Solar energy and the Earth s seasons

Size: px
Start display at page:

Download "Solar energy and the Earth s seasons"

Transcription

1 Solar energy and the Earth s seasons Name: Tilt of the Earth s axis and the seasons We now understand that the tilt of Earth s axis makes it possible for different parts of the Earth to experience different seasons at different times. NH = SH = SUMMER Earth s orbit Equator SPRING South Pole NH = spring SH = autumn SUN North Pole WINTER NH = SH = AUTUMN NH = spring SH = autumn * NH=Northern Hemisphere * SH = Southern Hemisphere The tilt of the axis affects the angle at which the Sun s rays shine on the Earth. This affects the intensity of the Sun s radiation on the Earth. The intensity of the radiation from the Sun is what causes us to experience differences in temperature during the seasons. Look at these diagrams which show how the intensity of radiation is affected by the tilt of the axis.

2 vernal equinox (March 20/21) solstice (June 21/22) Activity: spring autumn autumnal equinox (September 22/23) solstice (December 21/22 autumn spring Angle of Light affects Intensity of Heat Try this experiment to see how the angle at which light shines on a surface affects the heat of that surface. Apparatus: a desk lamp, 2 pieces of black cardboard (10cmx10cm), two strip thermometers, stop watch or timer. 1) Place one piece of black cardboard on a desk and place the strip thermometer on top of it. 2) Position the lamp directly above the thermometer so that the light is shining on the thermometer at a 90 angle. 3) Time this for 30 seconds and then record the temperature. 4) Repeat exercise with the second piece of cardboard and the second strip thermometer. 5) Now position the lamp at an angle to the thermometer. (See diagram.) 6) Time this for 30 seconds and record the temperature.

3 lamp positioned at direct angle lamp positioned at indirect angle strip thermometers placed on black card Answer these questions in your class workbook: 1) What were the temperatures for each of your experiments? a) Direct angle b) Indirect angle 2) At which angle was the heat more intense? 3) Write a conclusion about how the angle of the light affects the intensity of heat on the object. Intensity of solar radiation When light shines directly on an object, the intensity of heat is greater than if it shines on that object at an angle. We know that the Sun radiates light and heat in all directions. When the Sun s light and heat radiates onto the Earth s surface, some rays will shine directly onto the surface and others will shine at an indirect angle. In our South African, the Sun s rays shine directly on the Southern Hemisphere meaning the heat is more intense. The Sun s rays also shine on the Northern Hemisphere, but at an oblique angle, meaning the heat is less intense. Oblique rays Equal amounts of solar energy Direct rays small angle large angle A B small large N 21 December S

4 In our South African, the Sun s rays are shining on the Southern Hemisphere at an oblique angle. This means that the heat is less intense and this is why is cold. In spring and autumn, neither hemisphere is tilted closer to the Sun, so the Sun s direct rays fall on the Equator, and shine on us, in South Africa, at an angle. FUN FACTS S large N small A 21 June B large angle Direct rays Oblique rays Equal amounts of solar energy There are four points in Earth s orbit that mark the middle of each season: In the Southern Hemisphere: 21 December - Summer solstice 21 March - Autumnal (autumn) equinox 21 July - Winter solstice 21 September - Vernal (spring) equinox Length of day and the seasons We know that the Earth rotates and this gives us day and night. The tilt of the Earth s axis determines how long that day and night will be. In we have longer days and shorter nights. In we have shorter days and longer nights.

5 sun rays Consider this diagram: Southern Hemisphere Summer The line that separates day from night is called the circle of illumination. To compare the length of day and night, we will need to look at the lines of latitude (equator and tropics) in relation to this circle of illumination. Earth Axis Summer solstice (21 December) in Southern Hemisphere Arctic Circle Tropic of Cancer Equator Tropic of Capricorn Antarctic Circle 1) Look at the equator. Compare the length of the line during the day and the length of the line during the night, in. What does this mean? 2) Look at the Tropic of Capricorn. Which side of the line is longer? The part representing the day or the part representing the night? What does this mean? 3) What do you notice about the Antarctic Circle? What does this mean regarding their day time and night time during? Consider this picture: Southern Hemisphere Winter Earth Axis Arctic Circle sun rays Tropic of Cancer Equator Tropic of Capricorn Antarctic Circle Winter solstice (21 July) in Southern Hemisphere

6 Answer sheet Activity: Angle of Light affects Intensity of Heat 1) What were the temperatures for each of your experiments? a) Direct angle b) Indirect angle These will differ depending on the thermometers used, however, the direct angle measurement should be higher than the indirect angle measurement. 2) At which angle was the heat more intense? At the direct angle or 90 3) Write a conclusion about how the angle of the light affects the intensity of heat on the object. When light shines on an object at a direct angle the heat is more intense. When light shines on an object at an indirect angle the heat is less intense. Consider this diagram: Southern Hemisphere Summer 1) Look at the equator. Compare the length of the line during the day and the length of the line during the night, in. What does this mean? The length of the line is the same during the day and night. This means that the length of the day is the same as the length of the night. 2) Look at the Tropic of Capricorn. Which side of the line is longer? The part representing the day or the part representing the night? What does this mean? The line during the day is longer than the line during the night. This means that the day is longer in the. 3) What do you notice about the Antarctic Circle? What does this mean regarding their day time and night time during? The line is entirely during the day. This means that it is day time for a full 24 hours! There are no hours of darkness during their. Consider this picture: Southern Hemisphere Winter 1) Look at the equator. Compare the length of the line during the day time and the length of the line during the night time, in. What does this mean?

7 It is the same length in the day and the night. This means that the day is as long as the night. 2) Look at the Tropic of Capricorn. Which side of the line is longer, the part during the day or the part during the night? What does this mean? The line is longer at night than during the day. This means that in, the days are shorter and the nights are longer. 3) What do you notice about the Antarctic Circle? What does this mean regarding their day time and night time during? The line is entirely during the night. This means that it is night for 24 hours in ; there are no hours of daylight during.

Noon Sun Angle = 90 Zenith Angle

Noon Sun Angle = 90 Zenith Angle Noon Sun Angle Worksheet Name Name Date Subsolar Point (Latitude where the sun is overhead at noon) Equinox March 22 nd 0 o Equinox September 22 nd 0 o Solstice June 22 nd 23.5 N Solstice December 22 nd

More information

Earth-Sun Relationships. The Reasons for the Seasons

Earth-Sun Relationships. The Reasons for the Seasons Earth-Sun Relationships The Reasons for the Seasons Solar Radiation The earth intercepts less than one two-billionth of the energy given off by the sun. However, the radiation is sufficient to provide

More information

Lab Activity on the Causes of the Seasons

Lab Activity on the Causes of the Seasons Lab Activity on the Causes of the Seasons 2002 Ann Bykerk-Kauffman, Dept. of Geological and Environmental Sciences, California State University, Chico * Objectives When you have completed this lab you

More information

Tropical Horticulture: Lecture 2

Tropical Horticulture: Lecture 2 Lecture 2 Theory of the Tropics Earth & Solar Geometry, Celestial Mechanics The geometrical relationship between the earth and sun is responsible for the earth s climates. The two principal movements of

More information

Relationship Between the Earth, Moon and Sun

Relationship Between the Earth, Moon and Sun Relationship Between the Earth, Moon and Sun Rotation A body turning on its axis The Earth rotates once every 24 hours in a counterclockwise direction. Revolution A body traveling around another The Earth

More information

The following words and their definitions should be addressed before completion of the reading:

The following words and their definitions should be addressed before completion of the reading: Seasons Vocabulary: The following words and their definitions should be addressed before completion of the reading: sphere any round object that has a surface that is the same distance from its center

More information

The Reasons for the Seasons

The Reasons for the Seasons The Reasons for the Seasons (The Active Learning Approach) Materials: 4 Globes, One light on stand with soft white bulb, 4 flashlights, Four sets of "Seasons" Cards, Four laminated black cards with 1 inch

More information

Where on Earth are the daily solar altitudes higher and lower than Endicott?

Where on Earth are the daily solar altitudes higher and lower than Endicott? Where on Earth are the daily solar altitudes higher and lower than Endicott? In your notebooks, write RELATIONSHIPS between variables we tested CAUSE FIRST EFFECT SECOND EVIDENCE As you increase the time

More information

Answers for the Study Guide: Sun, Earth and Moon Relationship Test

Answers for the Study Guide: Sun, Earth and Moon Relationship Test Answers for the Study Guide: Sun, Earth and Moon Relationship Test 1) It takes one day for the Earth to make one complete on its axis. a. Rotation 2) It takes one year for the Earth to make one around

More information

Sun Earth Relationships

Sun Earth Relationships 1 ESCI-61 Introduction to Photovoltaic Technology Sun Earth Relationships Ridha Hamidi, Ph.D. Spring (sun aims directly at equator) Winter (northern hemisphere tilts away from sun) 23.5 2 Solar radiation

More information

Ok, so if the Earth weren't tilted, we'd have a picture like the one shown below: 12 hours of daylight at all latitudes more insolation in the

Ok, so if the Earth weren't tilted, we'd have a picture like the one shown below: 12 hours of daylight at all latitudes more insolation in the Ok, so if the Earth weren't tilted, we'd have a picture like the one shown below: 12 hours of daylight at all latitudes more insolation in the tropics, less at higher latitudes Ok, so if the Earth weren't

More information

Celestial Observations

Celestial Observations Celestial Observations Earth experiences two basic motions: Rotation West-to-East spinning of Earth on its axis (v rot = 1770 km/hr) (v rot Revolution orbit of Earth around the Sun (v orb = 108,000 km/hr)

More information

Today FIRST HOMEWORK DUE NEXT TIME. Seasons/Precession Recap. Phases of the Moon. Eclipses. Lunar, Solar. Ancient Astronomy

Today FIRST HOMEWORK DUE NEXT TIME. Seasons/Precession Recap. Phases of the Moon. Eclipses. Lunar, Solar. Ancient Astronomy Today FIRST HOMEWORK DUE NEXT TIME Seasons/Precession Recap Phases of the Moon Eclipses Lunar, Solar Ancient Astronomy How do we mark the progression of the seasons? We define four special points: summer

More information

1. In the diagram below, the direct rays of the Sun are striking the Earth's surface at 23 º N. What is the date shown in the diagram?

1. In the diagram below, the direct rays of the Sun are striking the Earth's surface at 23 º N. What is the date shown in the diagram? 1. In the diagram below, the direct rays of the Sun are striking the Earth's surface at 23 º N. What is the date shown in the diagram? 5. During how many days of a calendar year is the Sun directly overhead

More information

Today. Solstices & Equinoxes Precession Phases of the Moon Eclipses. Ancient Astronomy. Lunar, Solar FIRST HOMEWORK DUE NEXT TIME

Today. Solstices & Equinoxes Precession Phases of the Moon Eclipses. Ancient Astronomy. Lunar, Solar FIRST HOMEWORK DUE NEXT TIME Today Solstices & Equinoxes Precession Phases of the Moon Eclipses Lunar, Solar Ancient Astronomy FIRST HOMEWORK DUE NEXT TIME The Reason for Seasons Hypothesis check: How would seasons in the northern

More information

Shadows, Angles, and the Seasons

Shadows, Angles, and the Seasons Shadows, Angles, and the Seasons If it's cold in winter, why is Earth closer to the Sun? This activity shows the relationship between Earth-Sun positions and the seasons. From The WSU Fairmount Center

More information

Renewable Energy. Solar Power. Courseware Sample 86352-F0

Renewable Energy. Solar Power. Courseware Sample 86352-F0 Renewable Energy Solar Power Courseware Sample 86352-F0 A RENEWABLE ENERGY SOLAR POWER Courseware Sample by the staff of Lab-Volt Ltd. Copyright 2009 Lab-Volt Ltd. All rights reserved. No part of this

More information

Seasonal Temperature Variations

Seasonal Temperature Variations Seasonal and Daily Temperatures Fig. 3-CO, p. 54 Seasonal Temperature Variations What causes the seasons What governs the seasons is the amount of solar radiation reaching the ground What two primary factors

More information

FIRST GRADE 1 WEEK LESSON PLANS AND ACTIVITIES

FIRST GRADE 1 WEEK LESSON PLANS AND ACTIVITIES FIRST GRADE 1 WEEK LESSON PLANS AND ACTIVITIES UNIVERSE CYCLE OVERVIEW OF FIRST GRADE UNIVERSE WEEK 1. PRE: Describing the Universe. LAB: Comparing and contrasting bodies that reflect light. POST: Exploring

More information

The Four Seasons. A Warm Up Exercise. A Warm Up Exercise. A Warm Up Exercise. The Moon s Phases

The Four Seasons. A Warm Up Exercise. A Warm Up Exercise. A Warm Up Exercise. The Moon s Phases The Four Seasons A Warm Up Exercise What fraction of the Moon s surface is illuminated by the Sun (except during a lunar eclipse)? a) Between zero and one-half b) The whole surface c) Always half d) Depends

More information

ASTRONOMY 161. Introduction to Solar System Astronomy

ASTRONOMY 161. Introduction to Solar System Astronomy ASTRONOMY 161 Introduction to Solar System Astronomy Seasons & Calendars Monday, January 8 Season & Calendars: Key Concepts (1) The cause of the seasons is the tilt of the Earth s rotation axis relative

More information

CELESTIAL MOTIONS. In Charlottesville we see Polaris 38 0 above the Northern horizon. Earth. Starry Vault

CELESTIAL MOTIONS. In Charlottesville we see Polaris 38 0 above the Northern horizon. Earth. Starry Vault CELESTIAL MOTIONS Stars appear to move counterclockwise on the surface of a huge sphere the Starry Vault, in their daily motions about Earth Polaris remains stationary. In Charlottesville we see Polaris

More information

Reasons for Seasons. Question: TRUE OR FALSE. Question: TRUE OR FALSE? What causes the seasons? What causes the seasons?

Reasons for Seasons. Question: TRUE OR FALSE. Question: TRUE OR FALSE? What causes the seasons? What causes the seasons? Reasons for Seasons Question: TRUE OR FALSE? Earth is closer to the Sun in summer and farther from the Sun in winter. Question: TRUE OR FALSE? Earth is closer to the Sun in summer and farther from the

More information

Chapter Overview. Seasons. Earth s Seasons. Distribution of Solar Energy. Solar Energy on Earth. CHAPTER 6 Air-Sea Interaction

Chapter Overview. Seasons. Earth s Seasons. Distribution of Solar Energy. Solar Energy on Earth. CHAPTER 6 Air-Sea Interaction Chapter Overview CHAPTER 6 Air-Sea Interaction The atmosphere and the ocean are one independent system. Earth has seasons because of the tilt on its axis. There are three major wind belts in each hemisphere.

More information

Heat Transfer. Energy from the Sun. Introduction

Heat Transfer. Energy from the Sun. Introduction Introduction The sun rises in the east and sets in the west, but its exact path changes over the course of the year, which causes the seasons. In order to use the sun s energy in a building, we need to

More information

Seasonal & Daily Temperatures. Seasons & Sun's Distance. Solstice & Equinox. Seasons & Solar Intensity

Seasonal & Daily Temperatures. Seasons & Sun's Distance. Solstice & Equinox. Seasons & Solar Intensity Seasonal & Daily Temperatures Seasons & Sun's Distance The role of Earth's tilt, revolution, & rotation in causing spatial, seasonal, & daily temperature variations Please read Chapter 3 in Ahrens Figure

More information

PHSC 3033: Meteorology Seasons

PHSC 3033: Meteorology Seasons PHSC 3033: Meteorology Seasons Changing Aspect Angle Direct Sunlight is more intense and concentrated. Solar Incidence Angle is Latitude and Time/Date Dependent Daily and Seasonal Variation Zenith There

More information

Chapter 3 Earth - Sun Relations

Chapter 3 Earth - Sun Relations 3.1 Introduction We saw in the last chapter that the short wave radiation from the sun passes through the atmosphere and heats the earth, which in turn radiates energy in the infrared portion of the electromagnetic

More information

Chapter 2: Solar Radiation and Seasons

Chapter 2: Solar Radiation and Seasons Chapter 2: Solar Radiation and Seasons Spectrum of Radiation Intensity and Peak Wavelength of Radiation Solar (shortwave) Radiation Terrestrial (longwave) Radiations How to Change Air Temperature? Add

More information

What Causes Climate? Use Target Reading Skills

What Causes Climate? Use Target Reading Skills Climate and Climate Change Name Date Class Climate and Climate Change Guided Reading and Study What Causes Climate? This section describes factors that determine climate, or the average weather conditions

More information

Geography affects climate.

Geography affects climate. KEY CONCEPT Climate is a long-term weather pattern. BEFORE, you learned The Sun s energy heats Earth s surface unevenly The atmosphere s temperature changes with altitude Oceans affect wind flow NOW, you

More information

Earth, Sun and Moon. Table of Contents

Earth, Sun and Moon. Table of Contents Earth, Sun and Moon Table of Contents 0. Unit Challenge 1. Earth and Its Motion 2. Earth s Rotation and Revolution 3. Earth s Tilt and Seasons 4. Seasons 5. The Moon 6. The Lunar Cycle 7. Lunar Geography

More information

ES 106 Laboratory # 5 EARTH-SUN RELATIONS AND ATMOSPHERIC HEATING

ES 106 Laboratory # 5 EARTH-SUN RELATIONS AND ATMOSPHERIC HEATING ES 106 Laboratory # 5 EARTH-SUN RELATIONS AND ATMOSPHERIC HEATING 5-1 Introduction Weather is the state of the atmosphere at a particular place for a short period of time. The condition of the atmosphere

More information

Name Period 4 th Six Weeks Notes 2015 Weather

Name Period 4 th Six Weeks Notes 2015 Weather Name Period 4 th Six Weeks Notes 2015 Weather Radiation Convection Currents Winds Jet Streams Energy from the Sun reaches Earth as electromagnetic waves This energy fuels all life on Earth including the

More information

Solar Angles and Latitude

Solar Angles and Latitude Solar Angles and Latitude Objectives The student will understand that the sun is not directly overhead at noon in most latitudes. The student will research and discover the latitude ir classroom and calculate

More information

Study Guide: Sun, Earth and Moon Relationship Assessment

Study Guide: Sun, Earth and Moon Relationship Assessment I can 1. Define rotation, revolution, solstice and equinox. *Rotation and Revolution Review Worksheet 2. Describe why we experience days and years due to the rotation and r evolution of the Earth around

More information

Exploring Solar Energy Variations on Earth: Changes in the Length of Day and Solar Insolation Through the Year

Exploring Solar Energy Variations on Earth: Changes in the Length of Day and Solar Insolation Through the Year Exploring Solar Energy Variations on Earth: Changes in the Length of Day and Solar Insolation Through the Year Purpose To help students understand how solar radiation varies (duration and intensity) during

More information

Full credit for this chapter to Prof. Leonard Bachman of the University of Houston

Full credit for this chapter to Prof. Leonard Bachman of the University of Houston Chapter 6: SOLAR GEOMETRY Full credit for this chapter to Prof. Leonard Bachman of the University of Houston SOLAR GEOMETRY AS A DETERMINING FACTOR OF HEAT GAIN, SHADING AND THE POTENTIAL OF DAYLIGHT PENETRATION...

More information

Solar Flux and Flux Density. Lecture 3: Global Energy Cycle. Solar Energy Incident On the Earth. Solar Flux Density Reaching Earth

Solar Flux and Flux Density. Lecture 3: Global Energy Cycle. Solar Energy Incident On the Earth. Solar Flux Density Reaching Earth Lecture 3: Global Energy Cycle Solar Flux and Flux Density Planetary energy balance Greenhouse Effect Vertical energy balance Latitudinal energy balance Seasonal and diurnal cycles Solar Luminosity (L)

More information

For further information, and additional background on the American Meteorological Society s Education Program, please contact:

For further information, and additional background on the American Meteorological Society s Education Program, please contact: Project ATMOSPHERE This guide is one of a series produced by Project ATMOSPHERE, an initiative of the American Meteorological Society. Project ATMOSPHERE has created and trained a network of resource agents

More information

CELESTIAL CLOCK - THE SUN, THE MOON, AND THE STARS

CELESTIAL CLOCK - THE SUN, THE MOON, AND THE STARS INTRODUCTION CELESTIAL CLOCK - THE SUN, THE MOON, AND THE STARS This is a scientific presentation to provide you with knowledge you can use to understand the sky above in relation to the earth. Before

More information

Earth, Moon, and Sun Study Guide. (Test Date: )

Earth, Moon, and Sun Study Guide. (Test Date: ) Earth, Moon, and Sun Study Guide Name: (Test Date: ) Essential Question #1: How are the Earth, Moon, and Sun alike and how are they different? 1. List the Earth, Moon, and Sun, in order from LARGEST to

More information

1-2. What is the name given to the path of the Sun as seen from Earth? a.) Equinox b.) Celestial equator c.) Solstice d.

1-2. What is the name given to the path of the Sun as seen from Earth? a.) Equinox b.) Celestial equator c.) Solstice d. Chapter 1 1-1. How long does it take the Earth to orbit the Sun? a.) one sidereal day b.) one month c.) one year X d.) one hour 1-2. What is the name given to the path of the Sun as seen from Earth? a.)

More information

Cycles in the Sky. Teacher Guide: Cycles in the Sky Page 1 of 8 2008 Discovery Communications, LLC

Cycles in the Sky. Teacher Guide: Cycles in the Sky Page 1 of 8 2008 Discovery Communications, LLC Cycles in the Sky What is a Fun damental? Each Fun damental is designed to introduce your younger students to some of the basic ideas about one particular area of science. The activities in the Fun damental

More information

The Celestial Sphere. Questions for Today. The Celestial Sphere 1/18/10

The Celestial Sphere. Questions for Today. The Celestial Sphere 1/18/10 Lecture 3: Constellations and the Distances to the Stars Astro 2010 Prof. Tom Megeath Questions for Today How do the stars move in the sky? What causes the phases of the moon? What causes the seasons?

More information

ESCI 107/109 The Atmosphere Lesson 2 Solar and Terrestrial Radiation

ESCI 107/109 The Atmosphere Lesson 2 Solar and Terrestrial Radiation ESCI 107/109 The Atmosphere Lesson 2 Solar and Terrestrial Radiation Reading: Meteorology Today, Chapters 2 and 3 EARTH-SUN GEOMETRY The Earth has an elliptical orbit around the sun The average Earth-Sun

More information

Basic Coordinates & Seasons Student Guide

Basic Coordinates & Seasons Student Guide Name: Basic Coordinates & Seasons Student Guide There are three main sections to this module: terrestrial coordinates, celestial equatorial coordinates, and understanding how the ecliptic is related to

More information

Essential Question. Enduring Understanding

Essential Question. Enduring Understanding Earth In Space Unit Diagnostic Assessment: Students complete a questionnaire answering questions about their ideas concerning a day, year, the seasons and moon phases: My Ideas About A Day, Year, Seasons

More information

Solar Energy Systems. Matt Aldeman Senior Energy Analyst Center for Renewable Energy Illinois State University

Solar Energy Systems. Matt Aldeman Senior Energy Analyst Center for Renewable Energy Illinois State University Solar Energy Solar Energy Systems Matt Aldeman Senior Energy Analyst Center for Renewable Energy Illinois State University 1 SOLAR ENERGY OVERVIEW 1) Types of Solar Power Plants 2) Describing the Solar

More information

Motions of Earth LEARNING GOALS

Motions of Earth LEARNING GOALS 2 Patterns in the Sky Motions of Earth The stars first found a special place in legend and mythology as the realm of gods and goddesses, holding sway over the lives of humankind. From these legends and

More information

Earth in the Solar System

Earth in the Solar System Copyright 2011 Study Island - All rights reserved. Directions: Challenge yourself! Print out the quiz or get a pen/pencil and paper and record your answers to the questions below. Check your answers with

More information

ATM S 111, Global Warming: Understanding the Forecast

ATM S 111, Global Warming: Understanding the Forecast ATM S 111, Global Warming: Understanding the Forecast DARGAN M. W. FRIERSON DEPARTMENT OF ATMOSPHERIC SCIENCES DAY 1: OCTOBER 1, 2015 Outline How exactly the Sun heats the Earth How strong? Important concept

More information

EARTH'S MOTIONS. 2. The Coriolis effect is a result of Earth's A tilted axis B orbital shape C revolution D rotation

EARTH'S MOTIONS. 2. The Coriolis effect is a result of Earth's A tilted axis B orbital shape C revolution D rotation EARTH'S MOTIONS 1. Which hot spot location on Earth's surface usually receives the greatest intensity of insolation on June 21? A Iceland B Hawaii C Easter Island D Yellowstone 2. The Coriolis effect is

More information

CHAPTER 3. The sun and the seasons. Locating the position of the sun

CHAPTER 3. The sun and the seasons. Locating the position of the sun zenith 90 summer solstice 75 equinox 52 winter solstice 29 altitude angles observer Figure 3.1: Solar noon altitude angles for Melbourne SOUTH winter midday shadow WEST summer midday shadow summer EAST

More information

Homework Assignment #7: The Moon

Homework Assignment #7: The Moon Name Homework Assignment #7: The Moon 2008 Ann Bykerk-Kauffman, Dept. of Geological and Environmental Sciences, California State University, Chico * Chapter 21 Origins of Modern Astronomy Motions of the

More information

Astrock, t he A stronomical Clock

Astrock, t he A stronomical Clock Astrock, t he A stronomical Clock The astronomical clock is unlike any other clock. At first glance you ll find it has similar functions of a standard clock, however the astronomical clock can offer much

More information

Earth, Moon, and Sun Inquiry Template Eclipses

Earth, Moon, and Sun Inquiry Template Eclipses One Stop Shop For Educators The following instructional plan is part of a GaDOE collection of Unit Frameworks, Performance Tasks, examples of Student Work, and Teacher Commentary. Many more GaDOE approved

More information

Pre and post-visit activities - Navigating by the stars

Pre and post-visit activities - Navigating by the stars Pre and post-visit activities - Navigating by the stars Vocabulary List Adult Education at Scienceworks Pre-visit Activity 1: What is longitude and latitude? Activity 2: Using the Southern Cross to find

More information

The Globe Latitudes and Longitudes

The Globe Latitudes and Longitudes INDIAN SCHOOL MUSCAT MIDDLE SECTION DEPARTMENT OF SOCIAL SCIENCE The Globe Latitudes and Longitudes NAME: CLASS VI SEC: ROLL NO: DATE:.04.2015 I NAME THE FOLLOWING: 1. A small spherical model of the Earth:

More information

ASTR 1030 Astronomy Lab 65 Celestial Motions CELESTIAL MOTIONS

ASTR 1030 Astronomy Lab 65 Celestial Motions CELESTIAL MOTIONS ASTR 1030 Astronomy Lab 65 Celestial Motions CELESTIAL MOTIONS SYNOPSIS: The objective of this lab is to become familiar with the apparent motions of the Sun, Moon, and stars in the Boulder sky. EQUIPMENT:

More information

Photosynthesis. Grade-Level Expectations The exercises in these instructional tasks address content related to the following grade-level expectations:

Photosynthesis. Grade-Level Expectations The exercises in these instructional tasks address content related to the following grade-level expectations: GRADE 5 SCIENCE INSTRUCTIONAL TASKS Photosynthesis Grade-Level Expectations The exercises in these instructional tasks address content related to the following grade-level expectations: SI-M-A5 Use evidence

More information

Earth, Sun and Moon is a set of interactives designed to support the teaching of the QCA primary science scheme of work 5e - 'Earth, Sun and Moon'.

Earth, Sun and Moon is a set of interactives designed to support the teaching of the QCA primary science scheme of work 5e - 'Earth, Sun and Moon'. is a set of interactives designed to support the teaching of the QCA primary science scheme of work 5e - ''. Learning Connections Primary Science Interactives are teaching tools which have been created

More information

CELESTIAL EVENTS CALENDAR APRIL 2014 TO MARCH 2015

CELESTIAL EVENTS CALENDAR APRIL 2014 TO MARCH 2015 CELESTIAL EVENTS CALENDAR APRIL 2014 TO MARCH 2015 *** Must See Event 2014 ***April 8 - Mars at Opposition. The red planet will be at its closest approach to Earth and its face will be fully illuminated

More information

Which month has larger and smaller day time?

Which month has larger and smaller day time? ACTIVITY-1 Which month has larger and smaller day time? Problem: Which month has larger and smaller day time? Aim: Finding out which month has larger and smaller duration of day in the Year 2006. Format

More information

Machu Pichu. Machu Pichu is located north east of Cusco, Chile in the district of Machu Picchu, province of Urubamba.

Machu Pichu. Machu Pichu is located north east of Cusco, Chile in the district of Machu Picchu, province of Urubamba. Machu Pichu 1 Sunlight plays an important role in understanding the design of this fabled Inca city. Incan architects designed practical homes for Machu's residents. They also marked in their creations,

More information

Global Seasonal Phase Lag between Solar Heating and Surface Temperature

Global Seasonal Phase Lag between Solar Heating and Surface Temperature Global Seasonal Phase Lag between Solar Heating and Surface Temperature Summer REU Program Professor Tom Witten By Abstract There is a seasonal phase lag between solar heating from the sun and the surface

More information

The Sun-Earth-Moon System. Unit 5 covers the following framework standards: ES 9, 11 and PS 1. Content was adapted the following:

The Sun-Earth-Moon System. Unit 5 covers the following framework standards: ES 9, 11 and PS 1. Content was adapted the following: Unit 5 The Sun-Earth-Moon System Chapter 10 ~ The Significance of Earth s Position o Section 1 ~ Earth in Space o Section 2 ~ Phases, Eclipses, and Tides o Section 3 ~ Earth s Moon Unit 5 covers the following

More information

Orbital-Scale Climate Change

Orbital-Scale Climate Change Orbital-Scale Climate Change Climate Needed for Ice Age Warm winter and non-frozen oceans so lots of evaporation and snowfall Cool summer so that ice does not melt Ice Age Model When ice growing ocean

More information

SIXTH GRADE 1 WEEK LESSON PLANS AND ACTIVITIES

SIXTH GRADE 1 WEEK LESSON PLANS AND ACTIVITIES SIXTH GRADE 1 WEEK LESSON PLANS AND ACTIVITIES UNIVERSE CYCLE OVERVIEW OF SIXTH GRADE UNIVERSE WEEK 1. PRE: Exploring how the Universe may have evolved. LAB: Comparing the night sky with zodiac signs.

More information

Geometry and Geography

Geometry and Geography Geometry and Geography Tom Davis tomrdavis@earthlink.net http://www.geometer.org/mathcircles March 12, 2011 1 Pedagogical Advice I have been leading mathematical circles using this topic for many years,

More information

SOLAR CALCULATIONS (2)

SOLAR CALCULATIONS (2) OLAR CALCULATON The orbit of the Earth is an ellise not a circle, hence the distance between the Earth and un varies over the year, leading to aarent solar irradiation values throughout the year aroximated

More information

Stellar, solar, and lunar demonstrators

Stellar, solar, and lunar demonstrators Stellar, solar, and lunar demonstrators Rosa M. Ros, Francis Berthomieu International Astronomical Union, Technical University of Catalonia (Barcelona, España), CLEA (Nice, France) Summary This worksheet

More information

Moon Phases & Eclipses Notes

Moon Phases & Eclipses Notes Moon Phases & Eclipses Notes Melka 2014-2015 The Moon The Moon is Earth s one natural satellite. Due to its smaller size and slower speed of rotation, the Moon s gravity is 1/6 of the Earth s gravitational

More information

Note S1: Eclipses & Predictions

Note S1: Eclipses & Predictions The Moon's Orbit The first part of this note gives reference information and definitions about eclipses [14], much of which would have been familiar to ancient Greek astronomers, though not necessarily

More information

STUDY GUIDE: Earth Sun Moon

STUDY GUIDE: Earth Sun Moon The Universe is thought to consist of trillions of galaxies. Our galaxy, the Milky Way, has billions of stars. One of those stars is our Sun. Our solar system consists of the Sun at the center, and all

More information

Measuring Your Latitude from the Angle of the Sun at Noon

Measuring Your Latitude from the Angle of the Sun at Noon Measuring Your Latitude from the Angle of the Sun at Noon Background: You can measure your latitude in earth's northern hemisphere by finding out the altitude of the celestial equator from the southern

More information

Seasons on Earth LESSON

Seasons on Earth LESSON LESSON 4 Seasons on Earth On Earth, orange and red autumn leaves stand out against the blue sky. NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION (NOAA) PHOTO LIBRARY/NOAA CENTRAL LIBRARY INTRODUCTION Nearly

More information

2- The Top and bottom of the leaf is covered by thin layer of cells called epidermis that allow sunlight to easily pass into the middle of the leaf.

2- The Top and bottom of the leaf is covered by thin layer of cells called epidermis that allow sunlight to easily pass into the middle of the leaf. Final exam summary sheet Topic 5, lesson 2 How leaf is adapted to carry on photosynthesis? 1- Waxy layer called the cuticle cover the leaf slow the water loss. 2- The Top and bottom of the leaf is covered

More information

Earth In Space Chapter 3

Earth In Space Chapter 3 Earth In Space Chapter 3 Shape of the Earth Ancient Greeks Earth casts a circular shadow on the moon during a lunar eclipse Shape of the Earth Ancient Greeks Ships were observed to disappear below the

More information

Use WITH Investigation 4, Part 2, Step 2

Use WITH Investigation 4, Part 2, Step 2 INVESTIGATION 4 : The Sundial Project Use WITH Investigation 4, Part 2, Step 2 EALR 4: Earth and Space Science Big Idea: Earth in Space (ES1) Projects: Tether Ball Pole Sundial Globe and a Light Indoors

More information

APPENDIX D: SOLAR RADIATION

APPENDIX D: SOLAR RADIATION APPENDIX D: SOLAR RADIATION The sun is the source of most energy on the earth and is a primary factor in determining the thermal environment of a locality. It is important for engineers to have a working

More information

DETERMINING SOLAR ALTITUDE USING THE GNOMON. How does the altitude change during the day or from day to day?

DETERMINING SOLAR ALTITUDE USING THE GNOMON. How does the altitude change during the day or from day to day? Name Partner(s) Section Date DETERMINING SOLAR ALTITUDE USING THE GNOMON Does the Sun ever occur directly overhead in Maryland? If it does, how would you determine or know it was directly overhead? How

More information

Stage 4. Geography. Blackline Masters. By Karen Devine

Stage 4. Geography. Blackline Masters. By Karen Devine 1 Devine Educational Consultancy Services Stage 4 Geography Blackline Masters By Karen Devine Updated January 2010 2 This book is intended for the exclusive use in NSW Secondary Schools. It is meant to

More information

Sunlight and its Properties. EE 495/695 Y. Baghzouz

Sunlight and its Properties. EE 495/695 Y. Baghzouz Sunlight and its Properties EE 495/695 Y. Baghzouz The sun is a hot sphere of gas whose internal temperatures reach over 20 million deg. K. Nuclear fusion reaction at the sun's core converts hydrogen to

More information

CHAPTER 5 Lectures 10 & 11 Air Temperature and Air Temperature Cycles

CHAPTER 5 Lectures 10 & 11 Air Temperature and Air Temperature Cycles CHAPTER 5 Lectures 10 & 11 Air Temperature and Air Temperature Cycles I. Air Temperature: Five important factors influence air temperature: A. Insolation B. Latitude C. Surface types D. Coastal vs. interior

More information

5- Minute Refresher: Daily Observable Patterns in the Sky

5- Minute Refresher: Daily Observable Patterns in the Sky 5- Minute Refresher: Daily Observable Patterns in the Sky Key Ideas Daily Observable Patterns in the Sky include the occurrence of day and night, the appearance of the moon, the location of shadows and

More information

The ecliptic - Earth s orbital plane

The ecliptic - Earth s orbital plane The ecliptic - Earth s orbital plane The line of nodes descending node The Moon s orbital plane Moon s orbit inclination 5.45º ascending node celestial declination Zero longitude in the ecliptic The orbit

More information

8.5 Motions of Earth, the Moon, and Planets

8.5 Motions of Earth, the Moon, and Planets 8.5 Motions of, the, and Planets axis axis North Pole South Pole rotation Figure 1 s axis is an imaginary line that goes through the planet from pole-to-pole. orbital radius the average distance between

More information

Motions of Earth, Moon, and Sun

Motions of Earth, Moon, and Sun Motions of Earth, Moon, and Sun Apparent Motions of Celestial Objects An apparent motion is a motion that an object appears to make. Apparent motions can be real or illusions. When you see a person spinning

More information

MULTI-LEVEL LESSON PLAN GUIDE Earth, Moon, and Beyond

MULTI-LEVEL LESSON PLAN GUIDE Earth, Moon, and Beyond 1 MULTI-LEVEL LESSON PLAN GUIDE Earth, Moon, and Beyond Jeni Gonzales e-mail: JeniLG7@aol.com SED 5600 Dr. Michael Peterson December 18, 2001 1 2 Unit Plan: Multi-level- Earth, Moon, and Beyond Theme:

More information

How Do Oceans Affect Weather and Climate?

How Do Oceans Affect Weather and Climate? How Do Oceans Affect Weather and Climate? In Learning Set 2, you explored how water heats up more slowly than land and also cools off more slowly than land. Weather is caused by events in the atmosphere.

More information

The Observed Calendar of the Second Temple Dates For 2014

The Observed Calendar of the Second Temple Dates For 2014 www.120jubilees.com The Observed Calendar of the Second Temple Dates For 2014 The Observed Calendar of the Second Temple Era was used by the official priests of the Second Temple from at least 520 BC to

More information

Proffessor: J. C. Cersosimo

Proffessor: J. C. Cersosimo Proffessor: J. C. Cersosimo Objectives Student will: Recognize the Solar and Lunar calendar Demonstrate the how the Moon phases form Explain the main elements of an orbits Describe the orbit of the Earth

More information

DEPLOSUN REFLECTORS. Carrer dels Vergós, 11 08017 Barcelona Spain Tel: (+34) 934.090.359 Fx: (+34) 934.090.358 info@espaciosolar.

DEPLOSUN REFLECTORS. Carrer dels Vergós, 11 08017 Barcelona Spain Tel: (+34) 934.090.359 Fx: (+34) 934.090.358 info@espaciosolar. DEPLOSUN REFLECTORS DEPLOSUN REFLECTORS DEPLOSUN REFLECTORS is an innovative reflector system which captures the sun rays in the upper part of the atria and redirects them downwards, increasing daylight

More information

CONTENTS PAGE: 1. EU-UNAWE Mission Statement 3 2. CAPS Life Skills Programme of Assessment 4 5-6

CONTENTS PAGE: 1. EU-UNAWE Mission Statement 3 2. CAPS Life Skills Programme of Assessment 4 5-6 CONTENTS PAGE: 1. EU-UNAWE Mission Statement 3 2. CAPS Life Skills Programme of Assessment 4 5-6 3. Core Knowledge & Content - CAPS Curriculum Life Skills Foundation Phase 4. Learning Outcomes & Definition

More information

Solar System. 1. The diagram below represents a simple geocentric model. Which object is represented by the letter X?

Solar System. 1. The diagram below represents a simple geocentric model. Which object is represented by the letter X? Solar System 1. The diagram below represents a simple geocentric model. Which object is represented by the letter X? A) Earth B) Sun C) Moon D) Polaris 2. Which object orbits Earth in both the Earth-centered

More information

Designing with the Pilkington Sun Angle Calculator

Designing with the Pilkington Sun Angle Calculator Designing with the Pilkington Sun Angle Calculator 1 In 1951, Libbey-Owens-Ford introduced the first Sun Angle Calculator, to provide a relatively simple method of determining solar geometry variables

More information

HOW A SOLAR CELL PRODUCES ELECTRICITY

HOW A SOLAR CELL PRODUCES ELECTRICITY - 20 - HOW A SOLAR CELL PRODUCES ELECTRICITY INTRODUCTION Look at the solar cell your teacher has given you. Hold it in your hand. It does not appear to have much substance; it s just a thin wafer of solid

More information

Geography I Pre Test #1

Geography I Pre Test #1 Geography I Pre Test #1 1. The sun is a star in the galaxy. a) Orion b) Milky Way c) Proxima Centauri d) Alpha Centauri e) Betelgeuse 2. The response to earth's rotation is a) an equatorial bulge b) polar

More information