Instability, dispersion management, and pattern formation in the superfluid flow of a BEC in a cylindrical waveguide
|
|
|
- Frederica McCormick
- 9 years ago
- Views:
Transcription
1 Instability, dispersion management, and pattern formation in the superfluid flow of a BEC in a cylindrical waveguide Michele Modugno LENS & Dipartimento di Fisica, Università di Firenze, Italy Workshop EHR - Valencia - February 3rd, 2009
2 BEC v
3 Summary Optical lattices Instability of the superfluid flow Effect of the radial confinement Managing the dispersion by tuning the lattice velocity Attractive interactions Modulation of the radial confinement Parametric instability and pattern formation Toroidal geometries, quantized circulation
4 Meanfield regime Gross-Pitaevskii equation: 1D GPE: the radial degrees of freedom are frozen Effective 1D model (NPSE) 3D GPE
5 Instabilities the stationary solution is energetically stable the system can lower its energy by emitting excitations (dissipative process) small fluctuations do not perturb the evolution small fluctuations grow exponentially in time B. Wu and Q. Niu, New Journal of Physics 5, (2003)
6 Bogoliubov excitations linear regime: Bogoliubov equations: normalization:
7 Landau (energetic) instability negative eigenvalues instability
8 Dynamical instability Bogoliubov equations: imaginary frequencies excitations grow exponentially in time
9 Stability of a Bloch wave p periodic system Bloch waves
10 Dynamical instability: phonon-antiphonon resonance p/qb=0 p/qb=0.25 p/qb=0.5 phonon dispersion anti-phonons p/qb=0.55 p/qb=0.75 p/qb=1 imaginary component M. Modugno, et al., PRA 70, (2004) [B. Wu and Q. Niu, PRA 64, (R) (2001); C. Menotti et al., New J. Phys. 5, 112 (2003)]
11 Stability diagrams for Bloch waves (1D) lattice intensity interactions Landau instability dynamical instability excitation quasimomentum condensate quasimomentum B. Wu and Q. Niu, PRA 64, (R) (2001)
12 Effect of the radial degrees of freedom axial phonons radial breathing p=0 0<p<1 M. Modugno, C. Tozzo, and F. Dalfovo, PRA 70, (2004)
13 3D stability diagrams Same onset for instability from GPE 3D and effective 1D (NPSE)
14 sound velocity M. Krämer, C. Menotti and M. Modugno, J. of Low Temp. Phys., Vol. 138 (2005)
15 Dipole mode of a BEC experiment S. Burger et al., PRL 86, 4447 (2001)
16 Dipole mode of a BEC 3D GPE Linear stability analysis: Exp. critical velocity Center-of-mass velocity vs. time. Center-of-mass velocity vs. BEC quasimomentum in the first Bloch band. M. Modugno, C. Tozzo, and F. Dalfovo, PRA 70, (2004): simulation of the experiment in S. Burger et al., PRL 86, 4447 (2001)
17 1D vs 3D 3D: 1D, effective 1D : complete loss of coherence
18 A BEC in a moving lattice p a lattice with fixed velocity is ramped up adiabatically L. Fallani et al., PRL 93, (2004)
19 L. Fallani et al., PRL 93, (2004)
20 Dispersion management p control the BEC dispersion by tuning the lattice velocity (for weak nonlinearity)
21 Dispersion management } m < m m } m < 0 free expansion: m < 0 time reversed evolution P. Massignan and M. Modugno, Phys. Rev. A 67, (2003)
22 L. Fallani et al., Phys. Rev. Lett. 91, (2003) (see also B. Eiermann et al., Phys. Rev. Lett. 91, (2003))
23 Attractive interactions G. Barontini and M. Modugno, Phys. Rev. A 76, (R) (2007) Gray area: Landau instability The system is energetically unstable for any velocity no superfluidity according to the Landau criterion. Colored regions: DI (Color scale ~ growth rate of the unstable modes = Im(ωpq)) DI at low p, can be stabilized above a critical threshold (opposite behaviour of that for repulsive BECs) naive explanation: changing the sign of g change of sign of m Weak interactions/shallow lattices: DI takes place via long wavelength (low q) excitations no site-to-site dephasing, collective oscillations Dotted region in (g-i): regimes of DI for the repulsive case Negative m and DI appear in separate regions tune the dispersion relation to negative values avoiding the effects of DI
24 Waveguide expansion: v=0.2 vb density modulations over several sites of the lattice Axial density plot of the BEC as a function of time during the expansion in the waveguide......and its momentum distribution rapid population of modes at small q ( 0.058qB) (most unstable modes of the uniform system) breathing-like oscillation, no decoherence as observed so far with repulsive BECs oscillation accounted for by the real part of the excitations spectrum + momentum spread due to finite size (fitted frequency = 44.5 Hz real part of frequency of the most unstable modes)
25 0.5vB < v < vb m < m : enhancement of the expansion near the band edge } attractive interactions are turned into an effective repulsion: boost of the expansion with respect to the free case even when m >m reduced expansion for very large m change of sign of m time-reversed evolution contraction of a BEC initially expanding outwards
26 Parametric instability & pattern formation L Modulation of the transverse confinement at frequency Ω (GPE + initial quantum/thermal fluctuations) parametric amplification of counter-propagating axial phonons of frequency ω(k) = Ω/2 M. Modugno, C. Tozzo and F. Dalfovo, Phys. Rev. A 74, (R) (2006)
27 periodic boundary contitions discrete spectrum, k = m2π/l resonance behaviour amplitude of the ±k axial phonons as a function of tmod for Ω=0.6ω (resonance m=8) maximum value of Pk as a function of Ω black squares: 2ω(k) of the Bogoliubov excitations
28 parametric amplification of phonons spontaneous pattern formation of standing waves with m-periodicity analogous to Faraday s instability M. C. Cross and P. P. Hohenberg, Rev. Mod. Phys. 65, 851 (1993) K. Staliunas et al., Phys. Rev. Lett. 89, (2002) P. Engels et al., Phys. Rev. Lett. 98, (2007)
29 toroidal geometry periodic boundary conditions produced in current experiments S. Gupta et al., Phys. Rev. Lett. 95, (2005) A. S. Arnold et al., Phys. Rev. A 73, (R) (2006) C. Ryu et al., Phys. Rev. Lett. 99, (2006) tools for observing fundamental properties: quantized circulation, persistent currents, matter-wave interference, sound waves and solitons in low-d, rotation sensors
30 Expanded density Density distribution (texp=7 ms) (a) (b) (c) (d) (e) (f) max visibility of the density pattern (20%) max visibility of the velocity pattern 45 μm Azimuthal velocity field Periodic pattern in the velocity field interference fringes of atoms expanding in preferred directions: flower-like structure with m petals in the expanded density profile, reflecting the periodicity of the initial pattern.
31 quantized circulation The pattern formation is affected by the presence of quantized circulation: if the condensate is initially rotating with angular momentum Lz = κh per particle: in-situ pattern: rotates at the same angular velocity of the condensate expandend pattern: misalignment of opposite petals proportional to κ sensitive detection of quantized circulation
arxiv:cond-mat/0308498v1 [cond-mat.soft] 25 Aug 2003
1 arxiv:cond-mat/38498v1 [cond-mat.soft] 2 Aug 23 Matter-wave interference, Josephson oscillation and its disruption in a Bose-Einstein condensate on an optical lattice Sadhan K. Adhikari Instituto de
Université Lille 1 Sciences et Technologies, Lille, France Lille Laboratoire de Physique des Lasers, Atomes et Molécules Équipe Chaos Quantique
Université Lille 1 Sciences et Technologies, Lille, France Lille Laboratoire de Physique des Lasers, Atomes et Molécules Équipe Chaos Quantique FRISNO 11 Aussois 1/4/011 Quantum simulators: The Anderson
N 1. (q k+1 q k ) 2 + α 3. k=0
Teoretisk Fysik Hand-in problem B, SI1142, Spring 2010 In 1955 Fermi, Pasta and Ulam 1 numerically studied a simple model for a one dimensional chain of non-linear oscillators to see how the energy distribution
SEMICONDUCTOR lasers with optical feedback have
IEEE JOURNAL OF QUANTUM ELECTRONICS, VOL. 34, NO. 10, OCTOBER 1998 1979 Dynamics and Linear Stability Analysis in Semiconductor Lasers with Phase-Conjugate Feedback Atsushi Murakami and Junji Ohtsubo,
Contents. Goldstone Bosons in 3He-A Soft Modes Dynamics and Lie Algebra of Group G:
... Vlll Contents 3. Textures and Supercurrents in Superfluid Phases of 3He 3.1. Textures, Gradient Energy and Rigidity 3.2. Why Superfuids are Superfluid 3.3. Superfluidity and Response to a Transverse
Physics 9e/Cutnell. correlated to the. College Board AP Physics 1 Course Objectives
Physics 9e/Cutnell correlated to the College Board AP Physics 1 Course Objectives Big Idea 1: Objects and systems have properties such as mass and charge. Systems may have internal structure. Enduring
Blackbody radiation derivation of Planck s radiation low
Blackbody radiation derivation of Planck s radiation low 1 Classical theories of Lorentz and Debye: Lorentz (oscillator model): Electrons and ions of matter were treated as a simple harmonic oscillators
Chapter 9 Summary and outlook
Chapter 9 Summary and outlook This thesis aimed to address two problems of plasma astrophysics: how are cosmic plasmas isotropized (A 1), and why does the equipartition of the magnetic field energy density
Part IV. Conclusions
Part IV Conclusions 189 Chapter 9 Conclusions and Future Work CFD studies of premixed laminar and turbulent combustion dynamics have been conducted. These studies were aimed at explaining physical phenomena
- thus, the total number of atoms per second that absorb a photon is
Stimulated Emission of Radiation - stimulated emission is referring to the emission of radiation (a photon) from one quantum system at its transition frequency induced by the presence of other photons
- particle with kinetic energy E strikes a barrier with height U 0 > E and width L. - classically the particle cannot overcome the barrier
Tunnel Effect: - particle with kinetic energy E strikes a barrier with height U 0 > E and width L - classically the particle cannot overcome the barrier - quantum mechanically the particle can penetrated
Temperature anisotropy in the solar wind
Introduction Observations Simulations Summary in the solar wind Petr Hellinger Institute of Atmospheric Physics & Astronomical Institute AS CR, Prague, Czech Republic Kinetic Instabilities, Plasma Turbulence
Darrick Chang ICFO The Institute of Photonic Sciences Barcelona, Spain. April 2, 2014
Darrick Chang ICFO The Institute of Photonic Sciences Barcelona, Spain April 2, 2014 ICFO The Institute of Photonic Sciences 10 minute walk 11 years old 22 Research Groups 300 people Research themes: Quantum
Solitons and phase domains during the cooling of a one-dimensional ultra-cold gas
Solitons and phase domains during the cooling of a one-dimensional ultra-cold gas Piotr Deuar Emilia Witkowska, Mariusz Gajda Institute of Physics, Polish Academy of Sciences, Warsaw Kazimierz Rzążewski
Wave-particle and wave-wave interactions in the Solar Wind: simulations and observations
Wave-particle and wave-wave interactions in the Solar Wind: simulations and observations Lorenzo Matteini University of Florence, Italy In collaboration with Petr Hellinger, Simone Landi, and Marco Velli
The Phenomenon of Photoelectric Emission:
The Photoelectric Effect. The Wave particle duality of light Light, like any other E.M.R (electromagnetic radiation) has got a dual nature. That is there are experiments that prove that it is made up of
Acousto-optic modulator
1 of 3 Acousto-optic modulator F An acousto-optic modulator (AOM), also called a Bragg cell, uses the acousto-optic effect to diffract and shift the frequency of light using sound waves (usually at radio-frequency).
Section 5.0 : Horn Physics. By Martin J. King, 6/29/08 Copyright 2008 by Martin J. King. All Rights Reserved.
Section 5. : Horn Physics Section 5. : Horn Physics By Martin J. King, 6/29/8 Copyright 28 by Martin J. King. All Rights Reserved. Before discussing the design of a horn loaded loudspeaker system, it is
Dispersion diagrams of a water-loaded cylindrical shell obtained from the structural and acoustic responses of the sensor array along the shell
Dispersion diagrams of a water-loaded cylindrical shell obtained from the structural and acoustic responses of the sensor array along the shell B.K. Jung ; J. Ryue ; C.S. Hong 3 ; W.B. Jeong ; K.K. Shin
Measurement of Resistive Wall Mode Stability in Rotating High Beta Plasmas
Measurement of Resistive Wall Mode Stability in Rotating High Beta Plasmas H.Reimerdes, 1 J.Bialek, 1 M.S.Chance, 2 M.S.Chu, 3 A.M.Garofalo, 1 P.Gohil, 3 G.L.Jackson, 3 R.J.Jayakumar, 4 T.H.Jensen, 3#
Perpetual motion and driven dynamics of a mobile impurity in a quantum fluid
and driven dynamics of a mobile impurity in a quantum fluid Oleg Lychkovskiy Russian Quantum Center Seminaire du LPTMS, 01.12.2015 Seminaire du LPTMS, 01.12.2015 1 / Plan of the talk 1 Perpetual motion
AP1 Waves. (A) frequency (B) wavelength (C) speed (D) intensity. Answer: (A) and (D) frequency and intensity.
1. A fire truck is moving at a fairly high speed, with its siren emitting sound at a specific pitch. As the fire truck recedes from you which of the following characteristics of the sound wave from the
Heating & Cooling in Molecular Clouds
Lecture 8: Cloud Stability Heating & Cooling in Molecular Clouds Balance of heating and cooling processes helps to set the temperature in the gas. This then sets the minimum internal pressure in a core
Spatial and temporal coherence of polariton condensates
Spatial and temporal coherence of polariton condensates R. Spano Dpt. Fisica de Materiales, Universidad Autónoma Madrid. SPAIN XIV JORNADA DE JÓVENES CIENTÍFICOS DEL INSTITUTO DE CIENCIA DE MATERIALES
Transmission Line and Back Loaded Horn Physics
Introduction By Martin J. King, 3/29/3 Copyright 23 by Martin J. King. All Rights Reserved. In order to differentiate between a transmission line and a back loaded horn, it is really important to understand
INTERFERENCE OF SOUND WAVES
1/2016 Sound 1/8 INTERFERENCE OF SOUND WAVES PURPOSE: To measure the wavelength, frequency, and propagation speed of ultrasonic sound waves and to observe interference phenomena with ultrasonic sound waves.
Comparison of flow regime transitions with interfacial wave transitions
Comparison of flow regime transitions with interfacial wave transitions M. J. McCready & M. R. King Chemical Engineering University of Notre Dame Flow geometry of interest Two-fluid stratified flow gas
F en = mω 0 2 x. We should regard this as a model of the response of an atom, rather than a classical model of the atom itself.
The Electron Oscillator/Lorentz Atom Consider a simple model of a classical atom, in which the electron is harmonically bound to the nucleus n x e F en = mω 0 2 x origin resonance frequency Note: We should
Assessment Plan for Learning Outcomes for BA/BS in Physics
Department of Physics and Astronomy Goals and Learning Outcomes 1. Students know basic physics principles [BS, BA, MS] 1.1 Students can demonstrate an understanding of Newton s laws 1.2 Students can demonstrate
Excitation transfer and energy exchange processes for modeling the Fleischmann-Pons excess heat effect
Hagelstein, P.L. and I. Chaudhary. Excitation transfer and energy exchange processes for modeling the Fleischmann-Pons excess heat effect. in ICCF-14 International Conference on Condensed Matter Nuclear
A wave lab inside a coaxial cable
INSTITUTE OF PHYSICS PUBLISHING Eur. J. Phys. 25 (2004) 581 591 EUROPEAN JOURNAL OF PHYSICS PII: S0143-0807(04)76273-X A wave lab inside a coaxial cable JoãoMSerra,MiguelCBrito,JMaiaAlves and A M Vallera
ACOUSTIC CAVITIES DESIGN PROCEDURES
ACOUSTIC CAVITIES DESIGN PROCEDURES A. Santana Jr. a, M. S. Silva b, P. T. Lacava. b, and L. C. S. Góes b a Instituto de Aeronáutica e Espaço Divisão de Sistemas Espaciais CP. 12228-94, São José Campos,
explain your reasoning
I. A mechanical device shakes a ball-spring system vertically at its natural frequency. The ball is attached to a string, sending a harmonic wave in the positive x-direction. +x a) The ball, of mass M,
THE CURRENT-VOLTAGE CHARACTERISTICS OF AN LED AND A MEASUREMENT OF PLANCK S CONSTANT Physics 258/259
DSH 2004 THE CURRENT-VOLTAGE CHARACTERISTICS OF AN LED AND A MEASUREMENT OF PLANCK S CONSTANT Physics 258/259 I. INTRODUCTION Max Planck (1858-1947) was an early pioneer in the field of quantum physics.
Université Lille 1 Sciences et Technologies, Lille, France Laboratoire de Physique des Lasers, Atomes et Molécules Équipe Chaos Quantique
Université Lille 1 Sciences et Technologies, Lille, France Laboratoire de Physique des Lasers, Atomes et Molécules Équipe Chaos Quantique 16 years of experiments on the atomic kicked rotor! Chaos, disorder
Solar Ast ro p h y s ics
Peter V. Foukal Solar Ast ro p h y s ics Second, Revised Edition WI LEY- VCH WILEY-VCH Verlag Co. KCaA Contents Preface 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2 2.1 2.1.1 2.1.2 2.2 2.2.1 2.2.2 2.2.3 2.3
Waves - Transverse and Longitudinal Waves
Waves - Transverse and Longitudinal Waves wave may be defined as a periodic disturbance in a medium that carries energy from one point to another. ll waves require a source and a medium of propagation.
Plate waves in phononic crystals slabs
Acoustics 8 Paris Plate waves in phononic crystals slabs J.-J. Chen and B. Bonello CNRS and Paris VI University, INSP - 14 rue de Lourmel, 7515 Paris, France [email protected] 41 Acoustics 8 Paris We
physics 1/12/2016 Chapter 20 Lecture Chapter 20 Traveling Waves
Chapter 20 Lecture physics FOR SCIENTISTS AND ENGINEERS a strategic approach THIRD EDITION randall d. knight Chapter 20 Traveling Waves Chapter Goal: To learn the basic properties of traveling waves. Slide
Fiber Optics: Fiber Basics
Photonics Technical Note # 21 Fiber Optics Fiber Optics: Fiber Basics Optical fibers are circular dielectric wave-guides that can transport optical energy and information. They have a central core surrounded
Perfect Fluidity in Cold Atomic Gases?
Perfect Fluidity in Cold Atomic Gases? Thomas Schaefer North Carolina State University 1 Hydrodynamics Long-wavelength, low-frequency dynamics of conserved or spontaneoulsy broken symmetry variables τ
Orbital Dynamics coupled with Jahn-Teller phonons in Strongly Correlated Electron System
The 5 th Scienceweb GCOE International Symposium 1 Orbital Dynamics coupled with Jahn-Teller phonons in Strongly Correlated Electron System Department of Physics, Tohoku University Joji Nasu In collaboration
Basic Principles of Magnetic Resonance
Basic Principles of Magnetic Resonance Contents: Jorge Jovicich [email protected] I) Historical Background II) An MR experiment - Overview - Can we scan the subject? - The subject goes into the magnet -
ENERGY TRANSFER IN THE WEAK AND STRONG COUPLING REGIME
ERC Starting Grant 2011 Dipar)mento di Scienze Chimiche Università degli Studi di Padova via Marzolo 1, 35131 Padova Italy ENERGY TRANSFER IN THE WEAK AND STRONG COUPLING REGIME [1] Vekshin, N. L. Energy
Scanning Near Field Optical Microscopy: Principle, Instrumentation and Applications
Scanning Near Field Optical Microscopy: Principle, Instrumentation and Applications Saulius Marcinkevičius Optics, ICT, KTH 1 Outline Optical near field. Principle of scanning near field optical microscope
The rate of change of velocity with respect to time. The average rate of change of distance/displacement with respect to time.
H2 PHYSICS DEFINITIONS LIST Scalar Vector Term Displacement, s Speed Velocity, v Acceleration, a Average speed/velocity Instantaneous Velocity Newton s First Law Newton s Second Law Newton s Third Law
18 Q0 a speed of 45.0 m/s away from a moving car. If the car is 8 Q0 moving towards the ambulance with a speed of 15.0 m/s, what Q0 frequency does a
First Major T-042 1 A transverse sinusoidal wave is traveling on a string with a 17 speed of 300 m/s. If the wave has a frequency of 100 Hz, what 9 is the phase difference between two particles on the
Waves: Recording Sound Waves and Sound Wave Interference (Teacher s Guide)
Waves: Recording Sound Waves and Sound Wave Interference (Teacher s Guide) OVERVIEW Students will measure a sound wave by placing the Ward s DataHub microphone near one tuning fork A440 (f=440hz). Then
Atomic Structure: Chapter Problems
Atomic Structure: Chapter Problems Bohr Model Class Work 1. Describe the nuclear model of the atom. 2. Explain the problems with the nuclear model of the atom. 3. According to Niels Bohr, what does n stand
Power Electronics. Prof. K. Gopakumar. Centre for Electronics Design and Technology. Indian Institute of Science, Bangalore.
Power Electronics Prof. K. Gopakumar Centre for Electronics Design and Technology Indian Institute of Science, Bangalore Lecture - 1 Electric Drive Today, we will start with the topic on industrial drive
Examples of Uniform EM Plane Waves
Examples of Uniform EM Plane Waves Outline Reminder of Wave Equation Reminder of Relation Between E & H Energy Transported by EM Waves (Poynting Vector) Examples of Energy Transport by EM Waves 1 Coupling
Lecture 14. Introduction to the Sun
Lecture 14 Introduction to the Sun ALMA discovers planets forming in a protoplanetary disc. Open Q: what physics do we learn about the Sun? 1. Energy - nuclear energy - magnetic energy 2. Radiation - continuum
Introduction to acoustic imaging
Introduction to acoustic imaging Contents 1 Propagation of acoustic waves 3 1.1 Wave types.......................................... 3 1.2 Mathematical formulation.................................. 4 1.3
Comb beam for particle-driven plasma-based accelerators
A. Mostacci, on behalf of the SPARC team Comb beams are sub-picosecond, high-brightness electron bunch trains generated via the velocity bunching technique. Such bunch trains can be used to drive tunable
Solid State Detectors = Semi-Conductor based Detectors
Solid State Detectors = Semi-Conductor based Detectors Materials and their properties Energy bands and electronic structure Charge transport and conductivity Boundaries: the p-n junction Charge collection
Nuclear Physics. Nuclear Physics comprises the study of:
Nuclear Physics Nuclear Physics comprises the study of: The general properties of nuclei The particles contained in the nucleus The interaction between these particles Radioactivity and nuclear reactions
Name Date Class ELECTRONS IN ATOMS. Standard Curriculum Core content Extension topics
13 ELECTRONS IN ATOMS Conceptual Curriculum Concrete concepts More abstract concepts or math/problem-solving Standard Curriculum Core content Extension topics Honors Curriculum Core honors content Options
MASTER OF SCIENCE IN PHYSICS MASTER OF SCIENCES IN PHYSICS (MS PHYS) (LIST OF COURSES BY SEMESTER, THESIS OPTION)
MASTER OF SCIENCE IN PHYSICS Admission Requirements 1. Possession of a BS degree from a reputable institution or, for non-physics majors, a GPA of 2.5 or better in at least 15 units in the following advanced
Solved with COMSOL Multiphysics 4.3
Vibrating String Introduction In the following example you compute the natural frequencies of a pre-tensioned string using the 2D Truss interface. This is an example of stress stiffening ; in fact the
LECTURE 5: Fluid jets. We consider here the form and stability of fluid jets falling under the influence of gravity.
LECTURE 5: Fluid jets We consider here the form and stability of fluid jets falling under the influence of gravity. 5.1 The shape of a falling fluid jet Consider a circular orifice of radius a ejecting
State Newton's second law of motion for a particle, defining carefully each term used.
5 Question 1. [Marks 28] An unmarked police car P is, travelling at the legal speed limit, v P, on a straight section of highway. At time t = 0, the police car is overtaken by a car C, which is speeding
Automatic and Objective Measurement of Residual Stress and Cord in Glass
Automatic and Objective Measurement of Residual Stress and Cord in Glass GlassTrend - ICG TC15/21 Seminar SENSORS AND PROCESS CONTROL 13-14 October 2015, Eindhoven Henning Katte, ilis gmbh copyright ilis
No Evidence for a new phase of dense hydrogen above 325 GPa
1 No Evidence for a new phase of dense hydrogen above 325 GPa Ranga P. Dias, Ori Noked, and Isaac F. Silvera Lyman Laboratory of Physics, Harvard University, Cambridge MA, 02138 In recent years there has
Non-Inductive Startup and Flux Compression in the Pegasus Toroidal Experiment
Non-Inductive Startup and Flux Compression in the Pegasus Toroidal Experiment John B. O Bryan University of Wisconsin Madison NIMROD Team Meeting July 31, 2009 Outline 1 Introduction and Motivation 2 Modeling
ATOMIC SPECTRA. Apparatus: Optical spectrometer, spectral tubes, power supply, incandescent lamp, bottles of dyed water, elevating jack or block.
1 ATOMIC SPECTRA Objective: To measure the wavelengths of visible light emitted by atomic hydrogen and verify the measured wavelengths against those predicted by quantum theory. To identify an unknown
AP Physics B Ch. 23 and Ch. 24 Geometric Optics and Wave Nature of Light
AP Physics B Ch. 23 and Ch. 24 Geometric Optics and Wave Nature of Light Name: Period: Date: MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) Reflection,
Analysis of Wing Leading Edge Data. Upender K. Kaul Intelligent Systems Division NASA Ames Research Center Moffett Field, CA 94035
Analysis of Wing Leading Edge Data Upender K. Kaul Intelligent Systems Division NASA Ames Research Center Moffett Field, CA 94035 Abstract Some selected segments of the STS114 ascent and on-orbit data
Coupling Impedance of SIS18 and SIS100 beampipe CERN-GSI-Webmeeting
Coupling Impedance of SIS18 and SIS100 beampipe CERN-GSI-Webmeeting 23 October 2011 TU Darmstadt Fachbereich 18 Institut Theorie Elektromagnetischer Felder Uwe Niedermayer 1 Contents Motivation / Overview
FLAP P11.2 The quantum harmonic oscillator
F L E X I B L E L E A R N I N G A P P R O A C H T O P H Y S I C S Module P. Opening items. Module introduction. Fast track questions.3 Ready to study? The harmonic oscillator. Classical description of
Basic Nuclear Concepts
Section 7: In this section, we present a basic description of atomic nuclei, the stored energy contained within them, their occurrence and stability Basic Nuclear Concepts EARLY DISCOVERIES [see also Section
Application Note: Spread Spectrum Oscillators Reduce EMI for High Speed Digital Systems
Application Note: Spread Spectrum Oscillators Reduce EMI for High Speed Digital Systems Introduction to Electro-magnetic Interference Design engineers seek to minimize harmful interference between components,
Waves. Wave Parameters. Krauss Chapter Nine
Waves Krauss Chapter Nine Wave Parameters Wavelength = λ = Length between wave crests (or troughs) Wave Number = κ = 2π/λ (units of 1/length) Wave Period = T = Time it takes a wave crest to travel one
Building Design for Advanced Technology Instruments Sensitive to Acoustical Noise
Building Design for Advanced Technology Instruments Sensitive to Acoustic Noise Michael Gendreau Colin Gordon & Associates Presentation Outline! High technology research and manufacturing instruments respond
Laser-induced surface phonons and their excitation of nanostructures
CHINESE JOURNAL OF PHYSICS VOL. 49, NO. 1 FEBRUARY 2011 Laser-induced surface phonons and their excitation of nanostructures Markus Schmotz, 1, Dominik Gollmer, 1 Florian Habel, 1 Stephen Riedel, 1 and
Blackbody Radiation References INTRODUCTION
Blackbody Radiation References 1) R.A. Serway, R.J. Beichner: Physics for Scientists and Engineers with Modern Physics, 5 th Edition, Vol. 2, Ch.40, Saunders College Publishing (A Division of Harcourt
3.2 Sources, Sinks, Saddles, and Spirals
3.2. Sources, Sinks, Saddles, and Spirals 6 3.2 Sources, Sinks, Saddles, and Spirals The pictures in this section show solutions to Ay 00 C By 0 C Cy D 0. These are linear equations with constant coefficients
An octave bandwidth dipole antenna
An octave bandwidth dipole antenna Abstract: Achieving wideband performance from resonant structures is challenging because their radiation properties and impedance characteristics are usually sensitive
Radar Systems Engineering Lecture 6 Detection of Signals in Noise
Radar Systems Engineering Lecture 6 Detection of Signals in Noise Dr. Robert M. O Donnell Guest Lecturer Radar Systems Course 1 Detection 1/1/010 Block Diagram of Radar System Target Radar Cross Section
Physical Science Study Guide Unit 7 Wave properties and behaviors, electromagnetic spectrum, Doppler Effect
Objectives: PS-7.1 Physical Science Study Guide Unit 7 Wave properties and behaviors, electromagnetic spectrum, Doppler Effect Illustrate ways that the energy of waves is transferred by interaction with
AP1 Oscillations. 1. Which of the following statements about a spring-block oscillator in simple harmonic motion about its equilibrium point is false?
1. Which of the following statements about a spring-block oscillator in simple harmonic motion about its equilibrium point is false? (A) The displacement is directly related to the acceleration. (B) The
The Sonometer The Resonant String and Timbre Change after plucking
The Sonometer The Resonant String and Timbre Change after plucking EQUIPMENT Pasco sonometers (pick up 5 from teaching lab) and 5 kits to go with them BK Precision function generators and Tenma oscilloscopes
State Newton's second law of motion for a particle, defining carefully each term used.
5 Question 1. [Marks 20] An unmarked police car P is, travelling at the legal speed limit, v P, on a straight section of highway. At time t = 0, the police car is overtaken by a car C, which is speeding
VBA Macro for construction of an EM 3D model of a tyre and part of the vehicle
VBA Macro for construction of an EM 3D model of a tyre and part of the vehicle Guillermo Vietti, Gianluca Dassano, Mario Orefice LACE, Politecnico di Torino, Turin, Italy. [email protected] Work
Prof.M.Perucca CORSO DI APPROFONDIMENTO DI FISICA ATOMICA: (III-INCONTRO) RISONANZA MAGNETICA NUCLEARE
Prof.M.Perucca CORSO DI APPROFONDIMENTO DI FISICA ATOMICA: (III-INCONTRO) RISONANZA MAGNETICA NUCLEARE SUMMARY (I/II) Angular momentum and the spinning gyroscope stationary state equation Magnetic dipole
Development of Optical Wave Microphone Measuring Sound Waves with No Diaphragm
Progress In Electromagnetics Research Symposium Proceedings, Taipei, March 5 8, 3 359 Development of Optical Wave Microphone Measuring Sound Waves with No Diaphragm Yoshito Sonoda, Takashi Samatsu, and
4.4 WAVE CHARACTERISTICS 4.5 WAVE PROPERTIES HW/Study Packet
4.4 WAVE CHARACTERISTICS 4.5 WAVE PROPERTIES HW/Study Packet Required: READ Hamper pp 115-134 SL/HL Supplemental: Cutnell and Johnson, pp 473-477, 507-513 Tsokos, pp 216-242 REMEMBER TO. Work through all
The waveguide adapter consists of a rectangular part smoothly transcending into an elliptical part as seen in Figure 1.
Waveguide Adapter Introduction This is a model of an adapter for microwave propagation in the transition between a rectangular and an elliptical waveguide. Such waveguide adapters are designed to keep
on Recent Developments on Theoretical and Experimental General Relativity, Astrophysics, and Relativistic Field Theories
Thirteenth Marcel Grossman Meeting on Recent Developments on Theoretical and Experimental General Relativity, Astrophysics, and Relativistic Field Theories ON GENERAL RELATIVISTIC UNIFORMLY ROTATING WHITE
Lecture 3: Optical Properties of Bulk and Nano. 5 nm
Lecture 3: Optical Properties of Bulk and Nano 5 nm The Previous Lecture Origin frequency dependence of χ in real materials Lorentz model (harmonic oscillator model) 0 e - n( ) n' n '' n ' = 1 + Nucleus
BASIC ELECTRONICS AC CIRCUIT ANALYSIS. December 2011
AM 5-202 BASIC ELECTRONICS AC CIRCUIT ANALYSIS December 2011 DISTRIBUTION RESTRICTION: Approved for Pubic Release. Distribution is unlimited. DEPARTMENT OF THE ARMY MILITARY AUXILIARY RADIO SYSTEM FORT
Lecture 3. Turbulent fluxes and TKE budgets (Garratt, Ch 2)
Lecture 3. Turbulent fluxes and TKE budgets (Garratt, Ch 2) In this lecture How does turbulence affect the ensemble-mean equations of fluid motion/transport? Force balance in a quasi-steady turbulent boundary
Microcavity Quantum Electrodynamics:
Microcavity Quantum Electrodynamics: From atoms to quantum dots Boris Anghelo Rodríguez Rey Grupo de Física Atómica y Molecular Instituto de Física, Universidad de Antioquia September 26, IWQCD 2012 Universidad
