Which month has larger and smaller day time?



Similar documents
The following words and their definitions should be addressed before completion of the reading:

CELESTIAL MOTIONS. In Charlottesville we see Polaris 38 0 above the Northern horizon. Earth. Starry Vault

1. In the diagram below, the direct rays of the Sun are striking the Earth's surface at 23 º N. What is the date shown in the diagram?

Earth, Sun and Moon is a set of interactives designed to support the teaching of the QCA primary science scheme of work 5e - 'Earth, Sun and Moon'.

Essential Question. Enduring Understanding

EDMONDS COMMUNITY COLLEGE ASTRONOMY 100 Winter Quarter 2007 Sample Test # 1

CELESTIAL CLOCK - THE SUN, THE MOON, AND THE STARS

Activities: The Moon is lit and unlit too

The Four Seasons. A Warm Up Exercise. A Warm Up Exercise. A Warm Up Exercise. The Moon s Phases

Heat Transfer. Energy from the Sun. Introduction

FIRST GRADE 1 WEEK LESSON PLANS AND ACTIVITIES

Cycles in the Sky. Teacher Guide: Cycles in the Sky Page 1 of Discovery Communications, LLC

Reasons for Seasons. Question: TRUE OR FALSE. Question: TRUE OR FALSE? What causes the seasons? What causes the seasons?

Astrock, t he A stronomical Clock

Douglas Adams The Hitchhikers Guide to the Galaxy

Motions of the Earth. Stuff everyone should know

Solar energy and the Earth s seasons

Solar System. 1. The diagram below represents a simple geocentric model. Which object is represented by the letter X?

Shadows, Angles, and the Seasons

Earth In Space Chapter 3

Relationship Between the Earth, Moon and Sun

CELESTIAL EVENTS CALENDAR APRIL 2014 TO MARCH 2015

Phases of the Moon. Objective. Materials. Procedure. Name Date Score /20

The Size & Shape of the Galaxy

Earth, Moon, and Sun Study Guide. (Test Date: )

Geometry and Geography

Science Standard 4 Earth in Space Grade Level Expectations

Earth in the Solar System

Renewable Energy. Solar Power. Courseware Sample F0

Lab Activity on the Causes of the Seasons

Stellarium a valuable resource for teaching astronomy in the classroom and beyond

Celestial Sphere. Celestial Coordinates. Lecture 3: Motions of the Sun and Moon. ecliptic (path of Sun) ecliptic (path of Sun)

Earth-Sun Relationships. The Reasons for the Seasons

Where on Earth are the daily solar altitudes higher and lower than Endicott?

1-2. What is the name given to the path of the Sun as seen from Earth? a.) Equinox b.) Celestial equator c.) Solstice d.

Solar Angles and Latitude

Use WITH Investigation 4, Part 2, Step 2

Answers for the Study Guide: Sun, Earth and Moon Relationship Test

Exploring Solar Energy Variations on Earth: Changes in the Length of Day and Solar Insolation Through the Year

Lesson 1: Phases of the Moon

Pre and post-visit activities - Navigating by the stars

The ecliptic - Earth s orbital plane

5- Minute Refresher: Daily Observable Patterns in the Sky

The Celestial Sphere. Questions for Today. The Celestial Sphere 1/18/10

Coordinate Systems. Orbits and Rotation

EARTH'S MOTIONS. 2. The Coriolis effect is a result of Earth's A tilted axis B orbital shape C revolution D rotation

Today. Solstices & Equinoxes Precession Phases of the Moon Eclipses. Ancient Astronomy. Lunar, Solar FIRST HOMEWORK DUE NEXT TIME

Misconceptions in Astronomy in WA High School students (in preparation)

Exam # 1 Thu 10/06/2010 Astronomy 100/190Y Exploring the Universe Fall 11 Instructor: Daniela Calzetti

Tropical Horticulture: Lecture 2

ASTR 1030 Astronomy Lab 65 Celestial Motions CELESTIAL MOTIONS

Produced by Billy Hix and Terry Sue Fanning. As part of the TeachSpace Program. For more ideas and an image of the current phase of the moon, visit:

Earth, Moon, and Sun Inquiry Template Eclipses

STUDY GUIDE: Earth Sun Moon

Calculating Astronomical Unit from Venus Transit

Sun Earth Relationships

26A Phases of the Moon

Full credit for this chapter to Prof. Leonard Bachman of the University of Houston

astronomy A planet was viewed from Earth for several hours. The diagrams below represent the appearance of the planet at four different times.

Unit One Organizer: The Stars and Our Solar System (Approximate Time: 7 Weeks)

The changing phases of the Moon originally inspired the concept of the month

Noon Sun Angle = 90 Zenith Angle

Seasons on Earth LESSON

Phases of the Moon. The next phase, at about day 10, we can see roughly three quarters of the moon. This is called the waxing gibbous phase.

Moon Phases & Eclipses Notes

Celestial Observations

For further information, and additional background on the American Meteorological Society s Education Program, please contact:

Study Guide: Sun, Earth and Moon Relationship Assessment

Homework Assignment #7: The Moon

Note S1: Eclipses & Predictions

Today FIRST HOMEWORK DUE NEXT TIME. Seasons/Precession Recap. Phases of the Moon. Eclipses. Lunar, Solar. Ancient Astronomy

8.5 Motions of Earth, the Moon, and Planets

Motions of Earth, Moon, and Sun

Basic Coordinates & Seasons Student Guide

Grade 6 Standard 3 Unit Test A Astronomy. 1. The four inner planets are rocky and small. Which description best fits the next four outer planets?

Chapter 3 Earth - Sun Relations

Content Area: Earth Science Grade(s) 4. Essential Question(s) and Enduring Understandings

APPENDIX D: SOLAR RADIATION

The Globe Latitudes and Longitudes

Handy Pinhole Camera (Latin Camera Obscura) to observe the transit of Venus, eclipses and other phenomena occurring on the Sun

COASTLINING THE ZODIAC

SECOND GRADE 1 WEEK LESSON PLANS AND ACTIVITIES

Solstice and Equinox ( Suntrack ) Season Model

Name Period 4 th Six Weeks Notes 2015 Weather

The Reasons for the Seasons

Night Sky III Planetary Motion Lunar Phases

Activity One: Activate Prior Knowledge: Powers of Ten Video and Explore the sizes of various objects in the solar system

Stellar, solar, and lunar demonstrators

Sunlight and its Properties. EE 495/695 Y. Baghzouz

Periods of Western Astronomy. Chapter 1. Prehistoric Astronomy. Prehistoric Astronomy. The Celestial Sphere. Stonehenge. History of Astronomy

Page. ASTRONOMICAL OBJECTS (Page 4).

STAAR Science Tutorial 30 TEK 8.8C: Electromagnetic Waves

Phases of the Moon. --demonstrate the ability to apply an in-depth understanding of moon phases to real life situations

PHSC 3033: Meteorology Seasons

Motions of Earth LEARNING GOALS

After a wave passes through a medium, how does the position of that medium compare to its original position?

CHAPTER 3. The sun and the seasons. Locating the position of the sun

The Earth, Sun & Moon. The Universe. The Earth, Sun & Moon. The Universe

Transcription:

ACTIVITY-1 Which month has larger and smaller day time? Problem: Which month has larger and smaller day time? Aim: Finding out which month has larger and smaller duration of day in the Year 2006. Format for Observation Table Tools: Wall calendar mentioning sunrise and sunset time. Procedure: To do the experiment fallow the below procedure. 1. Get the calendar which shows sunrise and sunset time for each day of the year. 2. Fill the observation table with the time of Sunrise and Sunset. Theory: There are countable reasons for larger and smaller duration of the day and night. Some of them are: (i) Earth rotate on its axis (ii) Earth s axis of rotation is not exactly vertical (iii) Earth is spherical in shape and hence observers position on the globe is not same for all etc. All these reasons give rise to the difference in length of the day and night.

ACTIVITY-2 Path of the Sun in the Sky Aim: Tracing out path of the Sun in the Sky. Tools: Comparatively dark room, Calendar and Watch. Procedure: To do the experiment follows the procedure below. 1. Find the room having window/door facing the sun. 2. Make the room darker by closing the doors and windows but keep a small portion of the window open through which sunlight can come. (Better through a small hole). 3. If your window is glass window then get a black paper of the size of window and make a small hole through which sunlight can come. Now paste this dark paper on the window. 4. Allow sunlight to come through the hole in the form of beam that can fall on the floor. 5. Set the time in the watch (this will remain same for all observation dates in future days, preferable time could be 1200 hrs). 6. Mark the beam position on the floor as shown in figure 1. Now repeat the procedure for all the observation dates. Theory: If you observe the sun in the sky quite frequently then you will observe that the sun s position is not same everyday. It goes on changing. Of course it is true that the sun is not moving but it is the Earth! In reality what we observe is the sun s changing position throughout the year. Observation Table Result : Draw the figure of traced marking available on the floor. Now connects all the points with free hand (smooth curve).

ACTIVITY-3 What are Dakshinayan and Uttarayan? Aim: Understanding the Dakshinayan (Sun s declination to South) and Uttarayan (Sun s declination to North). Tools: 1 meter stick, Calendar and Watch. Procedure: To do the experiment follows the procedure below. 1. Locate the plane surface from where you can see the Sun without any obstacle. 2. With the help of magnetic compass mark the South- North line on the ground and furthermore East- West line; crossing each other in an exact proportion. This will make 4 quadrants as shown in figure below. 3. Fix meter stick exactly at the intersection of these lines i.e. at the origin (point O). Be sure that the stick is Direction at observation location & exactly perpendicular to the plane surface. You can use Shadow length plumb line to see the exact verticalness of the stick. 4. Fix the day time observation which is to be constant for all the year. 5. Shadow of the stick will fall in any one of the quadrants made earlier. 6. Mark the tip of the shadow as a point in the quadrant. 7. Mark such points for four dates in the year. For more details look at the observation table. Theory Ayan means movement. Dakshinaya and Uttarayan indicate the Sun s movement to South and North respectively. The correct definition is the sun s declination to North or South. Since the earth s axis is tilted by 23 ½ degree, the sun appears more to the north for 6 months and to the south for rest of the 6 months in a year. This is the reason that we experience winter in the northern hemisphere and summer in the southern hemisphere at the same time e.g. Australia is cold and India is hot at same time. Sun reaches its maximum to the south (South declination) on 21 December and to the north (North declination) on 21 June. These are called Winter and Summer Solstices respectively. These dates may vary with ±1 or ±2 days. Observation Table Time of Observation: 8:00 AM (You can fix up any day time!) Result : Draw the figure similar to what you observed at your observation location.

ACTIVITY-4 Phases Of The Moon Aim: Understanding the phases of the Moon Tools: Notebook, pencil, eraser etc Procedure: To do the experiment follows the procedure as given below :- 1. Select the Full moon day from your calendar. 2. Start observing moon s phase in the night sky. 3. Draw the phase of the moon in observation table as you see in the night sky. 4. Go on repeating the drawing as mentioned in the observation table. 5. Complete the observation table. Theory: Moon is the natural satellite of Earth. And hence, moon revolves around the Earth. As shown in the diagram below, the new moon occurs when the moon is positioned between the earth and sun. The three objects are in approximate alignment. The entire illuminated portion of the moon is on the back side of the moon, the half that we cannot see. At a full moon, the earth, moon, and sun are in approximate alignment, just as the new moon, but the moon is on the opposite side of the earth, so the entire sunlight part of the moon is facing us. The shadowed portion is entirely hidden from view. The first quarter and third quarter moons (both often called a half moon ), happen when the moon is at a 90 degree angle with respect to the earth and sun. So we are seeing exactly half of the moon illuminated and half in shadow. Once you understand those four key moon phases, in between should be fairly easy to visualize, as the illuminated portion gradually transit between them. Observation Table Result: 1. After. days we saw the Full moon again. 2. On 15/16th day after Full Moon we saw.. Moon. (Full/Half/New) 3. The night when you could not see the Moon is called

ACTIVITY-5 Distance of The Sun in Terms of Light Minutes Aim: Determining the distance of the Sun in light minutes. Tool: Pen and notebook. Theory: If somebody asks you how far is your school from your home? Then, probably you will give the answer like 1 km, 5 km or could be of 10 km or so. If you have been to other city (may be at your relatives) and somebody asks you how far is the city/ town from your place? Then, the answer could be of the order of 2 km to of 3000 km! (if you both are within the India). By chance, if you met a friend from abroad and asked how far is your city from here? Then, probably he may not give the answer in kilometers but he may say that it takes about 8 hrs by plane! For a second you may be stuck a bit! But if you know the average speed of the plane then probably you may calculate the rough estimate of the distance. In astronomy, the objects like sun, stars, galaxies etc can not be figured out in such simpler way! This is obvious, because all such objects are beyond finger countable limits. And hence it is required to use other units for measuring the distances. The basic unit in astronomy is light year. In this activity we will find the distance of Sun in light minutes. The one light year (ly) is a distance that light can travel in one year. Now question comes what is speed of light? The speed of light is 3, 00,000 KM/Sec i.e. 3 lacks kilometer per second. So let us calculate the one light year distance: 1 year will have how many seconds? => 60X60X24X365 = 3,15,36,000 seconds and hence; 1 ly =3,00,000 X 3,15,36,000= ~95,00,00,00,00,000 KM or we can write as 1 ly =9.5 X 10 12 KM This implies that if the object is at 1 ly distance then it is at 9.5 X 10 12 KM away from us! Vis-à-vis, if the object is at 9,500,000,000,000 KM away from us then light will take one year to reach us! Calculation: Now calculate the distance of sun in Light minutesdata given:- *The sun is at 14,95,97,900 KM *One ly is 9.5X 10 12 KM * Light travels 3,00,000 KM in a second Calculate answer.

ACTIVITY-6 Composition of different colors in the Sunlight Objective: Understanding how many colors sunlight have. Material required: prism, pen and notebook. Procedure: 1. Arrange comparatively darker room. 2. Allow very small sunlight to pass in the room; may be through hole. 3. Put the prism across the sunlight. 4. Now look at the darker region of room. 5. You will see the different colors of sunlight. 6. Note down the colors that you have seen. Explanation: The observed sun light always look yellowish in color that is because sun emits maximum light in yellow wavelength/ frequency such light is called as white light. But actually white light is not a single wave length/ frequency in nature, it is a combination of all seven colors viz. red, orange, yellow, green, blue, indigo and violet. As shown in figure To conform this, one has to perform above experiment. One can also see the different colours of light on a Compact Disk used in computers made out of very tiny magnetic strips/ grooves whose size is in micron. When sunlight falls on the CD or on this strips/grooves sunlight is get diffracted in different wavelength/frequency and hence we see the different wavelength lights as different colors. Please remember CD can not be prism which can give large angle diffraction. Observations: 1. Write the colors that you have seen. Ans: 2. Write the colors in a sequence; as they appeared.

ACTIVITY-7 Observation on full moon days why we see only one side of the moon? Aim: Observation of Moon on every Full moon day. Apparatus: Telescope, calendar, drawing paper, pen/pencil Procedure: Do the following: 1. With the help of calendar, locate any approaching Full moon day. 2. Note the date of observation. 3. Point the telescope towards Moon. 4. Observe the moon thoroughly. 5. Try to draw an image of Moon in the observational table. 6. If you are good enough for taking the photographs through the telescope then capture the photograph of Moon. 7. Follow the above procedure for next few Full moon days and draw the image of Moon or take the photographs. Theory: Astronomical objects revolve around its parent object e.g. Moon revolve around Earth, Earth revolves around Sun, Sun revolves around center of galaxy etc. While most of them rotate on its axis. This holds true for Earth and Moon as well. Earth rotates around its axis and takes 24 hours to complete one rotation. The fact is true for Moon as well! i.e. Moon rotates on its axis at same rate within 24 hours. Therefore, Moon being a natural satellite revolve around the Earth, hence we see only one side of the Moon all time from Earth. The only way to see the other side of moon is to send a space probe that can fly to other side of the moon. Result: Are the images/photographs same? If yes, why? Ans: What you understood from this experiment?

ACTIVITY-8 How to locate your Geographical Northy?

Activity 9: How to make your own magnetic compass? Activity 10: How to find your longitude? Activity 11: How to find the Pole Star?

Activity 12: How to make your astrolabe? Activity 13: How to find the latitude of your place? Activity 14: Understanding the rising and setting of Star?

Activity 15: Understanding the phases of moon? Activity 16: Understanding the time of Moonrise?

Activity 17: Observation of Full full Moon? moon? Activity 18: Making Solar Project?

Activity 19: How to find the angular size of Sun and Moon? Activity 20: Understanding the angular separation? Activity 21: How to identify the constellations?

Transit of Venus, 6 June 2012 Measurement of apparent size of Sun and Venus from Earth Required Material and Equipment: 1. A telescope (given) 2. A Solar shade 3. A drawing board 4. A graph paper (8a) 5. Observation sheet for data (8b) 6. Pencil Solar shade Setting up the Telescope Point the telescope towards the sun and get the projected image of the Sun on the graph paper. NEVER LOOK AT THE SUN THROUGH THE TELESCOPE. The image can be made smaller or bigger, by moving the screen closer or further from the eyepiece. Adjust it such that the image of the sun just fits the circle on the graph sheet (8a).. Marking Sun and Venus on the graph paper. 1. Once Image is on the graph paper mark the outer limit of the image of the Sun with pencil. 2. Draw the image of Venus on graph sheet with pencil 3. Count the number of squares along the diameter of the Sun (use observation table). 4. Count the number of squares along the diameter of the Venus (use observation table). 5. Repeat the steps 2, 3 & 4 for at least fives times. Complete the observation table (8b) and follow the steps therein. 8

Transit of Venus, 6 June 2012 Graph paper for measurement of apparent size of the Venus and Sun Name of Observer:... Instrument Used (telescope):... School/Organisation:......... Place:... Longitude:... Latitude... Date: Time: 8a

Transit of Venus, 6 June 2012 Observation Table for measurement of apparent size of the Venus and Sun S No. Time Diameter of Sun in mm (Sd) Diameter of the Venus in mm (Vd) a b c d e Average diameter of Sun in mm = Sd = a+b+c+d+e = 5 Average diameter of the Venus in mm = Vd = a+b+c+d+e = 5 From Earth the relative size of Sun and Venus = Sd/Vd = Name of Observer:... Equipment... School/Organisation:......... Place:... Longitude:... Latitude... Date: Time: 8b