Renewable energy technology forecast: what can we expect from the technology evolution? Wolfram Krewitt DLR Institute of Technical Thermodynamics Systems Analysis and Technology Assessment Stuttgart NEEDS Workshop Decentralised vs. Centralised Energy Services March 8, 2007 Ljubljana Folie 1 > Vortrag > Autor
Winning the battle against climate change The European Council and the European Parliament have both confirmed the EU s objective to limit average global temperature increase to a maximum of 2 C compared to pre-industrial level. Commission of the European Communities, January 2007 Folie 2 > Vortrag > Autor
CO 2 -reduction target limit global mean temperature rise to < 2 C Stabilisation of global CO 2 -concentration below 450 ppm reduce energy related CO 2 -emissions from 27 Gt/a today to ~ 10 Gt CO2 /a in 2050 per-capita emission rights in 2050: ~ 1 t CO2 /a World OECD Germany China Africa 0 5 10 15 t CO 2 /(capita, year) Folie 3 > Vortrag > Autor
IEA CO 2 Projections 60 Gt/a 50 40 30 20 10 0 IEA WEO Reference IEA WEO Alternative Policy 2004 2030 2050 IEA ETP Baseline IEA ETP ACT IEA ETP TechPlus Folie 4 > Vortrag > Autor
Greenpeace/EREC energy (r)evolution scenario target oriented scenario: reduction of global CO 2 -emissions to ~ 10 Gt CO2 /a in 2050 exploitation of efficiency measures (average increase in global energy productivity 3%/a) use of renewable energy technologies incentives for sustainable economic development phasing out of nuclear energy www.energyblueprint.info Folie 5 > Vortrag > Autor
global electricity supply 2 Scenario 50.000 TWh/a 45.000 40.000 35.000 30.000 25.000 20.000 15.000 10.000 5.000 Efficiency Ocean Energy Solar Thermal PV Geothermal Wind Hydro Biomass CHP fossil Gas&oil Coal Nuclear 0 2003 2010 2020 2030 2040 2050 Folie 6 > Vortrag > Autor
electricity supply OECD Europe 2 C Scenario 6.000 TWh/a 5.000 4.000 3.000 2.000 1.000 Efficiency Import RES Ocean Energy Solar Thermal PV Geothermal Wind Hydro Biomass CHP fossil Gas&oil Coal Nuclear 0 2003 2010 2020 2030 2040 2050 Folie 7 > Vortrag > Autor
A broad range of technologies is available for using various forms of renewable energy, which differ with respect to technical maturity areas of application from kw to multi-mw performance supply dependent as well as base load costs Folie 8 > Vortrag > Autor
NEEDS RS1a: Life cycle approaches to assess emerging energy technologies Application of Technology Foresight and roadmapping approaches to provide a technical, economic and environmental characterisation of long term future electricity generation options. Advanced fossil technologies (including CCS) Hydrogen technologies Fuel cells Offshore wind Photovoltaic Concentrating solar thermal power plants Biomass Advanced nuclear Folie 9 > Vortrag > Autor
Characteristics PV CSP Resource Capacity Installation: Full load hours: Reserve capacity: Proven tech. lifetime Annual generation in 2004 Cost of electricity (today) direct and diffuse irradiation Watt to MW everywhere (roofs, etc.) 700 2000 h/a external > 20 years 2500 GWh 0,25 0,50 /kwh direct irradiation 10 MW to several 100 MW flat unused terrain 2000 7000 h/a internal (fossil hybrid operation) > 20 Jahre 800 GWh 0,13 0,22 /kwh Source: R. Pitz-Paal, DLR Folie 10 > Vortrag > Autor
PV development diffusion factors and barriers Barriers High costs Low energy density - low efficiency - low number of operating hours Intermittent source - no storage Source: P. Frankl, NEEDS, 2007 Folie 11 > Vortrag > Autor
PV development diffusion factors and barriers Barriers High costs Low energy density Diffusion factors High direct cost reduction potential Efficiency increase achievable - low efficiency Huge amount of available surface on buildings - low number of operating hours Integration with energy-passive devices Intermittent source Abundance of primary energy source - no storage High social acceptability Source: P. Frankl, NEEDS, 2007 Folie 12 > Vortrag > Autor
PV technology developments Source: Hoffmann 2004 Folie 13 > Vortrag > Autor
Potential characteristics of PV systems in 2050 Wafer-based c-si Thin films New concept devices Cz, Fz mc, ribbon CIS, CdTe a-si/μc-si thin Si films Pin-ASI and ASI-THRU Ultra-high efficiency (3 rd generation, Quantum wells Nanostructures Concentrators) Ultra-low cost (Organic cells) Module eff 24%-28% 20%-25% CIS: 22%-25% 6-8% > 40% 10%-17% Module lifetime Provided service Market segment 40y - 50 y 40y - 50 y 30y-35y 30y >25y 10-15 y High power at premium price Niche markets, space Cost-effective power applications Mass market ( The PV workhorse ) Additional solutions for cost effective power applications Low cost / low eff Solar electricity glass High power supply Mass market Mass market Niche market / mass market Colour to PV Low material cost option Mass market Source: P. Frankl, NEEDS, 2007 Folie 14 > Vortrag > Autor
PV market development pathway PV Technology Market Share Market Share 100% 90% 80% 70% 60% 50% 40% 30% 20% 10% 0% 2003 2010 2020 2030 2040 2050 Year Novel Devices Other Thin Films Thin Films Silicon Thin Films Crystalline Si Source: P. Frankl, NEEDS, 2007 Folie 15 > Vortrag > Autor
Innovation and environmental learning GWP PAST PRESENT AND FUTURE PV SYSTEMS g CO2/kWh el 250,00 200,00 150,00 100,00 [2004 CRYSTALCLEAR data + estimate Source: NEEDS 2006] End of life BOS mec BOS el Frame Module 50,00 0,00 PAST - mc-si, retrofit roof PRESENT - mc-si, retrofit roof GWP of future CIGS systems FUTURE - CIGS, integrated 12 roof 10 [mid-90 data Source: Eclipse 2003] gco2eq/kwh 8 6 4 2 0 Future CIGS - 25%, integrated roof, 35y, 1800 kwh/m2 gco2/kwh Folie 16 > Vortrag > Autor Source: P. Frankl, NEEDS, 2007
PV cost reduction due to technical learning 100 Module price in $ 2001 per Watt 10 1976 1981 Learning factor: 0,8 1983 1990 1987 2001 1 0 1 10 100 1000 10 000 Cumulated capacity in MW Folie 17 > Vortrag > Autor
NEEDS PV cost projections 7 PV system cost reduction 6 2004: 5 /Wp (PV-TRAC) 5 2010: 3-3.5 /Wp (PV-TRAC) /Wp 4 3 2020: 2 /Wp (PV-TRAC) 2030: 1 /Wp (PV-TRAC) 2 2040: < 1 /Wp (PV-TRAC) 1 0 2000 2010 2020 2030 2040 2050 2060 Year Pessimistic Optimistic / Realistic V. Optimistic / Techn. Breakthrough Source: P. Frankl, NEEDS, 2007 Folie 18 > Vortrag > Autor
Concentrating solar thermal power plants Large scale grid connected electricity generation electricity generation today 800 GWh/y Several power plants under construction Folie 19 > Vortrag > Autor
CSP development diffusion factors and barriers Barriers Relatively high costs Limited potentials in Europe Land use requirements Folie 20 > Vortrag > Autor
CSP development diffusion factors and barriers Barriers Relatively high costs Limited potentials in Europe Land use requirements Diffusion factors High direct cost reduction potential Cost effective energy storage Abundance of primary energy source Potential for poly-generation (electricity, heating/cooling/seawater desalination) Technology spillover from conventional technologies Folie 21 > Vortrag > Autor
Regions with direct solar irradiation > 5kWh/m²d Source: Solar Millennium AG, Erlangen Folie 22 > Vortrag > Autor
New CSP power plants Nevada Solar One 64 MW capacity 2% natural gas co-firing 30 minutes energy storage Investment > 250 Mio $ Folie 23 > Vortrag > Autor
Solar collectors and piping Folie 24 > Vortrag > Autor
grid connection Folie 25 > Vortrag > Autor
CSP projects in Spain Folie 26 > Vortrag > Autor
steam turbine η peak = 15 25 % CC gas turbine η peak = 25 35 % G Expansion Vessel HTF 250 600 C 90 + X MW Steam Turbine el Fuel Forced draught fan X MW el Supplementary Firing 200MW Gas Turbine Refos Receiver Fuel 800-1200 C Source: R. Pitz-Paal, DLR Folie 27 > Vortrag > Autor
cost reduction options Reduction of component and system costs due to design optimisation and improved production Increased system efficiency Increased full load hours due to storage of thermal energy Increased system capacity (economy of scale) Reduced O&M costs due to increased technical lifetime, increased automisation, reduced maintenance Folie 28 > Vortrag > Autor
The CSP learning curve (Global Market Initiative) Levelised Electricity Cost (Nominal 2004 US $/kwh) 1,00 0,10 0,01 14 MW SEGS I 30 MW SEGS III 80 MW SEGS VIII SEGS 2 x 50 MW Spain High Solar Resource Good Solar Resource 0,00 10 100 1.000 10.000 100.000 Cumulative Installed Capacity (MW) Folie 29 > Vortrag > Autor
Projection of a future trans-european/mediterranean interconnection Solar Wind Hydro Geothermal Biomass HV-DC lines Folie 30 > Vortrag > Autor
how to make it happen? technical innovation social innovation new framing conditions and incentives for new actors infrastructure adaptation intelligent combination of centralised and decentralised systems new quality of information Renewable energy resource assessment Folie 31 > Vortrag > Autor
renewable energy resources when & where? Solar Wind Geothermal Biomass resources t/km 2 Folie 32 > Vortrag > Autor
renewable energy resources when & where? Solar Wind Geothermal Biomass /MWh TWh/a Folie 33 > Vortrag > Autor
Thank you for your attention! Dr. Wolfram Krewitt German Aerospace Center (DLR) Institute of Technical Thermodynamics Systems Analysis and Technology Assessment wolfram.krewitt@dlr.de Phone: +49-711-6862-766 www.dlr.de/tt/system Folie 34 > Vortrag > Autor