Basic Coordinates & Seasons Student Guide

Size: px
Start display at page:

Transcription

1 Name: Basic Coordinates & Seasons Student Guide There are three main sections to this module: terrestrial coordinates, celestial equatorial coordinates, and understanding how the ecliptic is related to seasons on the Earth. Each of these sections has its own simulator(s). The background material necessary to utilize these tools is contained in each section. Terrestrial Coordinates Work through the explanatory material on units of longitude and latitude, finding longitude and latitude, and a bit of history (optional). Open the flat map explorer. Familiarize yourself with the cursor and how it prints out the longitude and latitude of the active map location. Note that you can vary the central meridian of the map (i.e. change its longitude). Use the shift map arrows at the top of the simulator to affect large rapid changes. Use the shift-click feature of the cursor for finer control. Note what information is accessible through the show cities and show map features check boxes. Center the cursor on your present location. Click the open Google Maps button to launch the Google Map tool focused on this location. Experiment until you get a good feeling for the Google Map s capabilities and then close this window. (Note that you must be connected to the Internet to make use of this feature.) Question 1: Use the flat map explorer to complete the following table. You are encouraged to try and predict the answers and then use the map s cursor and other features to check the accuracy of your estimates. Location Longitude Latitude The center of the island of Madagascar º W 21.2º N Prime Meridian 51.8º N 82.1º W Tropic of Cancer Sao Paulo, Brazil International Date Line Arctic Circle 90º W Meridian 30º N Parallel Question 2: Determine which of the 50 states defines the farthest extent of the United States in each of the 4 map directions. NAAP Basic Coordinates & Motions 1/8

2 Direction North South East (there are two ways of thinking about this) West State Question 3: The exact coordinates of the white house in Washington D.C., are º W and º N. What are these exact coordinates in sexagesimal notation? Show your calculation in the box below. (You can use the Google Map tool to check your answer.) Open the globe explorer. You are encouraged to use the Terrestrial Coordinate Explorers link which opens both simulators at the same time for the following two questions. Familiarize yourself with the features noting that they are very similar to those in the flat map explorer. Question 4: A) Where is the north pole on the flat map explorer? What is its shape? B) Where is the north pole on the globe explorer? What is its shape? C) Your answers to parts A and B should be different. Explain why. NAAP Basic Coordinates & Motions 2/8

3 Question 5: Compare the relative sizes of Greenland and Australia in the two maps? The true values of the surface areas for these countries are Greenland (2.2 million km 2 ) and Australia (7.7 million km 2 ). Does each map demonstrate these true values? Celestial Equatorial Coordinates Work through the introductory material on the page entitled Celestial Equator, Declination, Right Ascension. Open either the Flat Sky Map Explorer or the Sky Map Explorer. Familiarize yourself with the same set of features (cursor movement, shifting the map, decimal/sexagesimal) that were available on the previous maps. Make sure that you understand what each check box does. Question 6: Where is the star Polaris located on this map? What are its coordinates? Question 7: Find the constellation of Orion shown in the box below and measure the right ascension and declination of its brightest stars Betelgeuse and Rigel. Note that Orion is located on the celestial equator. RA DEC RA DEC NAAP Basic Coordinates & Motions 3/8

4 Question 8: Which direction is east on the flat sky map? Relate this to a coordinate of the celestial equatorial system. Question 9: Complete the following table of positions on the ecliptic. Ecliptic Location Approximate Date Right Ascension Declination Vernal Equinox March 21 Summer Solstice June 21 Autumnal Equinox December 21 Question 10: Write out a description of the ecliptic on the flat sky map. What does the shape look like? Describe the ecliptic in terms of its average and range of declination values. Seasons and the Ecliptic Work through the introductory material on the page entitled Orbits and Light. Open the Seasons and Ecliptic Simulator. Note that there are three main panels (left, upper right, and lower right) each of which have two different views. Controls run along the bottom of the simulation that affect more than one panel. Click animate and then move through the six views to get an overview this simulator s capabilities. We will address each of these six views separately. Experiment with the various methods to advance time in the simulator. You may click the start animate/stop animation button, drag the yearly time slider, or drag either the sun or the earth in the left panel to advance time. Note that this animation does not illustrate the rotation of the earth. Because the timescales of rotation and revolution are so different, it isn t possible to effectively show both simultaneously. NAAP Basic Coordinates & Motions 4/8

5 Left Panel Orbit View Practice clicking and dragging in this panel to change the perspective. Change the perspective so that you are looking directly down onto the plane of the Earth s orbit Click labels. Note that you can see how the direct rays of the sun hit at different latitudes throughout the year. Tip: Note that if you click and drag the Earth, you will change the date and location rather than the perspective. Experiment with this view until you can quickly create the two views shown below. Note that these images explain the shape of the elliptic on the celestial sphere. In the image on the left (summer solstice) an observer on the Earth sees the sun above the celestial equator. In the image on the right (winter solstice) an observer on the Earth sees the sun below the celestial equator. Left Panel Celestial Sphere This view shows the earth at the center of the celestial sphere. The celestial equator and the ecliptic with the sun s location are shown. Note that you may click on the sun and drag it and read out its coordinates. Experiment with this view until you can quickly create the image to the right the direct rays of the sun hitting the earth on the summer solstice. Upper Right Panel View from Sun This view shows the earth as seen from the sun. It gives the best view of the subsolar point the location on the earth where the direct rays of the sun are hitting. The noon observer s location on the Earth is indicated by a red parallel of latitude which can be dragged to new latitudes (this affects the appearance of the lower right panel). It is possible for the red parallel to be at an inaccessible location in this view. Create the image shown to the right an observer at latitude 80 N on the summer solstice. NAAP Basic Coordinates & Motions 5/8

6 Upper Right Panel View from Side This view shows the earth as seen from a location in the plane of the ecliptic along a line tangent to the Earth s orbit. It allows one to easily see the regions of the Earth that are in daylight and those that are in shadow. Dragging the stick figure allows one to very conveniently change latitude. Dragging the stick figure on top of the subsolar point effectively puts the observer at the latitude where the direct rays of the sun are hitting. Although rotation is suppressed in this simulation, keep in mind that the stick figure is on a planet that is rotating with a period of 24 hours about an axis connecting the north and south poles. Thus, 12 hours later it will be on the other side of the earth. Tip: Once the stick figure is selected you can gain greater precision over its motion by moving the mouse a distance away from the figure. Set up the simulator for the image at right the winter solstice for an observer at 80 N. Since this observer s parallel of latitude is located entirely in the shaded region, this observer will not see the sun on this day. Lower Right Panel Sunbeam Spread This view shows a cylinder of light coming from the sun. It is projected on a grid to convey the area over which the light is spread. As this light is spread over a larger area, its intensity decreases. Lower Right Panel Sunlight Angle This view shows the angle with which rays of sunlight are striking the Earth. It lists the noon sun s angle with respect to the horizon (its altitude). Verify that when the noon observer is at the latitude where the most direct rays of the sun are hitting, the sun is directly overhead making an angle of 90 with the ground. Verify that when the noon observer is at the latitude where the least direct rays of the sun are hitting, the sun is on the horizon. NAAP Basic Coordinates & Motions 6/8

7 Question 11: The table below contains entries for the coordinates for the sun on the ecliptic as well as the latitude at which the most direct and least direct rays of the sun are hitting. Use the simulation to complete the table. Date RA DEC Latitude of Most Direct Latitude of Least Direct Ray February 5 March 21 May h N 73.5 S June 21 August 5 September 21 November 5 December 21 Question 12: Using the data in the table above, formulate general rules relating the declination of the sun to the latitude where the most direct and least direct rays of the sun are hitting. Question 13: The region between the Tropic of Cancer and the Tropic of Capricorn is commonly known as the tropics. Using the sunlight data table from question 11, define the significance of this region. NAAP Basic Coordinates & Motions 7/8

8 Question 14: Using the sunlight data table from question 11, define the significance of the region north of the Arctic Circle commonly referred to simply as the Arctic. Question 15: Use the simulator to complete the table below. For each latitude write a short paragraph which describes the variations in sunlight (seasons) that are experienced at this latitude throughout the year. Latitude 0 Description of Yearly Pattern of Sunlight The noon sun s angular height above the horizon ranges from 90 on the vernal equinox, to 66.5 on the summer solstice, to 90 on the autumnal equinox, and back to 66.5 on the winter solstice. Thus, the equator always receives very direct intense sunlight throughout the year which accounts for the very high temperatures N 41 N 66.5 N 90 N NAAP Basic Coordinates & Motions 8/8

Earth-Sun Relationships. The Reasons for the Seasons

Earth-Sun Relationships The Reasons for the Seasons Solar Radiation The earth intercepts less than one two-billionth of the energy given off by the sun. However, the radiation is sufficient to provide

Celestial Observations

Celestial Observations Earth experiences two basic motions: Rotation West-to-East spinning of Earth on its axis (v rot = 1770 km/hr) (v rot Revolution orbit of Earth around the Sun (v orb = 108,000 km/hr)

Lab Activity on the Causes of the Seasons

Lab Activity on the Causes of the Seasons 2002 Ann Bykerk-Kauffman, Dept. of Geological and Environmental Sciences, California State University, Chico * Objectives When you have completed this lab you

The Celestial Sphere. Questions for Today. The Celestial Sphere 1/18/10

Lecture 3: Constellations and the Distances to the Stars Astro 2010 Prof. Tom Megeath Questions for Today How do the stars move in the sky? What causes the phases of the moon? What causes the seasons?

Tropical Horticulture: Lecture 2

Lecture 2 Theory of the Tropics Earth & Solar Geometry, Celestial Mechanics The geometrical relationship between the earth and sun is responsible for the earth s climates. The two principal movements of

Celestial Sphere. Celestial Coordinates. Lecture 3: Motions of the Sun and Moon. ecliptic (path of Sun) ecliptic (path of Sun)

Lecture 3: Motions of the and Moon ecliptic (path of ) ecliptic (path of ) The 23.5 degree tilt of Earth s spin axis relative to its orbital axis around the causes the seasons Celestial Sphere Celestial

Lunar Phase Simulator Student Guide

Name: Lunar Phase Simulator Student Guide Part I: Background Material Answer the following questions after reviewing the background pages for the simulator. Page 1 Introduction to Moon Phases Is there

Orientation to the Sky: Apparent Motions

Chapter 2 Orientation to the Sky: Apparent Motions 2.1 Purpose The main goal of this lab is for you to gain an understanding of how the sky changes during the night and over the course of a year. We will

Noon Sun Angle = 90 Zenith Angle

Noon Sun Angle Worksheet Name Name Date Subsolar Point (Latitude where the sun is overhead at noon) Equinox March 22 nd 0 o Equinox September 22 nd 0 o Solstice June 22 nd 23.5 N Solstice December 22 nd

CELESTIAL CLOCK - THE SUN, THE MOON, AND THE STARS

INTRODUCTION CELESTIAL CLOCK - THE SUN, THE MOON, AND THE STARS This is a scientific presentation to provide you with knowledge you can use to understand the sky above in relation to the earth. Before

Stellarium a valuable resource for teaching astronomy in the classroom and beyond

Stellarium 1 Stellarium a valuable resource for teaching astronomy in the classroom and beyond Stephen Hughes Department of Physical and Chemical Sciences, Queensland University of Technology, Gardens

Solar Angles and Latitude

Solar Angles and Latitude Objectives The student will understand that the sun is not directly overhead at noon in most latitudes. The student will research and discover the latitude ir classroom and calculate

The Four Seasons. A Warm Up Exercise. A Warm Up Exercise. A Warm Up Exercise. The Moon s Phases

The Four Seasons A Warm Up Exercise What fraction of the Moon s surface is illuminated by the Sun (except during a lunar eclipse)? a) Between zero and one-half b) The whole surface c) Always half d) Depends

Sun Earth Relationships

1 ESCI-61 Introduction to Photovoltaic Technology Sun Earth Relationships Ridha Hamidi, Ph.D. Spring (sun aims directly at equator) Winter (northern hemisphere tilts away from sun) 23.5 2 Solar radiation

Shadows, Angles, and the Seasons If it's cold in winter, why is Earth closer to the Sun? This activity shows the relationship between Earth-Sun positions and the seasons. From The WSU Fairmount Center

The Reasons for the Seasons

The Reasons for the Seasons (The Active Learning Approach) Materials: 4 Globes, One light on stand with soft white bulb, 4 flashlights, Four sets of "Seasons" Cards, Four laminated black cards with 1 inch

The following words and their definitions should be addressed before completion of the reading:

Seasons Vocabulary: The following words and their definitions should be addressed before completion of the reading: sphere any round object that has a surface that is the same distance from its center

Reasons for Seasons. Question: TRUE OR FALSE. Question: TRUE OR FALSE? What causes the seasons? What causes the seasons?

Reasons for Seasons Question: TRUE OR FALSE? Earth is closer to the Sun in summer and farther from the Sun in winter. Question: TRUE OR FALSE? Earth is closer to the Sun in summer and farther from the

FIRST GRADE 1 WEEK LESSON PLANS AND ACTIVITIES

FIRST GRADE 1 WEEK LESSON PLANS AND ACTIVITIES UNIVERSE CYCLE OVERVIEW OF FIRST GRADE UNIVERSE WEEK 1. PRE: Describing the Universe. LAB: Comparing and contrasting bodies that reflect light. POST: Exploring

Newton s Law of Gravity

Gravitational Potential Energy On Earth, depends on: object s mass (m) strength of gravity (g) distance object could potentially fall Gravitational Potential Energy In space, an object or gas cloud has

Today FIRST HOMEWORK DUE NEXT TIME. Seasons/Precession Recap. Phases of the Moon. Eclipses. Lunar, Solar. Ancient Astronomy

Today FIRST HOMEWORK DUE NEXT TIME Seasons/Precession Recap Phases of the Moon Eclipses Lunar, Solar Ancient Astronomy How do we mark the progression of the seasons? We define four special points: summer

1-2. What is the name given to the path of the Sun as seen from Earth? a.) Equinox b.) Celestial equator c.) Solstice d.

Chapter 1 1-1. How long does it take the Earth to orbit the Sun? a.) one sidereal day b.) one month c.) one year X d.) one hour 1-2. What is the name given to the path of the Sun as seen from Earth? a.)

EDMONDS COMMUNITY COLLEGE ASTRONOMY 100 Winter Quarter 2007 Sample Test # 1

Instructor: L. M. Khandro EDMONDS COMMUNITY COLLEGE ASTRONOMY 100 Winter Quarter 2007 Sample Test # 1 1. An arc second is a measure of a. time interval between oscillations of a standard clock b. time

PHSC 3033: Meteorology Seasons

PHSC 3033: Meteorology Seasons Changing Aspect Angle Direct Sunlight is more intense and concentrated. Solar Incidence Angle is Latitude and Time/Date Dependent Daily and Seasonal Variation Zenith There

Measuring Your Latitude from the Angle of the Sun at Noon

Measuring Your Latitude from the Angle of the Sun at Noon Background: You can measure your latitude in earth's northern hemisphere by finding out the altitude of the celestial equator from the southern

CELESTIAL MOTIONS. In Charlottesville we see Polaris 38 0 above the Northern horizon. Earth. Starry Vault

CELESTIAL MOTIONS Stars appear to move counterclockwise on the surface of a huge sphere the Starry Vault, in their daily motions about Earth Polaris remains stationary. In Charlottesville we see Polaris

Where on Earth are the daily solar altitudes higher and lower than Endicott?

Where on Earth are the daily solar altitudes higher and lower than Endicott? In your notebooks, write RELATIONSHIPS between variables we tested CAUSE FIRST EFFECT SECOND EVIDENCE As you increase the time

Full credit for this chapter to Prof. Leonard Bachman of the University of Houston

Chapter 6: SOLAR GEOMETRY Full credit for this chapter to Prof. Leonard Bachman of the University of Houston SOLAR GEOMETRY AS A DETERMINING FACTOR OF HEAT GAIN, SHADING AND THE POTENTIAL OF DAYLIGHT PENETRATION...

Solar energy and the Earth s seasons

Solar energy and the Earth s seasons Name: Tilt of the Earth s axis and the seasons We now understand that the tilt of Earth s axis makes it possible for different parts of the Earth to experience different

Seasons on Earth LESSON

LESSON 4 Seasons on Earth On Earth, orange and red autumn leaves stand out against the blue sky. NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION (NOAA) PHOTO LIBRARY/NOAA CENTRAL LIBRARY INTRODUCTION Nearly

Exercise 5.0 LUNAR MOTION, ELONGATION, AND PHASES

Exercise 5.0 LUNAR MOTION, ELONGATION, AND PHASES I. Introduction The Moon's revolution in orbit around the center of gravity (barycenter) of the Earth- Moon System results in an apparent motion of the

EARTH'S MOTIONS. 2. The Coriolis effect is a result of Earth's A tilted axis B orbital shape C revolution D rotation

EARTH'S MOTIONS 1. Which hot spot location on Earth's surface usually receives the greatest intensity of insolation on June 21? A Iceland B Hawaii C Easter Island D Yellowstone 2. The Coriolis effect is

ASTR 1030 Astronomy Lab 65 Celestial Motions CELESTIAL MOTIONS

ASTR 1030 Astronomy Lab 65 Celestial Motions CELESTIAL MOTIONS SYNOPSIS: The objective of this lab is to become familiar with the apparent motions of the Sun, Moon, and stars in the Boulder sky. EQUIPMENT:

Today. Solstices & Equinoxes Precession Phases of the Moon Eclipses. Ancient Astronomy. Lunar, Solar FIRST HOMEWORK DUE NEXT TIME

Today Solstices & Equinoxes Precession Phases of the Moon Eclipses Lunar, Solar Ancient Astronomy FIRST HOMEWORK DUE NEXT TIME The Reason for Seasons Hypothesis check: How would seasons in the northern

Renewable Energy. Solar Power. Courseware Sample 86352-F0

Renewable Energy Solar Power Courseware Sample 86352-F0 A RENEWABLE ENERGY SOLAR POWER Courseware Sample by the staff of Lab-Volt Ltd. Copyright 2009 Lab-Volt Ltd. All rights reserved. No part of this

Lesson 1: Phases of the Moon

Lesson 1: Phases of the Moon The moon takes 29.5 days to revolve around the earth. During this time, the moon you see in the sky appears to change shape. These apparent changes, which are called phases,

ASTRONOMY 161. Introduction to Solar System Astronomy

ASTRONOMY 161 Introduction to Solar System Astronomy Seasons & Calendars Monday, January 8 Season & Calendars: Key Concepts (1) The cause of the seasons is the tilt of the Earth s rotation axis relative

Geography I Pre Test #1

Geography I Pre Test #1 1. The sun is a star in the galaxy. a) Orion b) Milky Way c) Proxima Centauri d) Alpha Centauri e) Betelgeuse 2. The response to earth's rotation is a) an equatorial bulge b) polar

Earth, Sun and Moon is a set of interactives designed to support the teaching of the QCA primary science scheme of work 5e - 'Earth, Sun and Moon'.

is a set of interactives designed to support the teaching of the QCA primary science scheme of work 5e - ''. Learning Connections Primary Science Interactives are teaching tools which have been created

Motions of Earth, Moon, and Sun

Motions of Earth, Moon, and Sun Apparent Motions of Celestial Objects An apparent motion is a motion that an object appears to make. Apparent motions can be real or illusions. When you see a person spinning

Chapter 3 Earth - Sun Relations

3.1 Introduction We saw in the last chapter that the short wave radiation from the sun passes through the atmosphere and heats the earth, which in turn radiates energy in the infrared portion of the electromagnetic

astronomy 2008 1. A planet was viewed from Earth for several hours. The diagrams below represent the appearance of the planet at four different times.

1. A planet was viewed from Earth for several hours. The diagrams below represent the appearance of the planet at four different times. 5. If the distance between the Earth and the Sun were increased,

Exploring Solar Energy Variations on Earth: Changes in the Length of Day and Solar Insolation Through the Year

Exploring Solar Energy Variations on Earth: Changes in the Length of Day and Solar Insolation Through the Year Purpose To help students understand how solar radiation varies (duration and intensity) during

Pre and post-visit activities - Navigating by the stars

Pre and post-visit activities - Navigating by the stars Vocabulary List Adult Education at Scienceworks Pre-visit Activity 1: What is longitude and latitude? Activity 2: Using the Southern Cross to find

Project ATMOSPHERE This guide is one of a series produced by Project ATMOSPHERE, an initiative of the American Meteorological Society. Project ATMOSPHERE has created and trained a network of resource agents

Stellar, solar, and lunar demonstrators

Stellar, solar, and lunar demonstrators Rosa M. Ros, Francis Berthomieu International Astronomical Union, Technical University of Catalonia (Barcelona, España), CLEA (Nice, France) Summary This worksheet

1. In the diagram below, the direct rays of the Sun are striking the Earth's surface at 23 º N. What is the date shown in the diagram?

1. In the diagram below, the direct rays of the Sun are striking the Earth's surface at 23 º N. What is the date shown in the diagram? 5. During how many days of a calendar year is the Sun directly overhead

Solar System. 1. The diagram below represents a simple geocentric model. Which object is represented by the letter X?

Solar System 1. The diagram below represents a simple geocentric model. Which object is represented by the letter X? A) Earth B) Sun C) Moon D) Polaris 2. Which object orbits Earth in both the Earth-centered

Coordinate Systems. Orbits and Rotation

Coordinate Systems Orbits and Rotation Earth orbit. The earth s orbit around the sun is nearly circular but not quite. It s actually an ellipse whose average distance from the sun is one AU (150 million

The Analemma for Latitudinally-Challenged People

The Analemma for Latitudinally-Challenged People Teo Shin Yeow An academic exercise presented in partial fulfillment for the degree of Bachelor of Science with Honours in Mathematics Supervisor : Associate

Seasonal & Daily Temperatures. Seasons & Sun's Distance. Solstice & Equinox. Seasons & Solar Intensity

Seasonal & Daily Temperatures Seasons & Sun's Distance The role of Earth's tilt, revolution, & rotation in causing spatial, seasonal, & daily temperature variations Please read Chapter 3 in Ahrens Figure

Motions of Earth LEARNING GOALS

2 Patterns in the Sky Motions of Earth The stars first found a special place in legend and mythology as the realm of gods and goddesses, holding sway over the lives of humankind. From these legends and

Essential Question. Enduring Understanding

Earth In Space Unit Diagnostic Assessment: Students complete a questionnaire answering questions about their ideas concerning a day, year, the seasons and moon phases: My Ideas About A Day, Year, Seasons

5- Minute Refresher: Daily Observable Patterns in the Sky

5- Minute Refresher: Daily Observable Patterns in the Sky Key Ideas Daily Observable Patterns in the Sky include the occurrence of day and night, the appearance of the moon, the location of shadows and

Phases of the Moon. Preliminaries:

Phases of the Moon Sometimes when we look at the Moon in the sky we see a small crescent. At other times it appears as a full circle. Sometimes it appears in the daylight against a bright blue background.

Cycles in the Sky. Teacher Guide: Cycles in the Sky Page 1 of 8 2008 Discovery Communications, LLC

Cycles in the Sky What is a Fun damental? Each Fun damental is designed to introduce your younger students to some of the basic ideas about one particular area of science. The activities in the Fun damental

Relationship Between the Earth, Moon and Sun

Relationship Between the Earth, Moon and Sun Rotation A body turning on its axis The Earth rotates once every 24 hours in a counterclockwise direction. Revolution A body traveling around another The Earth

Use WITH Investigation 4, Part 2, Step 2

INVESTIGATION 4 : The Sundial Project Use WITH Investigation 4, Part 2, Step 2 EALR 4: Earth and Space Science Big Idea: Earth in Space (ES1) Projects: Tether Ball Pole Sundial Globe and a Light Indoors

Astronomy 1140 Quiz 1 Review

Astronomy 1140 Quiz 1 Review Prof. Pradhan September 15, 2015 What is Science? 1. Explain the difference between astronomy and astrology. (a) Astrology: nonscience using zodiac sign to predict the future/personality

Sunlight and its Properties. EE 495/695 Y. Baghzouz

Sunlight and its Properties EE 495/695 Y. Baghzouz The sun is a hot sphere of gas whose internal temperatures reach over 20 million deg. K. Nuclear fusion reaction at the sun's core converts hydrogen to

Tides and Water Levels

Tides and Water Levels What are Tides? Tides are one of the most reliable phenomena in the world. As the sun rises in the east and the stars come out at night, we are confident that the ocean waters will

The ecliptic - Earth s orbital plane

The ecliptic - Earth s orbital plane The line of nodes descending node The Moon s orbital plane Moon s orbit inclination 5.45º ascending node celestial declination Zero longitude in the ecliptic The orbit

Earth In Space Chapter 3

Earth In Space Chapter 3 Shape of the Earth Ancient Greeks Earth casts a circular shadow on the moon during a lunar eclipse Shape of the Earth Ancient Greeks Ships were observed to disappear below the

6. The greatest atmospheric pressure occurs in the 1) troposphere 3) mesosphere 2) stratosphere 4) thermosphere

1. The best evidence of the Earth's nearly spherical shape is obtained through telescopic observations of other planets photographs of the Earth from an orbiting satellite observations of the Sun's altitude

Planetary Orbit Simulator Student Guide

Name: Planetary Orbit Simulator Student Guide Background Material Answer the following questions after reviewing the Kepler's Laws and Planetary Motion and Newton and Planetary Motion background pages.

Chapter 2: Solar Radiation and Seasons

APPENDIX D: SOLAR RADIATION The sun is the source of most energy on the earth and is a primary factor in determining the thermal environment of a locality. It is important for engineers to have a working

LATITUDE GNOMON AND QUADRANT FOR THE WHOLE YEAR

LATITUDE GNOMON AND QUADRANT FOR THE WHOLE YEAR Sakari Ekko EAAE Summer School Working Group (Finland) Abstract In this workshop, we examine the correlation between our latitude and the altitude of the

Earth, Moon, and Sun Study Guide. (Test Date: )

Earth, Moon, and Sun Study Guide Name: (Test Date: ) Essential Question #1: How are the Earth, Moon, and Sun alike and how are they different? 1. List the Earth, Moon, and Sun, in order from LARGEST to

Homework Assignment #7: The Moon

Name Homework Assignment #7: The Moon 2008 Ann Bykerk-Kauffman, Dept. of Geological and Environmental Sciences, California State University, Chico * Chapter 21 Origins of Modern Astronomy Motions of the

Shadows and Solar Zenith Name Lab Partner Section Introduction: The solar zenith angle is defined to be the angle between the sun and a line that goes straight up (to the zenith) In reality the sun is

Maybe you know about the Energy House.

Plans and experiments for the Energy House can be found at Design Coalition s website at www.designcoalition.org Maybe you know about the Energy House. Here are some more ideas for leaning about the sun

An Introduction to Astronomy and Cosmology. 1) Astronomy - an Observational Science

An Introduction to Astronomy and Cosmology 1) Astronomy - an Observational Science Why study Astronomy 1 A fascinating subject in its own right. The origin and Evolution of the universe The Big Bang formation

Heat Transfer. Energy from the Sun. Introduction

Introduction The sun rises in the east and sets in the west, but its exact path changes over the course of the year, which causes the seasons. In order to use the sun s energy in a building, we need to

Chapter Overview. Seasons. Earth s Seasons. Distribution of Solar Energy. Solar Energy on Earth. CHAPTER 6 Air-Sea Interaction

Chapter Overview CHAPTER 6 Air-Sea Interaction The atmosphere and the ocean are one independent system. Earth has seasons because of the tilt on its axis. There are three major wind belts in each hemisphere.

Earth, Sun and Moon Table of Contents 0. Unit Challenge 1. Earth and Its Motion 2. Earth s Rotation and Revolution 3. Earth s Tilt and Seasons 4. Seasons 5. The Moon 6. The Lunar Cycle 7. Lunar Geography

The Globe Latitudes and Longitudes

INDIAN SCHOOL MUSCAT MIDDLE SECTION DEPARTMENT OF SOCIAL SCIENCE The Globe Latitudes and Longitudes NAME: CLASS VI SEC: ROLL NO: DATE:.04.2015 I NAME THE FOLLOWING: 1. A small spherical model of the Earth:

Solar Energy Systems. Matt Aldeman Senior Energy Analyst Center for Renewable Energy Illinois State University

Solar Energy Solar Energy Systems Matt Aldeman Senior Energy Analyst Center for Renewable Energy Illinois State University 1 SOLAR ENERGY OVERVIEW 1) Types of Solar Power Plants 2) Describing the Solar

Answers for the Study Guide: Sun, Earth and Moon Relationship Test

Answers for the Study Guide: Sun, Earth and Moon Relationship Test 1) It takes one day for the Earth to make one complete on its axis. a. Rotation 2) It takes one year for the Earth to make one around

ESCI 107/109 The Atmosphere Lesson 2 Solar and Terrestrial Radiation

ESCI 107/109 The Atmosphere Lesson 2 Solar and Terrestrial Radiation Reading: Meteorology Today, Chapters 2 and 3 EARTH-SUN GEOMETRY The Earth has an elliptical orbit around the sun The average Earth-Sun

The Size & Shape of the Galaxy

name The Size & Shape of the Galaxy The whole lab consists of plotting two graphs. What s the catch? Aha visualizing and understanding what you have plotted of course! Form the Earth Science Picture of

DETERMINING SOLAR ALTITUDE USING THE GNOMON. How does the altitude change during the day or from day to day?

Name Partner(s) Section Date DETERMINING SOLAR ALTITUDE USING THE GNOMON Does the Sun ever occur directly overhead in Maryland? If it does, how would you determine or know it was directly overhead? How

Solstice and Equinox ( Suntrack ) Season Model

Solstice and Equinox ( Suntrack ) Season Model Philip Scherrer & Deborah Scherrer, Stanford Solar Center Introduction This physical model simulates the Sun s tracks across the sky at summer solstice (longest

SECOND GRADE 1 WEEK LESSON PLANS AND ACTIVITIES

SECOND GRADE 1 WEEK LESSON PLANS AND ACTIVITIES UNIVERSE CYCLE OVERVIEW OF SECOND GRADE UNIVERSE WEEK 1. PRE: Discovering stars. LAB: Analyzing the geometric pattern of constellations. POST: Exploring

Chapter 5 Astronomy 110 Motions of the Sun and the Moon 1

Chapter 5 Positions of the Sun and Moon Objects in our Solar System appear to move over the course of weeks to months because they are so close. This motion caused ancient astronomers to use the name planets,

Finding Stars and Constellations Earth & Sky

Finding Stars and Constellations Earth & Sky Name: Introduction If you carefully watched the night sky over a period of time, you would notice that it s not always the same. There are certain changes that

www.mhhe.com/fix Sunrise from Earth orbit by the crew of the STS-47 Space Shuttle Mission. I pray the gods to quit me of my toils,

Confirming Proofs I pray the gods to quit me of my toils, To close the watch I keep this livelong year; For as a watch-dog lying, not at rest, Propped on one arm, upon the palace roof Of Atreus race, too

Solar Flux and Flux Density. Lecture 3: Global Energy Cycle. Solar Energy Incident On the Earth. Solar Flux Density Reaching Earth

Lecture 3: Global Energy Cycle Solar Flux and Flux Density Planetary energy balance Greenhouse Effect Vertical energy balance Latitudinal energy balance Seasonal and diurnal cycles Solar Luminosity (L)

Astromechanics. 1 solar day = 1.002737909350795 sidereal days

Astromechanics 13. Time Considerations- Local Sidereal Time The time that is used by most people is that called the mean solar time. It is based on the idea that if the Earth revolved around the Sun at

Observing the Constellations of the Zodiac

Observing the Constellations of the Zodiac Activity UCIObs 3 Grade Level: 8 12 Source: Copyright (2009) by Tammy Smecker Hane. Contact tsmecker@uci.edu with any questions. Standards:This activity addresses

A Dialogue Box. dialogue box.

The Sky An introduction and review 1. Open TheSky (version 6, the blue icon). The screen should show the view of the sky looking due south. Even if the sun is above the horizon, the sky will look black

SOLAR CALCULATIONS (2)

OLAR CALCULATON The orbit of the Earth is an ellise not a circle, hence the distance between the Earth and un varies over the year, leading to aarent solar irradiation values throughout the year aroximated

Exploration of the Solar System

Exploration of the Solar System I. Phases of the Moon all about perspective. In this section you will use WWT to explore how the moon appears to change phases from our vantage point on Earth over the course

Science Benchmark: 06 : 01 Standard 01: THE MYSTICAL MOON axis of rotation,

Science Benchmark: 06 : 01 The appearance of the lighted portion of the moon changes in a predictable cycle as a result of the relative positions of Earth, the moon, and the sun. Standard 01: Students

HR Diagram Student Guide

Name: HR Diagram Student Guide Background Information Work through the background sections on Spectral Classification, Luminosity, and the Hertzsprung-Russell Diagram. Then complete the following questions

Motions of the Earth. Stuff everyone should know

Motions of the Earth Stuff everyone should know Earth Motions E W N W Noon E Why is there day and night? OR Why do the Sun and stars appear to move through the sky? Because the Earth rotates around its