Sun Earth Relationships
|
|
|
- Noreen Anderson
- 10 years ago
- Views:
Transcription
1 1 ESCI-61 Introduction to Photovoltaic Technology Sun Earth Relationships Ridha Hamidi, Ph.D.
2 Spring (sun aims directly at equator) Winter (northern hemisphere tilts away from sun) Solar radiation Summer (northern hemisphere tilts toward sun) Fall (sun aims directly at equator)
3 3 Earth s Orbit Ecliptic Plane: the plane of Earth s orbit around the Sun Perihelion: point of the Earth s orbit when it is closest to the Sun (around Jan. 3 rd ) Aphelion: point in Earth s orbit when it is farthest from the Sun (around July 4 th ) Equatorial Plane: plane containing Earth s equator and extending outward into space Earth s axis is tilted by 23.5 (constant angle bet ween ecliptic & equatorial planes) This causes the seasonal variations in Earth s climate Solar Declination: angle between the equatorial plane and the line joining the centers of the Sun & Earth Changes continuously as Earth orbits the Sun, ranging from 23.5 to Apparent change as viewed from the Sun Visit for more info
4 4 Earth s Orbit Solstices: Earth s orbit position when solar declination is at minimum or maximum At any location in the Northern hemisphere, the Sun is 47 lower in the sky at solar noon on the winter solstice than at solar noon on the summer solstice The rate of change in declination is small, so daily change in Sun path is at minimum
5 5 Earth s Orbit Summer solstice: maximum solar declination (+23.5 ), around June 21 Northern hemisphere is at its maximum tilt toward the Sun Days are longer than nights in the Northern hemisphere All points south the Antarctic circle are in total darkness The Sun is at Zenith at solar noon at locations at 23.5 N latitude, aka Tropic of Cancer Winter solstice: minimum solar declination (-23.5 ), around December 21 Northern hemisphere is at its maximum tilt away from the Sun Days are shorter than nights in the Northern hemisphere All points north the Arctic circle are in total darkness The Sun is at Zenith at solar noon at locations at 23.5 S latitude, aka Tropic of Capricorn
6 6 Earth s Orbit Equinoxes: Earth s orbital position when solar declination is zero Spring Equinox: around March 21 Fall Equinox: around September 23 Every location on Earth has equal length days & nights The Sun is at zenith at solar noon on the equator and rises and sets due East and due West, resp., everywhere on Earth The rate of change in declination is large, so daily change in Sun path is at maximum
7 7
8 8
9 9
10 10
11 11
12 12 Solar Time Meridian: a plane formed by a due North-South longitude line through a location on Earth and projected out into space Local Meridian: meridian at the observer s exact location Solar Time: timescale based on the apparent motion of the Sun crossing a local meridian Solar noon: the moment when the Sun crosses a local meridian and is at its highest position of the day Solar Day: the interval of time between sun crossings of local meridian, which is approximately 24h
13 13 Standard Time Standard Meridian: a meridian located at a multiple of 15 East or West of zero longitude (Greenwich, England), aka Prime Meridian Standard Time: a timescale based on the apparent motion of the Sun crossing standard meridians The Earth rotates 360 in approximately 24h Each 15 of longitude is equal to one hour of solar time Each 1 of longitude is equal to 4mn of solar time Standard time zones are at one hour multiples ahead of or behind the time at the Prime Meridian, aka Greenwich Mean Time (GMT) or Universal Time (UT)
14 14
15 15 Standard Time vs Solar Time Longitude Time Correction t λ = (λ local λ s ) x 4 t λ : longitude time correction (mn) λ local : local longitude (deg) λ s : longitude of standard meridian (deg) Equation of Time Correction Caused by eccentricities in Earth s rotation during its orbit around the Sun difference between actual solar noon and theoretical solar noon based on uniform Earth motion t s = t 0 t E + t λ t s : Local Standard Time t 0 : Solar Time t E : Equation of Time Value t λ : Longitude Time Correction
16 16 Solar Time Calculators
17 Calculating Solar Time 17
18 18 Sun Position Two angles are used to define the Sun s position in the sky Solar Altitude: vertical angle between zero and 90 Solar Azimuth: horizontal angle between a reference direction (typically due South in the Northern hemisphere) and the Sun varies between -180 and +180 Sun position to the East of due South is represented as a positive angle, and to the West as a negative angle
19 19
20 Sun Path Charts 20
21 Sun Path Charts 21
22 Sun Path Charts 22
23 23
24 24 Array Orientation Array orientation is defined by two angles: Array Tilt: vertical angle between horizontal and the array surface Array Azimuth: horizontal angle between a reference direction (typically due South in the Northern hemisphere) and the direction an array surface faces Incidence Angle: angle between the direction of direct radiation and a line exactly perpendicular to the array surface
25 25
26 26 Array Tilt Angle Smaller tilt angles can be required by applications with high energy loads in the summer, like airconditioning Average declination during the summer is +15, so the optimal tilt angle for the summer is (latitude - 15 ) Larger tilt angles can be required by applications with high energy loads in the winter, like artificial lighting Average declination during the winter is -15, so the optimal tilt angle for the winter is (latitude + 15 )
27 Solar Radiation Data Manual 27
28 28 Array Tilt Angle The geometry of the solar window is such that the Sun is in the sky for longer in the summer than in the winter Climate and atmospheric factors result in a slightly lower optimal tilt angle to maximize the annual energy production Summer skies are clearer than winter skies Less air mass in the summer
29 Optimal Tilt Angle 29
30 30 Optimal Tilt Angle
Earth-Sun Relationships. The Reasons for the Seasons
Earth-Sun Relationships The Reasons for the Seasons Solar Radiation The earth intercepts less than one two-billionth of the energy given off by the sun. However, the radiation is sufficient to provide
Tropical Horticulture: Lecture 2
Lecture 2 Theory of the Tropics Earth & Solar Geometry, Celestial Mechanics The geometrical relationship between the earth and sun is responsible for the earth s climates. The two principal movements of
Renewable Energy. Solar Power. Courseware Sample 86352-F0
Renewable Energy Solar Power Courseware Sample 86352-F0 A RENEWABLE ENERGY SOLAR POWER Courseware Sample by the staff of Lab-Volt Ltd. Copyright 2009 Lab-Volt Ltd. All rights reserved. No part of this
Solar energy and the Earth s seasons
Solar energy and the Earth s seasons Name: Tilt of the Earth s axis and the seasons We now understand that the tilt of Earth s axis makes it possible for different parts of the Earth to experience different
PHSC 3033: Meteorology Seasons
PHSC 3033: Meteorology Seasons Changing Aspect Angle Direct Sunlight is more intense and concentrated. Solar Incidence Angle is Latitude and Time/Date Dependent Daily and Seasonal Variation Zenith There
Solar Energy Systems. Matt Aldeman Senior Energy Analyst Center for Renewable Energy Illinois State University
Solar Energy Solar Energy Systems Matt Aldeman Senior Energy Analyst Center for Renewable Energy Illinois State University 1 SOLAR ENERGY OVERVIEW 1) Types of Solar Power Plants 2) Describing the Solar
Celestial Observations
Celestial Observations Earth experiences two basic motions: Rotation West-to-East spinning of Earth on its axis (v rot = 1770 km/hr) (v rot Revolution orbit of Earth around the Sun (v orb = 108,000 km/hr)
Full credit for this chapter to Prof. Leonard Bachman of the University of Houston
Chapter 6: SOLAR GEOMETRY Full credit for this chapter to Prof. Leonard Bachman of the University of Houston SOLAR GEOMETRY AS A DETERMINING FACTOR OF HEAT GAIN, SHADING AND THE POTENTIAL OF DAYLIGHT PENETRATION...
Where on Earth are the daily solar altitudes higher and lower than Endicott?
Where on Earth are the daily solar altitudes higher and lower than Endicott? In your notebooks, write RELATIONSHIPS between variables we tested CAUSE FIRST EFFECT SECOND EVIDENCE As you increase the time
Today FIRST HOMEWORK DUE NEXT TIME. Seasons/Precession Recap. Phases of the Moon. Eclipses. Lunar, Solar. Ancient Astronomy
Today FIRST HOMEWORK DUE NEXT TIME Seasons/Precession Recap Phases of the Moon Eclipses Lunar, Solar Ancient Astronomy How do we mark the progression of the seasons? We define four special points: summer
The following words and their definitions should be addressed before completion of the reading:
Seasons Vocabulary: The following words and their definitions should be addressed before completion of the reading: sphere any round object that has a surface that is the same distance from its center
The Four Seasons. A Warm Up Exercise. A Warm Up Exercise. A Warm Up Exercise. The Moon s Phases
The Four Seasons A Warm Up Exercise What fraction of the Moon s surface is illuminated by the Sun (except during a lunar eclipse)? a) Between zero and one-half b) The whole surface c) Always half d) Depends
CELESTIAL CLOCK - THE SUN, THE MOON, AND THE STARS
INTRODUCTION CELESTIAL CLOCK - THE SUN, THE MOON, AND THE STARS This is a scientific presentation to provide you with knowledge you can use to understand the sky above in relation to the earth. Before
Solar Angles and Latitude
Solar Angles and Latitude Objectives The student will understand that the sun is not directly overhead at noon in most latitudes. The student will research and discover the latitude ir classroom and calculate
ASTRONOMY 161. Introduction to Solar System Astronomy
ASTRONOMY 161 Introduction to Solar System Astronomy Seasons & Calendars Monday, January 8 Season & Calendars: Key Concepts (1) The cause of the seasons is the tilt of the Earth s rotation axis relative
Chapter 2: Solar Radiation and Seasons
Chapter 2: Solar Radiation and Seasons Spectrum of Radiation Intensity and Peak Wavelength of Radiation Solar (shortwave) Radiation Terrestrial (longwave) Radiations How to Change Air Temperature? Add
Today. Solstices & Equinoxes Precession Phases of the Moon Eclipses. Ancient Astronomy. Lunar, Solar FIRST HOMEWORK DUE NEXT TIME
Today Solstices & Equinoxes Precession Phases of the Moon Eclipses Lunar, Solar Ancient Astronomy FIRST HOMEWORK DUE NEXT TIME The Reason for Seasons Hypothesis check: How would seasons in the northern
APPENDIX D: SOLAR RADIATION
APPENDIX D: SOLAR RADIATION The sun is the source of most energy on the earth and is a primary factor in determining the thermal environment of a locality. It is important for engineers to have a working
Exploring Solar Energy Variations on Earth: Changes in the Length of Day and Solar Insolation Through the Year
Exploring Solar Energy Variations on Earth: Changes in the Length of Day and Solar Insolation Through the Year Purpose To help students understand how solar radiation varies (duration and intensity) during
Noon Sun Angle = 90 Zenith Angle
Noon Sun Angle Worksheet Name Name Date Subsolar Point (Latitude where the sun is overhead at noon) Equinox March 22 nd 0 o Equinox September 22 nd 0 o Solstice June 22 nd 23.5 N Solstice December 22 nd
Chapter 3 Earth - Sun Relations
3.1 Introduction We saw in the last chapter that the short wave radiation from the sun passes through the atmosphere and heats the earth, which in turn radiates energy in the infrared portion of the electromagnetic
The Celestial Sphere. Questions for Today. The Celestial Sphere 1/18/10
Lecture 3: Constellations and the Distances to the Stars Astro 2010 Prof. Tom Megeath Questions for Today How do the stars move in the sky? What causes the phases of the moon? What causes the seasons?
Lab Activity on the Causes of the Seasons
Lab Activity on the Causes of the Seasons 2002 Ann Bykerk-Kauffman, Dept. of Geological and Environmental Sciences, California State University, Chico * Objectives When you have completed this lab you
Basic Coordinates & Seasons Student Guide
Name: Basic Coordinates & Seasons Student Guide There are three main sections to this module: terrestrial coordinates, celestial equatorial coordinates, and understanding how the ecliptic is related to
CHAPTER 3. The sun and the seasons. Locating the position of the sun
zenith 90 summer solstice 75 equinox 52 winter solstice 29 altitude angles observer Figure 3.1: Solar noon altitude angles for Melbourne SOUTH winter midday shadow WEST summer midday shadow summer EAST
Chapter Overview. Seasons. Earth s Seasons. Distribution of Solar Energy. Solar Energy on Earth. CHAPTER 6 Air-Sea Interaction
Chapter Overview CHAPTER 6 Air-Sea Interaction The atmosphere and the ocean are one independent system. Earth has seasons because of the tilt on its axis. There are three major wind belts in each hemisphere.
Coordinate Systems. Orbits and Rotation
Coordinate Systems Orbits and Rotation Earth orbit. The earth s orbit around the sun is nearly circular but not quite. It s actually an ellipse whose average distance from the sun is one AU (150 million
ESCI 107/109 The Atmosphere Lesson 2 Solar and Terrestrial Radiation
ESCI 107/109 The Atmosphere Lesson 2 Solar and Terrestrial Radiation Reading: Meteorology Today, Chapters 2 and 3 EARTH-SUN GEOMETRY The Earth has an elliptical orbit around the sun The average Earth-Sun
Sunlight and its Properties. EE 495/695 Y. Baghzouz
Sunlight and its Properties EE 495/695 Y. Baghzouz The sun is a hot sphere of gas whose internal temperatures reach over 20 million deg. K. Nuclear fusion reaction at the sun's core converts hydrogen to
Reasons for Seasons. Question: TRUE OR FALSE. Question: TRUE OR FALSE? What causes the seasons? What causes the seasons?
Reasons for Seasons Question: TRUE OR FALSE? Earth is closer to the Sun in summer and farther from the Sun in winter. Question: TRUE OR FALSE? Earth is closer to the Sun in summer and farther from the
The ecliptic - Earth s orbital plane
The ecliptic - Earth s orbital plane The line of nodes descending node The Moon s orbital plane Moon s orbit inclination 5.45º ascending node celestial declination Zero longitude in the ecliptic The orbit
EDMONDS COMMUNITY COLLEGE ASTRONOMY 100 Winter Quarter 2007 Sample Test # 1
Instructor: L. M. Khandro EDMONDS COMMUNITY COLLEGE ASTRONOMY 100 Winter Quarter 2007 Sample Test # 1 1. An arc second is a measure of a. time interval between oscillations of a standard clock b. time
1. In the diagram below, the direct rays of the Sun are striking the Earth's surface at 23 º N. What is the date shown in the diagram?
1. In the diagram below, the direct rays of the Sun are striking the Earth's surface at 23 º N. What is the date shown in the diagram? 5. During how many days of a calendar year is the Sun directly overhead
For further information, and additional background on the American Meteorological Society s Education Program, please contact:
Project ATMOSPHERE This guide is one of a series produced by Project ATMOSPHERE, an initiative of the American Meteorological Society. Project ATMOSPHERE has created and trained a network of resource agents
SOLAR CALCULATIONS (2)
OLAR CALCULATON The orbit of the Earth is an ellise not a circle, hence the distance between the Earth and un varies over the year, leading to aarent solar irradiation values throughout the year aroximated
Stellarium a valuable resource for teaching astronomy in the classroom and beyond
Stellarium 1 Stellarium a valuable resource for teaching astronomy in the classroom and beyond Stephen Hughes Department of Physical and Chemical Sciences, Queensland University of Technology, Gardens
1-2. What is the name given to the path of the Sun as seen from Earth? a.) Equinox b.) Celestial equator c.) Solstice d.
Chapter 1 1-1. How long does it take the Earth to orbit the Sun? a.) one sidereal day b.) one month c.) one year X d.) one hour 1-2. What is the name given to the path of the Sun as seen from Earth? a.)
CELESTIAL MOTIONS. In Charlottesville we see Polaris 38 0 above the Northern horizon. Earth. Starry Vault
CELESTIAL MOTIONS Stars appear to move counterclockwise on the surface of a huge sphere the Starry Vault, in their daily motions about Earth Polaris remains stationary. In Charlottesville we see Polaris
Ok, so if the Earth weren't tilted, we'd have a picture like the one shown below: 12 hours of daylight at all latitudes more insolation in the
Ok, so if the Earth weren't tilted, we'd have a picture like the one shown below: 12 hours of daylight at all latitudes more insolation in the tropics, less at higher latitudes Ok, so if the Earth weren't
The Globe Latitudes and Longitudes
INDIAN SCHOOL MUSCAT MIDDLE SECTION DEPARTMENT OF SOCIAL SCIENCE The Globe Latitudes and Longitudes NAME: CLASS VI SEC: ROLL NO: DATE:.04.2015 I NAME THE FOLLOWING: 1. A small spherical model of the Earth:
Heat Transfer. Energy from the Sun. Introduction
Introduction The sun rises in the east and sets in the west, but its exact path changes over the course of the year, which causes the seasons. In order to use the sun s energy in a building, we need to
Seasonal & Daily Temperatures. Seasons & Sun's Distance. Solstice & Equinox. Seasons & Solar Intensity
Seasonal & Daily Temperatures Seasons & Sun's Distance The role of Earth's tilt, revolution, & rotation in causing spatial, seasonal, & daily temperature variations Please read Chapter 3 in Ahrens Figure
Astromechanics. 1 solar day = 1.002737909350795 sidereal days
Astromechanics 13. Time Considerations- Local Sidereal Time The time that is used by most people is that called the mean solar time. It is based on the idea that if the Earth revolved around the Sun at
Motions of Earth LEARNING GOALS
2 Patterns in the Sky Motions of Earth The stars first found a special place in legend and mythology as the realm of gods and goddesses, holding sway over the lives of humankind. From these legends and
Earth In Space Chapter 3
Earth In Space Chapter 3 Shape of the Earth Ancient Greeks Earth casts a circular shadow on the moon during a lunar eclipse Shape of the Earth Ancient Greeks Ships were observed to disappear below the
Solar Flux and Flux Density. Lecture 3: Global Energy Cycle. Solar Energy Incident On the Earth. Solar Flux Density Reaching Earth
Lecture 3: Global Energy Cycle Solar Flux and Flux Density Planetary energy balance Greenhouse Effect Vertical energy balance Latitudinal energy balance Seasonal and diurnal cycles Solar Luminosity (L)
Local Sidereal Time is the hour angle of the First Point of Aries, and is equal to the hour angle plus right ascension of any star.
1 CHAPTER 7 TIME In this chapter we briefly discuss the several time scales that are in use in astronomy, such as Universal Time, Mean Solar Time, Ephemeris Time, Terrestrial Dynamical Time, and the several
Essential Question. Enduring Understanding
Earth In Space Unit Diagnostic Assessment: Students complete a questionnaire answering questions about their ideas concerning a day, year, the seasons and moon phases: My Ideas About A Day, Year, Seasons
Orientation to the Sky: Apparent Motions
Chapter 2 Orientation to the Sky: Apparent Motions 2.1 Purpose The main goal of this lab is for you to gain an understanding of how the sky changes during the night and over the course of a year. We will
Use WITH Investigation 4, Part 2, Step 2
INVESTIGATION 4 : The Sundial Project Use WITH Investigation 4, Part 2, Step 2 EALR 4: Earth and Space Science Big Idea: Earth in Space (ES1) Projects: Tether Ball Pole Sundial Globe and a Light Indoors
Designing with the Pilkington Sun Angle Calculator
Designing with the Pilkington Sun Angle Calculator 1 In 1951, Libbey-Owens-Ford introduced the first Sun Angle Calculator, to provide a relatively simple method of determining solar geometry variables
Note S1: Eclipses & Predictions
The Moon's Orbit The first part of this note gives reference information and definitions about eclipses [14], much of which would have been familiar to ancient Greek astronomers, though not necessarily
Pre and post-visit activities - Navigating by the stars
Pre and post-visit activities - Navigating by the stars Vocabulary List Adult Education at Scienceworks Pre-visit Activity 1: What is longitude and latitude? Activity 2: Using the Southern Cross to find
SOLAR RADIATION AND YIELD. Alessandro Massi Pavan
SOLAR RADIATION AND YIELD Alessandro Massi Pavan Sesto Val Pusteria June 22 nd 26 th, 2015 DEFINITIONS Solar radiation: general meaning Irradiation [Wh/m 2 ]: energy received per unit area Irradiance [W/m
Celestial Sphere. Celestial Coordinates. Lecture 3: Motions of the Sun and Moon. ecliptic (path of Sun) ecliptic (path of Sun)
Lecture 3: Motions of the and Moon ecliptic (path of ) ecliptic (path of ) The 23.5 degree tilt of Earth s spin axis relative to its orbital axis around the causes the seasons Celestial Sphere Celestial
The Analemma for Latitudinally-Challenged People
The Analemma for Latitudinally-Challenged People Teo Shin Yeow An academic exercise presented in partial fulfillment for the degree of Bachelor of Science with Honours in Mathematics Supervisor : Associate
Answers for the Study Guide: Sun, Earth and Moon Relationship Test
Answers for the Study Guide: Sun, Earth and Moon Relationship Test 1) It takes one day for the Earth to make one complete on its axis. a. Rotation 2) It takes one year for the Earth to make one around
Solar Radiation. ELEG620: Solar Electric Systems University of Delaware, ECE Spring 2009 S. Bremner
Solar Radiation Solar Radiation Outline Properties of radiation: Summary of equations, terms, concepts Solar Spectra Terrestrial Solar Radiation: Effects of atmosphere, angular dependence of radiation,
Newton s Law of Gravity
Gravitational Potential Energy On Earth, depends on: object s mass (m) strength of gravity (g) distance object could potentially fall Gravitational Potential Energy In space, an object or gas cloud has
Motions of Earth, Moon, and Sun
Motions of Earth, Moon, and Sun Apparent Motions of Celestial Objects An apparent motion is a motion that an object appears to make. Apparent motions can be real or illusions. When you see a person spinning
Optimum Orientation of Solar Panels
Optimum Orientation of Solar Panels To get the most from solar panels, point them in the direction that captures the most sun. But there are a number of variables in figuring out the best direction. This
COASTLINING THE ZODIAC
COASTLINING THE ZODIAC Astronomy books and skywatching guides offer a wide variety of charts for naked-eye observation of the skies. What works best for each person will depend on various factors such
Relationship Between the Earth, Moon and Sun
Relationship Between the Earth, Moon and Sun Rotation A body turning on its axis The Earth rotates once every 24 hours in a counterclockwise direction. Revolution A body traveling around another The Earth
Earth, Sun and Moon. Table of Contents
Earth, Sun and Moon Table of Contents 0. Unit Challenge 1. Earth and Its Motion 2. Earth s Rotation and Revolution 3. Earth s Tilt and Seasons 4. Seasons 5. The Moon 6. The Lunar Cycle 7. Lunar Geography
The changing phases of the Moon originally inspired the concept of the month
The changing phases of the Moon originally inspired the concept of the month Motions of the Moon The Moon is in orbit around the Earth, outside the atmosphere. The Moon `shines via reflected light (12%)
FIRST GRADE 1 WEEK LESSON PLANS AND ACTIVITIES
FIRST GRADE 1 WEEK LESSON PLANS AND ACTIVITIES UNIVERSE CYCLE OVERVIEW OF FIRST GRADE UNIVERSE WEEK 1. PRE: Describing the Universe. LAB: Comparing and contrasting bodies that reflect light. POST: Exploring
Geography I Pre Test #1
Geography I Pre Test #1 1. The sun is a star in the galaxy. a) Orion b) Milky Way c) Proxima Centauri d) Alpha Centauri e) Betelgeuse 2. The response to earth's rotation is a) an equatorial bulge b) polar
Solar System. 1. The diagram below represents a simple geocentric model. Which object is represented by the letter X?
Solar System 1. The diagram below represents a simple geocentric model. Which object is represented by the letter X? A) Earth B) Sun C) Moon D) Polaris 2. Which object orbits Earth in both the Earth-centered
EARTH'S MOTIONS. 2. The Coriolis effect is a result of Earth's A tilted axis B orbital shape C revolution D rotation
EARTH'S MOTIONS 1. Which hot spot location on Earth's surface usually receives the greatest intensity of insolation on June 21? A Iceland B Hawaii C Easter Island D Yellowstone 2. The Coriolis effect is
Name Period 4 th Six Weeks Notes 2015 Weather
Name Period 4 th Six Weeks Notes 2015 Weather Radiation Convection Currents Winds Jet Streams Energy from the Sun reaches Earth as electromagnetic waves This energy fuels all life on Earth including the
The impact of high latitudes on the optical design of solar systems
The impact of high latitudes on the optical design of solar systems Mats Rönnelid 1, Björn Karlsson 2 and J M Gordon 3 1 Solar Energy Research Center, Dalarna University, S-781 88 Borlänge, Sweden 2 Vattenfall
ASTR 1030 Astronomy Lab 65 Celestial Motions CELESTIAL MOTIONS
ASTR 1030 Astronomy Lab 65 Celestial Motions CELESTIAL MOTIONS SYNOPSIS: The objective of this lab is to become familiar with the apparent motions of the Sun, Moon, and stars in the Boulder sky. EQUIPMENT:
Earth, Moon, and Sun Study Guide. (Test Date: )
Earth, Moon, and Sun Study Guide Name: (Test Date: ) Essential Question #1: How are the Earth, Moon, and Sun alike and how are they different? 1. List the Earth, Moon, and Sun, in order from LARGEST to
Maximising the sun 1. Introduction
Maximising the sun 1. Introduction South Africa is blessed with some of the best quality solar radiation in the world (Figure 1). In the light of this many exciting opportunities exist to utilize the sun
HEAVENLY MATHEMATICS GEK 1506 Sun and Architecture
HEAVENLY MATHEMATICS GEK 1506 Sun and Architecture Group 66 Lee Jin You, Roger Lee Ji Hao, Theophilus Lim Guang Yong Lim Ghim Hui Lim ShuEn Adele Lim Wee Kee U024711R U024730X U024732W U024718X U024757W
Study Guide: Sun, Earth and Moon Relationship Assessment
I can 1. Define rotation, revolution, solstice and equinox. *Rotation and Revolution Review Worksheet 2. Describe why we experience days and years due to the rotation and r evolution of the Earth around
Seasonal Temperature Variations
Seasonal and Daily Temperatures Fig. 3-CO, p. 54 Seasonal Temperature Variations What causes the seasons What governs the seasons is the amount of solar radiation reaching the ground What two primary factors
Orbital-Scale Climate Change
Orbital-Scale Climate Change Climate Needed for Ice Age Warm winter and non-frozen oceans so lots of evaporation and snowfall Cool summer so that ice does not melt Ice Age Model When ice growing ocean
Measuring Your Latitude from the Angle of the Sun at Noon
Measuring Your Latitude from the Angle of the Sun at Noon Background: You can measure your latitude in earth's northern hemisphere by finding out the altitude of the celestial equator from the southern
Solar Tracking Application
Solar Tracking Application A Rockwell Automation White Paper Solar trackers are devices used to orient photovoltaic panels, reflectors, lenses or other optical devices toward the sun. Since the sun s position
ES 106 Laboratory # 5 EARTH-SUN RELATIONS AND ATMOSPHERIC HEATING
ES 106 Laboratory # 5 EARTH-SUN RELATIONS AND ATMOSPHERIC HEATING 5-1 Introduction Weather is the state of the atmosphere at a particular place for a short period of time. The condition of the atmosphere
Machu Pichu. Machu Pichu is located north east of Cusco, Chile in the district of Machu Picchu, province of Urubamba.
Machu Pichu 1 Sunlight plays an important role in understanding the design of this fabled Inca city. Incan architects designed practical homes for Machu's residents. They also marked in their creations,
Motions of the Earth. Stuff everyone should know
Motions of the Earth Stuff everyone should know Earth Motions E W N W Noon E Why is there day and night? OR Why do the Sun and stars appear to move through the sky? Because the Earth rotates around its
Solstice and Equinox ( Suntrack ) Season Model
Solstice and Equinox ( Suntrack ) Season Model Philip Scherrer & Deborah Scherrer, Stanford Solar Center Introduction This physical model simulates the Sun s tracks across the sky at summer solstice (longest
PROPOSAL Stalker Hall Sunwork and Garden A large outdoor sculpture and garden space
PROPOSAL Stalker Hall Sunwork and Garden A large outdoor sculpture and garden space FOR: Indiana State University, Terre Haute, College of Arts and Sciences North entrance - newly renovated Stalker Hall
Stellar, solar, and lunar demonstrators
Stellar, solar, and lunar demonstrators Rosa M. Ros, Francis Berthomieu International Astronomical Union, Technical University of Catalonia (Barcelona, España), CLEA (Nice, France) Summary This worksheet
The Earth Really is Flat! The Globe and Coordinate Systems. Long History of Mapping. The Earth is Flat. Long History of Mapping
The Earth Really is Flat! The Globe and Coordinate Systems Intro to Mapping & GIS The Earth is Flat Day to day, we live life in a flat world sun rises in east, sets in west sky is above, ground is below
Stage 4. Geography. Blackline Masters. By Karen Devine
1 Devine Educational Consultancy Services Stage 4 Geography Blackline Masters By Karen Devine Updated January 2010 2 This book is intended for the exclusive use in NSW Secondary Schools. It is meant to
www.mhhe.com/fix Sunrise from Earth orbit by the crew of the STS-47 Space Shuttle Mission. I pray the gods to quit me of my toils,
Confirming Proofs I pray the gods to quit me of my toils, To close the watch I keep this livelong year; For as a watch-dog lying, not at rest, Propped on one arm, upon the palace roof Of Atreus race, too
Siting of Active Solar Collectors and Photovoltaic Modules
SOLAR CENTER INFORMATION NCSU Box 7401 Raleigh, NC 27695 (919) 515-3480 Toll Free 1-800-33-NC SUN Siting of Active Solar Collectors and Photovoltaic Modules To install a solar energy system properly, it
Cycles in the Sky. Teacher Guide: Cycles in the Sky Page 1 of 8 2008 Discovery Communications, LLC
Cycles in the Sky What is a Fun damental? Each Fun damental is designed to introduce your younger students to some of the basic ideas about one particular area of science. The activities in the Fun damental
The Orbit TelleriumThe Orbit TelleriumThe Orbit Tellerium
The Orbit TelleriumThe Orbit TelleriumThe Orbit Tellerium 16 Appendix 4 Moon Chart: For each day draw the shape of the Moon, record the time and mark the position of the Moon in the sky in relation to
LECTURE N 3. - Solar Energy and Solar Radiation- IDES-EDU
LECTURE N 3 - Solar Energy and Solar Radiation- Lecture contributions Coordinator & contributor of the lecture: Prof. Marco Perino, DENERG Politecnico di Torino, C.so Duca degli Abruzzi 24, 10129 Torino,
The Reasons for the Seasons
The Reasons for the Seasons (The Active Learning Approach) Materials: 4 Globes, One light on stand with soft white bulb, 4 flashlights, Four sets of "Seasons" Cards, Four laminated black cards with 1 inch
Douglas Adams The Hitchhikers Guide to the Galaxy
There is a theory which states that if ever anybody discovers exactly what the Universe is for and why it is here, it will instantly disappear and be replaced by something even more bizarre and inexplicable.
Astrock, t he A stronomical Clock
Astrock, t he A stronomical Clock The astronomical clock is unlike any other clock. At first glance you ll find it has similar functions of a standard clock, however the astronomical clock can offer much
Geometry and Geography
Geometry and Geography Tom Davis [email protected] http://www.geometer.org/mathcircles March 12, 2011 1 Pedagogical Advice I have been leading mathematical circles using this topic for many years,
Seasons on Earth LESSON
LESSON 4 Seasons on Earth On Earth, orange and red autumn leaves stand out against the blue sky. NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION (NOAA) PHOTO LIBRARY/NOAA CENTRAL LIBRARY INTRODUCTION Nearly
