential, laminar Bendiksen & Espedal (1992) Ruder & Hanratty (1989) superficial liquid velocity, m/s superficial gas velocity, m/s
6 The key issue is the growing wave peak at low frequency which can lead to roll waves or slugs. When does it occur? R L = 3 R G = 9975 µ L = 5 cp linear growth k-ε model Data of Bruno and McCready, growth rate (1/s) wave spectrum (cm 2 -s) 1-5 wave 1.2 m 3.8 m 6 m frequency (1/s)
7 Wave transition as gas increases Data of Minato 1996
8 Wave transition as gas increases (more) Data of Minato 1996
9 The transition at increasing liquid flow rate Data of Kuru, 1995
10 Experiments laminar, oil-water channel flow 2.44 m.5-1 cm Oil phase Water phase } Tracings PSD CSD - Wave speeds Bicoherence.2 mm platinum wire probes 3 khz Signal 1 cm
11 Measured wave transitions Linear growth: interfacial mode "shear" mode wave spectrum w (1/s) 2 1 Re oil = 3 Re water = 65 f xx (cm 2 /s) f (Hz)
12 f xx (cm 2 /s) (wave spectrum) Measured wave transitions 5 4 Linear growth: interfacial mode "shear" mode measured spectrum 1-2 w (1/s) (linear growth) Re oil =3 Re water = f (Hz)
13 Long wave stability -- THE criterion? We might be tempted to conclude that long wave stability, if we could get it correct -- would tell us everything. However, there are two problems. 1. "Long" wave stability does not mean all long waves are unstable. 2. We have strong experimental evidence of a range of existence of unstable long waves where there are no visible waves.
14 Theoretical analysis (linear laminar theory) The complete differential linear problem can be formulated as U = Φ'(y) Exp[i k (x-c t)], u = φ'(y) Exp[i k (x-c t)], V = - i k Φ (y) Exp[i k (x-c t)], v = - i k φ(y) Exp[i k (x-c t)] where Φ(y) and φ(y) are the disturbance stream functions Φ = Φ' [1a] φ = [1b] φ' - u b φ = Φ' - Ub [1c] ub ( ) c u b ( ) c φ'' + k 2 φ = µ (Φ'' + k 2 [1d] 1 i k φ νr (φ''' - 3 k2 φ') + i k (φ u b ' - φ' (u b () - c)) + (F + k2 T) (u b () - c) R 2 = ρ R (Φ''' - 3 i ρ k φ k2 Φ') + ρ i k (Φ U b ' - Φ' σ) + F (u b () - c) R [1e]
15 Theoretical analysis (linear laminar theory) i k (U b -c) (Φ'' - k 2 Φ) - i k U b '' Φ = R -1 (Φ iv - 2 k 2 Φ''+ k 4 Φ), for y 1 [1f] i k (u b -c) (φ'' - k 2 φ) - i k u b '' φ = (ν R) -1 (φ iv - 2 k 2 φ''+ k 4 φ), for -1/d y [1g] φ = φ' y = -d -1. [1h] viscosity ratio ==> µ = µ 2 /µ 1, density ratio ==>ρ = ρ 2 /ρ 1, ratio of kinematic viscosities ==> ν, σ = u b () -c depth ratio ==> d = D 2 /D. 1 liquid average velocity profiles ==> u b wavenumber ==> k gas velocity ==> U b
16 Unstable long waves, stable intermediate region growth rate (1/s) 2 1 R G = 2 µ L = 5 cp R L = 35 R L = 25 R L = 2 R L = 15 R L = 1 growth rate (1/s) wavenumber (m -1 ) wavenumber (m -1 )
17 Two-(matched density) liquid, rotating Couette device laser mirror camera mercury Couette Cell
18 Rotating Couette experiment
19 Wave map for rotating Couette flow experiment Regions of "no waves" exist where long waves are unstable 5 Atomization plate speed (cm/s) stable long waves steady 2-D waves occur in most of this range 1. No waves steady periodic unsteady waves solitary long wave stability boundary.2.4 h Will show spectral simulation later at this condition.6.8
20 Weakly- nonlinear theory Du Dt = -Ñp + 1 R 2 u Spectral reduction of Navier-Stokes equations and boundary conditions. The interface is represented by, y (u, p, h) We make the assumption that the waves can be represented by a series of modes which have a complex amplitude, A, multiplying a linear eigenfunction, ζ, y = Σ A i ζ i A series of amplitude coupled amplitude equations is integrated. Ai = + * Lk ( i) αjiaa j j i + β jiai j Aj t + γ kji AA i j A k Both the dynamic and steady state behavior are watched.
21 Comparison of oil-water experiments and simulation 1-2 Linear stability Re W =12 Re W =12 Re W =65 Re W = wave amplitude linear growth rate (1/s) Simulated Spectra Re W =65 Re W = wavenumber (1/m) -4
22 Measured wave transitions Linear growth: interfacial mode "shear" mode wave spectrum w (1/s) 2 1 Re oil = 3 Re water = 65 f xx (cm 2 /s) f (Hz)
23 f xx (cm 2 /s) (wave spectrum) Measured wave transitions 5 4 Linear growth: interfacial mode "shear" mode measured spectrum 1-2 w (1/s) (linear growth) Re oil =3 Re water = f (Hz)
24 Nonlinear effect on long wave formation Re w =65, cubic nonlinear coefficients are more balanced Re w =12, large cubic nonlinear coefficients between large and small wavenumbers
25 Gas-liquid simulations rel47 rel24 wave amplitude wavenumber (1/m)
26 Nonlinear coefficients for gas-liquid flow Quadratic interactions with mean flow mode are much Stronger at the higher liquid Reynolds number Re G =98, Re L =24 Re G =98, Re L =47
27 Couette flow linear growth rate growth rate TextEnd Depth ratio=1.5 Viscosity ratio = 55 Density ratio=1 Rotation rate=15 cm/s scaled wavenumber
28 Spectral simulation, Couette flow A m p l i t u d e Wavenumber
29 Couette flow simulations Evolution of wave spectrum with time. No preferred wavenumber exists. Should explain why we see no waves amplitude t=3 t=243 t=183 t=122 t= wavenumber
30 Conclusions 1. All evidence is that long wave stability is a necessary condition for the formation of long wave disturbances. 2. For many flow situations, there is a good correspondence between the long wave stability boundary and the formation of growing long waves. 3. However, there is the nagging problem with Couette flow, where a nonlinear cascade appears to saturate waves at an amplitude too small to see.
31 Conclusions 1. All evidence is that long wave stability is a necessary condition for the formation of long wave disturbances. 2. For many flow situations, there is a good correspondence between the long wave stability boundary and the formation of growing long waves. 3. However, there is the nagging problem with Couette flow, where a nonlinear cascade appears to saturate waves at an amplitude too small to see.
32 Conclusions 1. All evidence is that long wave stability is a necessary condition for the formation of long wave disturbances. 2. For many flow situations, there is a good correspondence between the long wave stability boundary and the formation of growing long waves. 3. However, there is the nagging problem with Couette flow, where a nonlinear cascade appears to saturate waves at an amplitude too small to see.
33 Conclusions (cont.) 4. There is also the complication that the entire long wave region may not be unstable, this probably does prevent significant long wave formation,because 5. The simulations suggest that different kinds of nonlinear interactions (e.g., cubic and or quadratic with various modes) are important in the development of the spectrum Quadratic interactions enhance the formation of the low mode for gas-liquid flows and cubic interactions enhance it for oil-water flows 6. Certainly the situation is complex because large ocean waves are not the most linearly unstable (5 cm waves are), but these do not receive much of their energy from nonlinear processes, wind must directly feed them.
34 Conclusions (cont.) 4. There is also the complication that the entire long wave region may not be unstable, this probably does prevent significant long wave formation,because 5. The simulations suggest that different kinds of nonlinear interactions (e.g., cubic and or quadratic with various modes) are important in the development of the spectrum Quadratic interactions enhance the formation of the low mode for gas-liquid flows and cubic interactions enhance it for oil-water flows 6. Certainly the situation is complex because large ocean waves are not the most linearly unstable (5 cm waves are), but these do not receive much of their energy from nonlinear processes, wind must directly feed them.
35 Conclusions (cont.) 4. There is also the complication that the entire long wave region may not be unstable, this probably does prevent significant long wave formation,because 5. The simulations suggest that different kinds of nonlinear interactions (e.g., cubic and or quadratic with various modes) are important in the development of the spectrum Quadratic interactions enhance the formation of the low mode for gas-liquid flows and cubic interactions enhance it for oil-water flows 6. Certainly the situation is complex because large ocean waves are not the most linearly unstable (5 cm waves are), but these do not receive much of their energy from nonlinear processes, wind must directly feed them.
Use of OpenFoam in a CFD analysis of a finger type slug catcher. Dynaflow Conference 2011 January 13 2011, Rotterdam, the Netherlands
Use of OpenFoam in a CFD analysis of a finger type slug catcher Dynaflow Conference 2011 January 13 2011, Rotterdam, the Netherlands Agenda Project background Analytical analysis of two-phase flow regimes
Dimensional Analysis
Dimensional Analysis An Important Example from Fluid Mechanics: Viscous Shear Forces V d t / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / Ƭ = F/A = μ V/d More generally, the viscous
Model of a flow in intersecting microchannels. Denis Semyonov
Model of a flow in intersecting microchannels Denis Semyonov LUT 2012 Content Objectives Motivation Model implementation Simulation Results Conclusion Objectives A flow and a reaction model is required
11 Navier-Stokes equations and turbulence
11 Navier-Stokes equations and turbulence So far, we have considered ideal gas dynamics governed by the Euler equations, where internal friction in the gas is assumed to be absent. Real fluids have internal
Lecturer, Department of Engineering, [email protected], Lecturer, Department of Mathematics, [email protected]
39 th AIAA Fluid Dynamics Conference, San Antonio, Texas. A selective review of CFD transition models D. Di Pasquale, A. Rona *, S. J. Garrett Marie Curie EST Fellow, Engineering, [email protected] * Lecturer,
Part IV. Conclusions
Part IV Conclusions 189 Chapter 9 Conclusions and Future Work CFD studies of premixed laminar and turbulent combustion dynamics have been conducted. These studies were aimed at explaining physical phenomena
Abaqus/CFD Sample Problems. Abaqus 6.10
Abaqus/CFD Sample Problems Abaqus 6.10 Contents 1. Oscillatory Laminar Plane Poiseuille Flow 2. Flow in Shear Driven Cavities 3. Buoyancy Driven Flow in Cavities 4. Turbulent Flow in a Rectangular Channel
OMICS Group International is an amalgamation of Open Access publications
About OMICS Group OMICS Group International is an amalgamation of Open Access publications and worldwide international science conferences and events. Established in the year 2007 with the sole aim of
NUMERICAL ANALYSIS OF THE EFFECTS OF WIND ON BUILDING STRUCTURES
Vol. XX 2012 No. 4 28 34 J. ŠIMIČEK O. HUBOVÁ NUMERICAL ANALYSIS OF THE EFFECTS OF WIND ON BUILDING STRUCTURES Jozef ŠIMIČEK email: [email protected] Research field: Statics and Dynamics Fluids mechanics
3. Experimental Results
Experimental study of the wind effect on the focusing of transient wave groups J.P. Giovanangeli 1), C. Kharif 1) and E. Pelinovsky 1,) 1) Institut de Recherche sur les Phénomènes Hors Equilibre, Laboratoire
Contents. Microfluidics - Jens Ducrée Physics: Fluid Dynamics 1
Contents 1. Introduction 2. Fluids 3. Physics of Microfluidic Systems 4. Microfabrication Technologies 5. Flow Control 6. Micropumps 7. Sensors 8. Ink-Jet Technology 9. Liquid Handling 10.Microarrays 11.Microreactors
Lecture 8 - Turbulence. Applied Computational Fluid Dynamics
Lecture 8 - Turbulence Applied Computational Fluid Dynamics Instructor: André Bakker http://www.bakker.org André Bakker (2002-2006) Fluent Inc. (2002) 1 Turbulence What is turbulence? Effect of turbulence
A LAMINAR FLOW ELEMENT WITH A LINEAR PRESSURE DROP VERSUS VOLUMETRIC FLOW. 1998 ASME Fluids Engineering Division Summer Meeting
TELEDYNE HASTINGS TECHNICAL PAPERS INSTRUMENTS A LAMINAR FLOW ELEMENT WITH A LINEAR PRESSURE DROP VERSUS VOLUMETRIC FLOW Proceedings of FEDSM 98: June -5, 998, Washington, DC FEDSM98 49 ABSTRACT The pressure
Numerical Model for the Study of the Velocity Dependence Of the Ionisation Growth in Gas Discharge Plasma
Journal of Basrah Researches ((Sciences)) Volume 37.Number 5.A ((2011)) Available online at: www.basra-science -journal.org ISSN 1817 2695 Numerical Model for the Study of the Velocity Dependence Of the
Basic Principles in Microfluidics
Basic Principles in Microfluidics 1 Newton s Second Law for Fluidics Newton s 2 nd Law (F= ma) : Time rate of change of momentum of a system equal to net force acting on system!f = dp dt Sum of forces
EXPERIMENTAL STUDIES ON PRESSURE DROP IN A SINUSOIDAL PLATE HEAT EXCHANGER: EFFECT OF CORRUGATION ANGLE
EXPERIMENTAL STUDIES ON PRESSURE DROP IN A SINUSOIDAL PLATE HEAT EXCHANGER: EFFECT OF CORRUGATION ANGLE B. Sreedhara Rao 1, Varun S 2, MVS Murali Krishna 3, R C Sastry 4 1 Asst professor, 2 PG Student,
FLUID DYNAMICS. Intrinsic properties of fluids. Fluids behavior under various conditions
FLUID DYNAMICS Intrinsic properties of fluids Fluids behavior under various conditions Methods by which we can manipulate and utilize the fluids to produce desired results TYPES OF FLUID FLOW Laminar or
Practice Problems on Boundary Layers. Answer(s): D = 107 N D = 152 N. C. Wassgren, Purdue University Page 1 of 17 Last Updated: 2010 Nov 22
BL_01 A thin flat plate 55 by 110 cm is immersed in a 6 m/s stream of SAE 10 oil at 20 C. Compute the total skin friction drag if the stream is parallel to (a) the long side and (b) the short side. D =
Fluid structure interaction of a vibrating circular plate in a bounded fluid volume: simulation and experiment
Fluid Structure Interaction VI 3 Fluid structure interaction of a vibrating circular plate in a bounded fluid volume: simulation and experiment J. Hengstler & J. Dual Department of Mechanical and Process
1. Fluids Mechanics and Fluid Properties. 1.1 Objectives of this section. 1.2 Fluids
1. Fluids Mechanics and Fluid Properties What is fluid mechanics? As its name suggests it is the branch of applied mechanics concerned with the statics and dynamics of fluids - both liquids and gases.
Fundamentals of Fluid Mechanics
Sixth Edition. Fundamentals of Fluid Mechanics International Student Version BRUCE R. MUNSON DONALD F. YOUNG Department of Aerospace Engineering and Engineering Mechanics THEODORE H. OKIISHI Department
Determining the Structure of an Organic Compound
Determining the Structure of an Organic Compound The analysis of the outcome of a reaction requires that we know the full structure of the products as well as the reactants In the 19 th and early 20 th
How To Run A Cdef Simulation
Simple CFD Simulations and Visualisation using OpenFOAM and ParaView Sachiko Arvelius, PhD Purpose of this presentation To show my competence in CFD (Computational Fluid Dynamics) simulation and visualisation
Lecture 3. Turbulent fluxes and TKE budgets (Garratt, Ch 2)
Lecture 3. Turbulent fluxes and TKE budgets (Garratt, Ch 2) In this lecture How does turbulence affect the ensemble-mean equations of fluid motion/transport? Force balance in a quasi-steady turbulent boundary
Steady Flow: Laminar and Turbulent in an S-Bend
STAR-CCM+ User Guide 6663 Steady Flow: Laminar and Turbulent in an S-Bend This tutorial demonstrates the flow of an incompressible gas through an s-bend of constant diameter (2 cm), for both laminar and
NUMERICAL INVESTIGATIONS ON HEAT TRANSFER IN FALLING FILMS AROUND TURBULENCE WIRES
NUMERICAL INVESTIGATIONS ON HEAT TRANSFER IN FALLING FILMS AROUND TURBULENCE WIRES Abstract H. Raach and S. Somasundaram Thermal Process Engineering, University of Paderborn, Paderborn, Germany Turbulence
CFD SUPPORTED EXAMINATION OF BUOY DESIGN FOR WAVE ENERGY CONVERSION
CFD SUPPORTED EXAMINATION OF BUOY DESIGN FOR WAVE ENERGY CONVERSION Nadir Yilmaz, Geoffrey E. Trapp, Scott M. Gagan, Timothy R. Emmerich Department of Mechanical Engineering, New Mexico Institute of Mining
Fluid-Induced Material Transport: A Volume Averaged Approach to Modelling in SPH
Fluid-Induced Material Transport: A Volume Averaged Approach to Modelling in SPH Vinay Kumar SPH Workshop, 30.06. 01.07.2014, Karlsruhe www.baw.de Outline Motivation Model concept Groundwater model SPH
For Water to Move a driving force is needed
RECALL FIRST CLASS: Q K Head Difference Area Distance between Heads Q 0.01 cm 0.19 m 6cm 0.75cm 1 liter 86400sec 1.17 liter ~ 1 liter sec 0.63 m 1000cm 3 day day day constant head 0.4 m 0.1 m FINE SAND
INTRODUCTION TO FLUID MECHANICS
INTRODUCTION TO FLUID MECHANICS SIXTH EDITION ROBERT W. FOX Purdue University ALAN T. MCDONALD Purdue University PHILIP J. PRITCHARD Manhattan College JOHN WILEY & SONS, INC. CONTENTS CHAPTER 1 INTRODUCTION
Diffusion and Fluid Flow
Diffusion and Fluid Flow What determines the diffusion coefficient? What determines fluid flow? 1. Diffusion: Diffusion refers to the transport of substance against a concentration gradient. ΔS>0 Mass
Computational Fluid Dynamics (CFD) and Multiphase Flow Modelling. Associate Professor Britt M. Halvorsen (Dr. Ing) Amaranath S.
Computational Fluid Dynamics (CFD) and Multiphase Flow Modelling Associate Professor Britt M. Halvorsen (Dr. Ing) Amaranath S. Kumara (PhD Student), PO. Box 203, N-3901, N Porsgrunn, Norway What is CFD?
Mathematical Model of Blood Flow in Carotid Bifurcation. Phd student: Eng. Emanuel Muraca. 16/10/09 Milan
Presented at the COMSOL Conference 2009 Milan Mathematical Model of Blood Flow in Carotid Bifurcation Phd student: Eng. Emanuel Muraca 16/10/09 Milan 1 Research s s goal The goal of this research is to
XI / PHYSICS FLUIDS IN MOTION 11/PA
Viscosity It is the property of a liquid due to which it flows in the form of layers and each layer opposes the motion of its adjacent layer. Cause of viscosity Consider two neighboring liquid layers A
CEE 370 Fall 2015. Laboratory #3 Open Channel Flow
CEE 70 Fall 015 Laboratory # Open Channel Flow Objective: The objective of this experiment is to measure the flow of fluid through open channels using a V-notch weir and a hydraulic jump. Introduction:
CBE 6333, R. Levicky 1 Review of Fluid Mechanics Terminology
CBE 6333, R. Levicky 1 Review of Fluid Mechanics Terminology The Continuum Hypothesis: We will regard macroscopic behavior of fluids as if the fluids are perfectly continuous in structure. In reality,
Hydrodynamic Loads on Two-Dimensional Sheets of Netting within the Range of Small Angels of Attack
Hydrodynamic Loads on Two-Dimensional Sheets of Netting within the Range of Small Angels of Attack by Mathias Paschen & Karsten Breddermann 10 th International Workshop Methods for the Development and
Lecture 14. Introduction to the Sun
Lecture 14 Introduction to the Sun ALMA discovers planets forming in a protoplanetary disc. Open Q: what physics do we learn about the Sun? 1. Energy - nuclear energy - magnetic energy 2. Radiation - continuum
Lecture 5 Hemodynamics. Description of fluid flow. The equation of continuity
1 Lecture 5 Hemodynamics Description of fluid flow Hydrodynamics is the part of physics, which studies the motion of fluids. It is based on the laws of mechanics. Hemodynamics studies the motion of blood
HOT-WIRE AND HOT-FILM ANEMOMETRY
HOT-WIRE AND HOT-FILM ANEMOMETRY INTRODUCTION The hot-wire anemometer has been used extensively for many years as a research tool in fluid mechanics. In this paper hot-wire anemometry will refer to the
Manufacturing Equipment Modeling
QUESTION 1 For a linear axis actuated by an electric motor complete the following: a. Derive a differential equation for the linear axis velocity assuming viscous friction acts on the DC motor shaft, leadscrew,
Basic Equations, Boundary Conditions and Dimensionless Parameters
Chapter 2 Basic Equations, Boundary Conditions and Dimensionless Parameters In the foregoing chapter, many basic concepts related to the present investigation and the associated literature survey were
Analysis of free reed attack transients
Analysis of free reed attack transients James Cottingham Physics Department, Coe College, Cedar Rapids, Iowa, United States Summary Attack transients of harmonium-type free reeds from American reed organs
Open Channel Flow. M. Siavashi. School of Mechanical Engineering Iran University of Science and Technology
M. Siavashi School of Mechanical Engineering Iran University of Science and Technology W ebpage: webpages.iust.ac.ir/msiavashi Email: [email protected] Landline: +98 21 77240391 Fall 2013 Introduction
DEVELOPMENT OF HIGH SPEED RESPONSE LAMINAR FLOW METER FOR AIR CONDITIONING
DEVELOPMENT OF HIGH SPEED RESPONSE LAMINAR FLOW METER FOR AIR CONDITIONING Toshiharu Kagawa 1, Yukako Saisu 2, Riki Nishimura 3 and Chongho Youn 4 ABSTRACT In this paper, we developed a new laminar flow
Bandwidth-dependent transformation of noise data from frequency into time domain and vice versa
Topic Bandwidth-dependent transformation of noise data from frequency into time domain and vice versa Authors Peter Bormann (formerly GeoForschungsZentrum Potsdam, Telegrafenberg, D-14473 Potsdam, Germany),
Chapter 9 Summary and outlook
Chapter 9 Summary and outlook This thesis aimed to address two problems of plasma astrophysics: how are cosmic plasmas isotropized (A 1), and why does the equipartition of the magnetic field energy density
Dynamic Process Modeling. Process Dynamics and Control
Dynamic Process Modeling Process Dynamics and Control 1 Description of process dynamics Classes of models What do we need for control? Modeling for control Mechanical Systems Modeling Electrical circuits
A moving piston boundary condition including gap flow in OpenFOAM
A piston boundary condition including gap flow in OpenFOAM CLEMENS FRIES Johannes Kepler University IMH Altenbergerstrasse 69, 44 Linz AUSTRIA [email protected] BERNHARD MANHARTSGRUBER Johannes Kepler
Experiment 3 Pipe Friction
EML 316L Experiment 3 Pipe Friction Laboratory Manual Mechanical and Materials Engineering Department College of Engineering FLORIDA INTERNATIONAL UNIVERSITY Nomenclature Symbol Description Unit A cross-sectional
Modeling and Simulations of Cavitating and Bubbly Flows
Muon Collider/Neutrino Factory Collaboration Meeting Riverside, California, January 27-31, 2004 Modeling and Simulations of Cavitating and Bubbly Flows Roman Samulyak Tianshi Lu, Yarema Prykarpatskyy Center
NUMERICAL SIMULATION OF REGULAR WAVES RUN-UP OVER SLOPPING BEACH BY OPEN FOAM
NUMERICAL SIMULATION OF REGULAR WAVES RUN-UP OVER SLOPPING BEACH BY OPEN FOAM Parviz Ghadimi 1*, Mohammad Ghandali 2, Mohammad Reza Ahmadi Balootaki 3 1*, 2, 3 Department of Marine Technology, Amirkabir
High Rate, Low Temperature Testing and Modeling of Water Ice for High Speed Ballistic Probes
High Rate, Low Temperature Testing and Modeling of Water Ice for High Speed Ballistic Probes Dr. Lee W. Kohlman and Dr. J. Michael Pereira NASA Glenn Research Center Dr. Vikas Prakash and Dr. Bo Li Case
Direct Conversion of Wind Energy into Heat Using Joule Machine
International Conference on Environmental and Computer Science ICBEE vol.9() () IACSI ress, Singapore Direct Conversion of Wind Energy into Heat Using Joule Machine Roustiam Chakirov, and Yuriy Vagapov
Thermal Flow Sensors. Anemometers. Calorimeters. Ensemble of both
Thermal Flow Sensors Anemometers Calorimeters Ensemble of both IST Presentation V4-2005 www.ist-ag.com 1 Constant Temperature Anemometer At the heart of a thermal anemometer are two sensors: an air velocity
CE 3500 Fluid Mechanics / Fall 2014 / City College of New York
1 Drag Coefficient The force ( F ) of the wind blowing against a building is given by F=C D ρu 2 A/2, where U is the wind speed, ρ is density of the air, A the cross-sectional area of the building, and
Instability, dispersion management, and pattern formation in the superfluid flow of a BEC in a cylindrical waveguide
Instability, dispersion management, and pattern formation in the superfluid flow of a BEC in a cylindrical waveguide Michele Modugno LENS & Dipartimento di Fisica, Università di Firenze, Italy Workshop
SIESMIC SLOSHING IN CYLINDRICAL TANKS WITH FLEXIBLE BAFFLES
SIESMIC SLOSHING IN CYLINDRICAL TANKS WITH FLEXIBLE BAFFLES Kayahan AKGUL 1, Yasin M. FAHJAN 2, Zuhal OZDEMIR 3 and Mhamed SOULI 4 ABSTRACT Sloshing has been one of the major concerns for engineers in
VISCOSITY OF A LIQUID. To determine the viscosity of a lubricating oil. Time permitting, the temperature variation of viscosity can also be studied.
VISCOSITY OF A LIQUID August 19, 004 OBJECTIVE: EQUIPMENT: To determine the viscosity of a lubricating oil. Time permitting, the temperature variation of viscosity can also be studied. Viscosity apparatus
Testing thermo-acoustic sound generation in water with proton and laser beams
International ARENA Workshop DESY, Zeuthen 17th 19th of May 25 Testing thermo-acoustic sound generation in water with proton and laser beams Kay Graf Universität Erlangen-Nürnberg Physikalisches Institut
Entrained Gas Diagnostic with Intelligent Differential Pressure Transmitter
January Page Entrained Gas Diagnostic with Intelligent Differential Pressure Transmitter Dave Wehrs - Director, Pressure Engineering Andrew Klosinski - Application Engineer, Pressure Diagnostics Emerson
Dimensional Analysis, hydraulic similitude and model investigation. Dr. Sanghamitra Kundu
Dimensional Analysis, hydraulic similitude and model investigation Dr. Sanghamitra Kundu Introduction Although many practical engineering problems involving fluid mechanics can be solved by using the equations
Dynamical Systems Analysis II: Evaluating Stability, Eigenvalues
Dynamical Systems Analysis II: Evaluating Stability, Eigenvalues By Peter Woolf [email protected]) University of Michigan Michigan Chemical Process Dynamics and Controls Open Textbook version 1.0 Creative
Copper corrosion processes in the Cu-O-H system, and their role in long-term safety assessments. Christina Lilja 2009-11-16
Copper corrosion processes in the Cu-O-H system, and their role in long-term safety assessments Christina Lilja 2009-11-16 Outline Scientific knowledge base thermodynamics the use of experimental results
Positive Feedback and Oscillators
Physics 3330 Experiment #6 Fall 1999 Positive Feedback and Oscillators Purpose In this experiment we will study how spontaneous oscillations may be caused by positive feedback. You will construct an active
Determination of source parameters from seismic spectra
Topic Determination of source parameters from seismic spectra Authors Michael Baumbach, and Peter Bormann (formerly GeoForschungsZentrum Potsdam, Telegrafenberg, D-14473 Potsdam, Germany); E-mail: [email protected]
Infrared Spectroscopy: Theory
u Chapter 15 Infrared Spectroscopy: Theory An important tool of the organic chemist is Infrared Spectroscopy, or IR. IR spectra are acquired on a special instrument, called an IR spectrometer. IR is used
Aeroacoustic simulation based on linearized Euler equations and stochastic sound source modelling
Aeroacoustic simulation based on linearized Euler equations and stochastic sound source modelling H. Dechipre a, M. Hartmann a, J. W Delfs b and R. Ewert b a Volkswagen AG, Brieffach 1777, 38436 Wolfsburg,
Waves. Wave Parameters. Krauss Chapter Nine
Waves Krauss Chapter Nine Wave Parameters Wavelength = λ = Length between wave crests (or troughs) Wave Number = κ = 2π/λ (units of 1/length) Wave Period = T = Time it takes a wave crest to travel one
The simulation of machine tools can be divided into two stages. In the first stage the mechanical behavior of a machine tool is simulated with FEM
1 The simulation of machine tools can be divided into two stages. In the first stage the mechanical behavior of a machine tool is simulated with FEM tools. The approach to this simulation is different
Robot Perception Continued
Robot Perception Continued 1 Visual Perception Visual Odometry Reconstruction Recognition CS 685 11 Range Sensing strategies Active range sensors Ultrasound Laser range sensor Slides adopted from Siegwart
C. PROCEDURE APPLICATION (FITNET)
C. PROCEDURE APPLICATION () 495 INTRODUCTION ASSESSMENT OF SCC ASSESSMENT OF CORROSION FATIGUE STRESS CORROSION AND CORROSION FATIGUE ANALYSIS ASSESSMENT OF LOCAL THINNED AREAS 496 INTRODUCTION INTRODUCTION
Fluid Dynamics Viscosity. Dave Foster Department of Chemical Engineering University of Rochester Email: dafoster@che
Fluid Dynamics Viscosity Dave Foster Department of Chemical Engineering University of Rochester Email: dafoster@che che.rochester.eduedu 1 Chemical Engineering What do Chemical Engineers Do? Manufacturing
CFD Based Air Flow and Contamination Modeling of Subway Stations
CFD Based Air Flow and Contamination Modeling of Subway Stations Greg Byrne Center for Nonlinear Science, Georgia Institute of Technology Fernando Camelli Center for Computational Fluid Dynamics, George
Experimentation and Computational Fluid Dynamics Modelling of Roughness Effects in Flexible Pipelines
Experimentation and Computational Fluid Dynamics Modelling of Roughness Effects in Flexible Pipelines Sophie Yin Jeremy Leggoe School of Mechanical and Chemical Engineering Daniel Teng Paul Pickering CEED
Graduate Certificate Program in Energy Conversion & Transport Offered by the Department of Mechanical and Aerospace Engineering
Graduate Certificate Program in Energy Conversion & Transport Offered by the Department of Mechanical and Aerospace Engineering Intended Audience: Main Campus Students Distance (online students) Both Purpose:
Free Convection Film Flows and Heat Transfer
Deyi Shang Free Convection Film Flows and Heat Transfer With 109 Figures and 69 Tables < J Springer Contents 1 Introduction 1 1.1 Scope 1 1.2 Application Backgrounds 1 1.3 Previous Developments 2 1.3.1
Infrared Spectroscopy 紅 外 線 光 譜 儀
Infrared Spectroscopy 紅 外 線 光 譜 儀 Introduction Spectroscopy is an analytical technique which helps determine structure. It destroys little or no sample (nondestructive method). The amount of light absorbed
Solar Ast ro p h y s ics
Peter V. Foukal Solar Ast ro p h y s ics Second, Revised Edition WI LEY- VCH WILEY-VCH Verlag Co. KCaA Contents Preface 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2 2.1 2.1.1 2.1.2 2.2 2.2.1 2.2.2 2.2.3 2.3
E190Q Lecture 5 Autonomous Robot Navigation
E190Q Lecture 5 Autonomous Robot Navigation Instructor: Chris Clark Semester: Spring 2014 1 Figures courtesy of Siegwart & Nourbakhsh Control Structures Planning Based Control Prior Knowledge Operator
NUMERICAL SIMULATION AND EXPERIMENTAL STUDY OF NON-NEWTONIAN MIXING FLOW WITH A FREE SURFACE
Brazilian Journal of Chemical Engineering ISSN 0104-6632 Printed in Brazil www.abeq.org.br/bjche Vol. 23, No. 04, pp. 473-486, October - December, 2006 NUMERICAL SIMULATION AND EXPERIMENTAL STUDY OF NON-NEWTONIAN
Collision of a small bubble with a large falling particle
EPJ Web of Conferences 67, 212 (214) DOI: 1.11/ epjconf/ 21467212 C Owned by the authors, published by EDP Sciences, 214 Collision of a small bubble with a large falling particle Jiri Vejrazka 1,a, Martin
Natural Convection. Buoyancy force
Natural Convection In natural convection, the fluid motion occurs by natural means such as buoyancy. Since the fluid velocity associated with natural convection is relatively low, the heat transfer coefficient
FLUID FLOW STREAMLINE LAMINAR FLOW TURBULENT FLOW REYNOLDS NUMBER
VISUAL PHYSICS School of Physics University of Sydney Australia FLUID FLOW STREAMLINE LAMINAR FLOW TURBULENT FLOW REYNOLDS NUMBER? What type of fluid flow is observed? The above pictures show how the effect
where h = 6.62 10-34 J s
Electromagnetic Spectrum: Refer to Figure 12.1 Molecular Spectroscopy: Absorption of electromagnetic radiation: The absorptions and emissions of electromagnetic radiation are related molecular-level phenomena
Doppler. Doppler. Doppler shift. Doppler Frequency. Doppler shift. Doppler shift. Chapter 19
Doppler Doppler Chapter 19 A moving train with a trumpet player holding the same tone for a very long time travels from your left to your right. The tone changes relative the motion of you (receiver) and
1-4 kg/m3. Long in-line calibration cycles of the gamma density systems may improve measurement accuracy, but this is often not practical subsea.
Generating Greater Accuracy and Robustness from Subsea Multiphase Meters By Finn Erik Berge, Emerson Process Management Subsea multiphase meters have faced a growing number of challenges linked to the
The Fundamentals of Infrared Spectroscopy. Joe Van Gompel, PhD
TN-100 The Fundamentals of Infrared Spectroscopy The Principles of Infrared Spectroscopy Joe Van Gompel, PhD Spectroscopy is the study of the interaction of electromagnetic radiation with matter. The electromagnetic
Heat Transfer Prof. Dr. Ale Kumar Ghosal Department of Chemical Engineering Indian Institute of Technology, Guwahati
Heat Transfer Prof. Dr. Ale Kumar Ghosal Department of Chemical Engineering Indian Institute of Technology, Guwahati Module No. # 04 Convective Heat Transfer Lecture No. # 03 Heat Transfer Correlation
EXPERIMENT NUMBER 5 BASIC OSCILLOSCOPE OPERATIONS
1 EXPERIMENT NUMBER 5 BASIC OSCILLOSCOPE OPERATIONS The oscilloscope is the most versatile and most important tool in this lab and is probably the best tool an electrical engineer uses. This outline guides
OPEN-CHANNEL FLOW. Free surface. P atm
OPEN-CHANNEL FLOW Open-channel flow is a flow of liquid (basically water) in a conduit with a free surface. That is a surface on which pressure is equal to local atmospheric pressure. P atm Free surface
The Role of Electric Polarization in Nonlinear optics
The Role of Electric Polarization in Nonlinear optics Sumith Doluweera Department of Physics University of Cincinnati Cincinnati, Ohio 45221 Abstract Nonlinear optics became a very active field of research
ME 305 Fluid Mechanics I. Part 8 Viscous Flow in Pipes and Ducts
ME 305 Fluid Mechanics I Part 8 Viscous Flow in Pipes and Ducts These presentations are prepared by Dr. Cüneyt Sert Mechanical Engineering Department Middle East Technical University Ankara, Turkey [email protected]
Active noise control in practice: transformer station
Active noise control in practice: transformer station Edwin Buikema 1 ; Fokke D. van der Ploeg 2 ; Jan H. Granneman 3 1, 2, 3 Peutz bv, Netherlands ABSTRACT Based on literature and extensive measurements
Manual Analysis Software AFD 1201
AFD 1200 - AcoustiTube Manual Analysis Software AFD 1201 Measurement of Transmission loss acc. to Song and Bolton 1 Table of Contents Introduction - Analysis Software AFD 1201... 3 AFD 1200 - AcoustiTube
Dispersion diagrams of a water-loaded cylindrical shell obtained from the structural and acoustic responses of the sensor array along the shell
Dispersion diagrams of a water-loaded cylindrical shell obtained from the structural and acoustic responses of the sensor array along the shell B.K. Jung ; J. Ryue ; C.S. Hong 3 ; W.B. Jeong ; K.K. Shin
HEAT TRANSFER ANALYSIS IN A 3D SQUARE CHANNEL LAMINAR FLOW WITH USING BAFFLES 1 Vikram Bishnoi
HEAT TRANSFER ANALYSIS IN A 3D SQUARE CHANNEL LAMINAR FLOW WITH USING BAFFLES 1 Vikram Bishnoi 2 Rajesh Dudi 1 Scholar and 2 Assistant Professor,Department of Mechanical Engineering, OITM, Hisar (Haryana)
HEAVY OIL FLOW MEASUREMENT CHALLENGES
HEAVY OIL FLOW MEASUREMENT CHALLENGES 1 INTRODUCTION The vast majority of the world s remaining oil reserves are categorised as heavy / unconventional oils (high viscosity). Due to diminishing conventional
