H2-TS-FUZZY POSITION CONTROL OF PMSM WITH AN AUGMENTED D-AXIS STATOR CURRENT MODEL



Similar documents
N V V L. R a L I. Transformer Equation Notes

Summary: Vectors. This theorem is used to find any points (or position vectors) on a given line (direction vector). Two ways RT can be applied:

Orbits and Kepler s Laws

16. Mean Square Estimation

JFET AMPLIFIER CONFIGURATIONS

1.- L a m e j o r o p c ió n e s c l o na r e l d i s co ( s e e x p li c a r á d es p u é s ).

Electric Potential. otherwise to move the object from initial point i to final point f

LAPLACE S EQUATION IN SPHERICAL COORDINATES. With Applications to Electrodynamics

Vector Calculus: Are you ready? Vectors in 2D and 3D Space: Review

(Ch. 22.5) 2. What is the magnitude (in pc) of a point charge whose electric field 50 cm away has a magnitude of 2V/m?

WHAT HAPPENS WHEN YOU MIX COMPLEX NUMBERS WITH PRIME NUMBERS?

4. SHAFT SENSORLESS FORCED DYNAMICS CONTROL OF RELUCTANCE SYNCHRONOUS MOTOR DRIVES


Adaptive Control of a Production and Maintenance System with Unknown Deterioration and Obsolescence Rates

Chapter 4: Matrix Norms

Opis przedmiotu zamówienia - zakres czynności Usługi sprzątania obiektów Gdyńskiego Centrum Sportu


Newton-Raphson Method of Solving a Nonlinear Equation Autar Kaw


Generator stability analysis - Fractional tools application

r (1+cos(θ)) sin(θ) C θ 2 r cos θ 2

ASPECTS CONCERNING A DYNAMIC MODEL FOR A SYSTEM WITH TWO DEGREES OF FREEDOM

Voltage ( = Electric Potential )

The Casino Experience. Let us entertain you

H ig h L e v e l O v e r v iew. S te p h a n M a rt in. S e n io r S y s te m A rc h i te ct

Physics 43 Homework Set 9 Chapter 40 Key

Forces & Magnetic Dipoles. r r τ = μ B r

Simulation of Spacecraft Attitude and Orbit Dynamics

Voltage ( = Electric Potential )

PCA vs. Varimax rotation

A PID Tuning Method for Tracking Control of an Underactuated Gantry Crane

Gravitation. Definition of Weight Revisited. Newton s Law of Universal Gravitation. Newton s Law of Universal Gravitation. Gravitational Field

Order-Degree Curves for Hypergeometric Creative Telescoping

32. The Tangency Problem of Apollonius.

Victims Compensation Claim Status of All Pending Claims and Claims Decided Within the Last Three Years

Comparing plans is now simple with metal plans. What Does it Mean to Have a 6-Tier Pharmacy Plan? Tie. Individual Health Insurance

Analytical Proof of Newton's Force Laws

ALABAMA ASSOCIATION of EMERGENCY MANAGERS

Screentrade Car Insurance Policy Summary

AN IMPLEMENTATION OF BINARY AND FLOATING POINT CHROMOSOME REPRESENTATION IN GENETIC ALGORITHM

A Coverage Gap Filling Algorithm in Hybrid Sensor Network

Phys 2101 Gabriela González. cos. sin. sin

CURVES ANDRÉ NEVES. that is, the curve α has finite length. v = p q p q. a i.e., the curve of smallest length connecting p to q is a straight line.

PY1052 Problem Set 8 Autumn 2004 Solutions

University of Maryland Fraternity & Sorority Life Spring 2015 Academic Report

I n la n d N a v ig a t io n a co n t r ib u t io n t o eco n o m y su st a i n a b i l i t y

Gauss Law. Physics 231 Lecture 2-1

Generalized Difference Sequence Space On Seminormed Space By Orlicz Function

Intro to Circle Geometry By Raymond Cheong

Continuous Compounding and Annualization

Pure C4. Revision Notes

A New replenishment Policy in a Two-echelon Inventory System with Stochastic Demand

LATIN SQUARE DESIGN (LS) -With the Latin Square design you are able to control variation in two directions.

PHYSICS 161 EXAM III: Thursday December 04, :00 a.m.

Chapter 6 Best Linear Unbiased Estimate (BLUE)

I = Prt. = P(1+i) n. A = Pe rt

Campus Sustainability Assessment and Related Literature

HUT, TUT, LUT, OU, ÅAU / Engineering departments Entrance examination in mathematics May 25, 2004

Mathematics. Vectors. hsn.uk.net. Higher. Contents. Vectors 128 HSN23100

ON YOUR TURN: ROLLING AND MOVING

Online Department Stores. What are we searching for?

2.016 Hydrodynamics Prof. A.H. Techet

2. TRIGONOMETRIC FUNCTIONS OF GENERAL ANGLES

With Rejoicing Hearts/ Con Amor Jovial. A Fm7 B sus 4 B Cm Cm7/B

Multiple choice questions [60 points]

Chapter 30: Magnetic Fields Due to Currents

Lecture 5. Inner Product

1240 ev nm 2.5 ev. (4) r 2 or mv 2 = ke2

Random Variables and Distribution Functions

VEHICLE PLANAR DYNAMICS BICYCLE MODEL

Example 27.1 Draw a Venn diagram to show the relationship between counting numbers, whole numbers, integers, and rational numbers.

How many times have you seen something like this?

(1) continuity equation: 0. momentum equation: u v g (2) u x. 1 a

Curvature. (Com S 477/577 Notes) Yan-Bin Jia. Oct 8, 2015

Physics 235 Chapter 5. Chapter 5 Gravitation

On Efficiently Updating Singular Value Decomposition Based Reduced Order Models

Scalar and Vector Quantities. A scalar is a quantity having only magnitude (and possibly phase). LECTURE 2a: VECTOR ANALYSIS Vector Algebra

Week 3-4: Permutations and Combinations

12. Rolling, Torque, and Angular Momentum

CSSE463: Image Recognition Day 27

Graphs on Logarithmic and Semilogarithmic Paper

Binary Representation of Numbers Autar Kaw

Lesson 7 Gauss s Law and Electric Fields

D D. DETAILs FOR x POS. PCB LAYOUT FOR PN.S x PER ALTRI DETTAGLI RIFERIRSI AL FOGLIO 5 (FOR ADDITIONAL DETAILS SEE SHEET 5)

Symmetric polynomials and partitions Eugene Mukhin

4a 4ab b (count number of places from first non-zero digit to

Second Term MAT2060B 1. Supplementary Notes 3 Interchange of Differentiation and Integration

Performance Control of PMSM Drives Using a Self-tuning PID

OFFSHORE INTERNATIONAL MARINE PERSONNEL SERVICES, INC. EMPLOYMENT APPLICATION

How Much Should a Firm Borrow. Effect of tax shields. Capital Structure Theory. Capital Structure & Corporate Taxes

The Electric Potential, Electric Potential Energy and Energy Conservation. V = U/q 0. V = U/q 0 = -W/q 0 1V [Volt] =1 Nm/C

Overview of Spellings on

FAULT TREES AND RELIABILITY BLOCK DIAGRAMS. Harry G. Kwatny. Department of Mechanical Engineering & Mechanics Drexel University

Data Mining for extraction of fuzzy IF-THEN rules using Mamdani and Takagi-Sugeno-Kang FIS

e.g. f(x) = x domain x 0 (cannot find the square root of negative values)

Transcription:

ns o XIX Congesso seo e utomátc, C. H-S-FUZZY POSIION CONROL OF PMSM WIH N UGMENED D-XIS SOR CURREN MODEL RYMUNDO C. GRCI,, WLER I. SUEMISU, JOO O. P. PINO Lbotóo e Eetônc e Potênc, COPPE, Unvese Fee e Ro e Jneo Ih o Goveno, CEP 945-97, Ro e Jneo E-ms: coeog@gm.com, wte@ct.u.b Lbotóo e Integênc tc, Eetônc Dgt, Eetônc e Potênc, Dto. e Engenh Eétc, Unvese Fee e Mto Gosso o Su CEP 7974-46, Cmo Gne, Mto Gosso o Su, s E-ms: nto@nn.ums.b bstct Pemnent Mgnet Synchonous Moto (PMSM) s non-ne system use n the eveoment o sevomechnsm, wth oston oo n the -xs stto cuent oo whch contos the mgnetc ux o the moto. Fuzzy kgsugeno Moeng (S) ows the esgn o obust contoes bse on ne mtx neutes (LMI), usng combnton set o oc ne moes. he oc moes o the oston oo o PMSM hve n mct ntegto, whch euce the stey-stte eo. Howeve, the -xs cuent oo oes not hve ths ntegto. hs e esents the esgn o obust contoes o PMSM conseng the ton o n ntegto n n ntegtve gn n the -xs stto cuent oo. hs conseton s me o othe owe eectonc systems s DC-DC convetes, but ths e nyzes the use o ths technue n vecto conto o PMSM. he eect o etubtons s euce conseng the H nom technue. he oston n the -xs stto cuent oos e consee s two neenent SISO systems, whch gve moe exbty o the oe cement. Smuton esuts show the goo eomnce o ths technue. Keywos ugmente moe, H nom, Lne Mtx Ineutes, PMSM, gk-sugeno Moeng. Resumo O Moto Síncono e Ímã Pemnente (PMSM) é um sstem não ne utzo no esenvovmento e sevomecnsmos, com um mh e osção e um mh e coente no estto no exo, o u conto o uxo mgnétco o moto. moegem Fuzzykg-Sugeno (S) emte o oeto e contooes obustos bseo em esgues nees mtcs (LMI), usno um combnção e moeos nees ocs. Os moeos ocs mh e osção o PMSM ossuem um ntego, o u euz o eo em egme estáve. Não obstnte, mh coente o estto no exo não ossu uee ntego. Este tgo esent o oeto e contooes obustos PMSM conseno nseção e um ntego e um gnho e ntegção n mh e coente. Est conseção é utz no contoe e outos ccutos e otênc como os convesoes DC-DC, oém o esente tgo z um náse o uso est técnc no contoe veto o PMSM. O eeto s etubções é euzo tvés técnc nom H. s mhs e osção e coente são conses como os sstems SISO neenentes, o ue onece mo exbe n ocção os óos em mh ech. Smuções mostm o bom esemenho técnc oost. Pvs-chve Ineue Lne Mtc, Moeo umento, Moegem kg-sugeno, Nom H, PMSM. Intoucton Nowys, emnent mgnet synchonous moto (PMSM) s oweu tentve n the mementton o vbe euency ve ctons n sevomechnsm by ts bette toue/sze eton n obustness thn DC motos, n by ts owe toue e n hghe enegetc ecency thn nucton motos (Un et., ; ezc n Jc, ). On the othe hn, the conto o PMSM s moe cut thn DC moto ue to PMSM s non-ne system, whose metes cn chnge n tme, ecte by exten o etubtons (Py n Kshnn, 988; ose, 997). Vecto moe o PMSM s comose by two systems (ose, 997): the -xs ccut tht contos the ngu oston o see though the geneton o eectomgnetc toue, n the -xs ccut, tht conto the mgnetc oto ux. he -xs votges, ISN: 978-85-8-69-5 cuents n uxes e obtne by Pk tnsomton (ose, 997). Howeve, both ccuts hve nonne comonents tht mke ne contoes s PID egutos neute o see conto o PMSM. Fuzzy kg-sugeno Moeng (S) s oweu too n the eveoment o obust contoes o non-ne nts, by eesentng them s Fuzzy combnton o ne systems (kg n Sugeno, 985; nguch et., ; nguch et., ; exe et., 3, Schute, 5; Pecu et., 7; No n Okubo, ). cton o S n see vecto conto o PMSM cn be oune n (Ln et., 7; Jung et., ; Wng et., ; Cho et., ). Howeve, thee e ew eseches bout the cton o S contoes o the ngu oston o PMSM. Geney, S moes e use wth Lne Mtx Ineutes (LMI), n oe to get cose-oo contoes whch e obust gnst vtons n the mete, conseng estctons n the conto w, 4753

ns o XIX Congesso seo e utomátc, C. the system oututs n o tckng obems (ssunção et., 8, ne et., ). hs e nyzes the esgn o LMI contoes o oston conto o PMSM bse on n ugmente S moe o the moto, whee n ntegto n n ntegtve gn s e to the -xs ccut. ugmente moe usng n ntegto o non-ne owe eectoncs ctons s oost convete cn be oun n (Montgne et., ; O et., 9; O et., ). he ton o n ntegto s technue use n ne systems o tckng obems (Ogt, ). hs e uses the sme methooogy o the -xs stto cuent oo. s esut, the contoe hs two comonents: stte eebck n n nteg contoe, whose metes e obtne usng LMIs. he -xs n the -xs systems e consee s SISO systems nste o n ony one MIMO system. hs conseton n the ton o stte vbe n the -xs system gve moe exbty to set the cement o the cose-oo oes usng D- stbty contons. H nom technue s use to euce the eect o etubtons. Smuton esuts show the otentty o the use o the oose S moe wth ugmente nt o oston conto o PMSM. Vecto Moe o PMSM Pk tnsom s use to exess the thee-hse votges, cuents n uxes o PMSM, [ b c ] n new othogon eeence system, conseng new vbes [ ] (ose, 997): ( λ) sn( λ k) sn( λ k) ( cos( λ cos( λ sn cos b 3. 5. 5. 5 c () Whee k π/3 n λ s the nge o the new othogon eeence system, whch s geney eu to the ngu oston o the moto sht (θ) mute by the numbe o oe s (n): λ nθ () he ynmc behvo o PMSM s escbe by the oowng eutons (Py n Kshnn, 988): (3) v s nωm t (4) v s nω m nφωm t t,. φ (5) em ( ) Whee: v, v,, b n s t em t L φ θ ω m ω m bωm tem t (6) L t θ (7) ω m t : -xs n -xs stto votges; : -xs n -xs stto cuents; : -xs n -xs nuctnces; : Coecent o cton; : Roto net; : Numbe o oe s; : Resstnce o the stto wnngs; : Eectomgnetc toue; : Lo toue; : Euvent ux by the mgnets; : ngu oston o the moto sht; : Roto see. Fo PMSM wth non-sent oes (ose, 997; Py n Kshnn, 988): (8) Recng euton (8) n euton (5), t s ove tht the eectomgnetc toue eens ony on the -xs stto cuent. t. φ (9) em On the othe hn, the -xs ux s etemne by () (ose, 997; Py n Kshnn, 988): ϕ φ () When PMSM woks beow ts nomn see (constnt toue oeton moe), s set to zeo to euce the owe consumton o the moto, ue to the mgnets oves enough ux. On the othe hn, when PMSM hs to oete bove ts nomn see (constnt owe oeton moe), s negtve n oe to euce the -xs ux ϕ (ose, 997). hs technue, ce ux wekenng, emns the conto o the -xs stto cuent. Cose-Loo Moes o PMSM. Sce-Stte Moe o ngu Poston o PMSM he stte-stte eesentton o the system tht eesents the ynmc behvo o the ngu oston o PMSM s euce om eutons (4) to (9): ISN: 978-85-8-69-5 4754

ns o XIX Congesso seo e utomátc, C. x & x u w () w y [ ]x () ( ) mx (3) 3 3 ( ) mn (4) 3 3 Whee: x, [ θ ω ] m (3) u v (4) w t (5) L s φ n ( φ ) b [ ] [ ] w (6) (7) (8) In (), w n w e the etubton n the etubton nut vecto, esectvey. Euton (6) shows tht the stte mtx o the ngu oston system hs non-nety 3 : ( φ ) 3 n (9). S Moeng o ngu Poston Fuzzy kg-sugeno moeng (S) s technue to moe non-ne systems s uzzy vege o oc ne systems (kg n Sugeno, 985), s shown n eutons () n (): x& x u y C x () () Whee s the numbe o oc moes whe α s the uzzy membesh uncton o the non-ne nt to the -th sce-stte oc moe (,, ), eesente by the set o mtces (,, C ). α,α > () In ths e, the uzzy membesh unctons e obtne usng the methooogy esente n (nguch et., ), whch uses the mxmum n mnmum vues o evey non-nety o the sce-stte moe. In ths cse, the ony non-nety o the ngu oston system s ouce by 3, n ne moes e neee (nguch et., ). he vbes 3 n 3 e ene s: he unctons σ 3 n σ 3 e chosen to exess 3 s ne uncton o 3 n 3 : σ σ (5) σ σ (6) eng σ n σ. Fom eutons (5) n (6): σ σ 3 3 3 3 3 3 3 3 s thee s ony one non-nety n : α ( t) σ3( t) ( t) σ ( t) 3 (7) (8) α (9) he S oc moes (,, C ) n (,, C ) e ene s:,, s φ s φ b b 3 3 [ ] w w C [ ] [ ] (3) (3) (3) (33) C (34) he etemnnt o n o eutons (3) n (3) s zeo, nctng tht thee s n mct ntegto n the oc moes (Cheng, 999)..3 ugmente -xs Cuent Moe he mgnetc ux eens on the -xs stto cuent (ose, 997), whose ynmc behvo s escbe n euton (3). hs euton shows tht thee s not n mct ntegto n the -xs cuent oo. ISN: 978-85-8-69-5 4755

ns o XIX Congesso seo e utomátc, C. hs esech nsets n ntegto n n ntegtve gn k I to ths system. hs technue s use n ne systems o tckng obems (Ogt, ). Fgue shows the oose ugmente moe o the -xs stto cuent. ccong to Fgue, the nut u s: u v k k ε (35) x I Conseng tht the eeence * s constnt ung the eue tme o the stbzton o the outut, t cn be ove tht (Ogt, ): ( K ) E w w E & (4) Whee: K [ ] [ k k ] x s I (4) Fgue. ugmente -xs cuent moe he gn K cn be seecte to eect etubtons n mkes E eu to zeo n stey stte (Ogt, ). Recng eutons (8) n (35) n euton (3) n te some gebc mnutons: k t t x k ε I s s s kx On the othe hn: nωm t ki ε k x nω m ki nω ε m (36) 3 LMI Contoes 3. LMI Desgn o Feebck Contoes he eebck gns o the oston n -xs cuent contoes e esgne though ne mtx neutes (LMI) n oe to guntee obust conto, whch e bse on Lyunov stbty theoy: system wth stte mtx s symtotcy stbe exsts ostve ente mtx Q (Q > ) tht (ne et., ): Q Q < (4) ε t * ε * [ ] Fom eutons (36) n (37): (37) oc contoe K s ccute o ech oc moe, to etemne the oc conto w u (t). s esut, the conto w u(t) s (kg n Sugeno, 985; exe n Zk, 999; nguch et., ): t ε s k n ω m x ki ε * (38) Whee w ω m s the etubton o the ugmente moe, n w [n ] s the ugmente etubton nut vecto. Denng the eo vecto E s the eence between the sttes n the tme t n when they e n stey stte: E ε ( stey stte) ε( stey stte) (39) u u F x (43) Recng euton (43) n euton () n te some gebc mnutons: x& x& G α eng: ( K ) x( t) < G x α G G x (44) K,,, K, (45) < ISN: 978-85-8-69-5 4756

ns o XIX Congesso seo e utomátc, C. ccong to Lyunov theoy e to euton (44), the cose-oo system s symtotcy stbe thee s ostve ente mtx Q > tht: G G G Q QG G G Q Q < ;,, K,,, K, < ; < (46) (47) he ugmente -xs stto cuent nt ony hs one oc moe. the LMI sttements n ths e e sove enng the vbe Y K Q (,, ) n mkng the oowng tnsomton: G Q Q K Q Q Y (48) he vbes Y n Q e ccute sovng the LMI tems. he eebck gns K cn be obtne mkng K Y Q -. 3. Cose oo Contoes usng H Nom ccong to S moeng, ech oc moe eects etubtons, then, the gob non-ne nt w be obust gnst ths etubton. hs e uses H nom to estbsh LMI contons n oe to euce the eect o etubtons n the system outut. Conseng the oowng oc system: w w [ n ] (5) 3.3 Poe Pcement o the Loc Cose Loos usng D-Stbty he oston o the cose-oo oes etemnes the ynmc esonse o the system. Conseng the egon n the Lcn e sem-ne S(γ,, θ) s the set o comex numbes λ x y whch stsy the oowng contons (O et., ): S ( γ,, θ) x < γ < x y < x tn( θ) < y (53) Fgue shows the egon S(γ,, θ). I the oes o the cose-oo system beong to ths egon, the system hs mnmum ecy te γ, mnmum umng coecent ξ cos(θ) n mnmum ume euency ω.sn(θ). x& x u w (49) y C x w Whee w(t) s nose n w s ts nut vecto. he eect o the nose on the outut y shou be mnm. hs obectve cn be cheve by seectng the eebck gn K tht mnmzes the H nom between the nose n the outut, ccong to the oowng otmzton obem (ne et., ): mn < ( Z ) Q G Q QG w C Q Q > ; Z > Z w QC I Fo the oc moes o ngu oston: w w w [ ] (5) (5) Whe o the ugmente -xs stto cuent moe n ccong to euton (37): Fgue. Regon S(γ,, θ). he cose oo mtx s ce D-stbe ts egenvues beongs to D(γ,, θ) (O et., ). In conseuence, the egon D(γ,, θ) set contons o the oveshoot, sng tme n stbzng tme. he oowng eutons ene the egon D(γ,, θ) though LMIs: h Q Q γq < Q Q Q Q < ( Q Q ) hs ( Q Q ) ( Q Q) hc ( Q Q ) s sn Whee: ( θ) ; h cos( θ) c h c < hs (54) (55) (56) G,, K, (57), 5( G G ); <,, K, ISN: 978-85-8-69-5 4757

ns o XIX Congesso seo e utomátc, C. he D-stbty contons o the ngu oston n -xs cuent contoes cn be set neenenty ue to they hve the own SISO moes. tony, the ton o the new stte o the - xs cuent system gves moe exbty to set ts ynmcs. 4 Resuts Poston ().5 ngu oston eeence Smutons tests wee one usng ML/SIMULINK, ccong to the metes n be I. he two-eve thee-hse nvete tht gves enegy to the PMSM woks wth swtchng euency o 5 khz n hs DC votge souce o V. he o toue e to the moto sht s t L.5.ω m..5 3 4 5 6 me (s) Fgue 3. Poston eeence. be I. Smuton Pmete Pmete Vue Resstnce,78 Ω -xs nuctnce 6 mh -xs nuctnce 6 mh Euvent ux o,48 Wb PMSM mgnet Poe s 3 Roto net 4,98-4 kg.m Coecent o 5, -5 N.m.s cton D-stbty γ o oston contoes θ π/ D-stbty γ 5 o cuent 6 contoe θ π/3 he oc moes wee constucte conseng: 3-68.3 n 3-8.3. he obtne coseoo contoes e: Poston: K [ 3,7 x 4,76 43.3 ] K [ 3,7 x 4,69 43.5] D-xs stto cuent: K [.95-9.57 ] Fgue 3 shows the oston eeences, whe the -xs cuent eeence s set to zeo. wo tests wee one, conseng nomn nt n eucton o % n the eectc metes o PMSM. Resuts om Fgues 4 n Fgue 5 show tht the esgne oston n -xs cuent contoes hve goo ccucy, eect etubtons n e obust gnst vtons o the metes o the moto. Cuent () Poston () Cuent () Poston () D xs stto cuent...4.6.8 3 4 5 6 me (s) x 4 Poston eo 5 5 5 3 4 5 6 me (s) Fgue 4. Smuton esuts o nomn nt. D xs stto cuent...4.6.8 3 4 5 6 me (s) x 4 Poston eo 3 4 5 6 me (s) Fgue 5. Smuton esuts conseng eucton o % n the eectc metes o the PMSM. Concusons he esgn o cose-oo contoes o oston conto o PMSM though LMI n ugmente -xs stto cuent moe n S ngu oston moe cn eect etubtons n hs goo ccucy, even conseng vtons n the metes o the moto. he oe cement cn be one wth hgh exbty ISN: 978-85-8-69-5 4758

ns o XIX Congesso seo e utomátc, C. ue to the ton o the stte vbe n the SISO moeng o PMSM. s utue wok, exement esuts w be obtne. cknowegment uthos wnt to thnk L Lbotoy by the suot o ths esech. Reeences ne, C.Q.; Gues, R.; Romne, E.F.R.; Pnto, J.O.P. n Gonçves, R. C. (). Sstem e Reeção e stúbo e Rstemento H e H co o Conveso oost usno LMIs. Congesso seo e utomátc,. 3673-368. ssunção, E.; ne, C. Q.; exe, M.C.M n Pnto, J.O.P. (8). Metooog Rstemento com Mocção e Zeos e Reeção e Dstúbo c Sstems Incetos, Sb Contoe & utomção, Vo. 9, No.,. 43-5. ose,.k (997). Powe Eectoncs n Vbe Feuency Dves. IEEE Pess, Psctwy. Cheng, C. (999). Lne System heoy n Desng. Oxo Unvesty Pess, th eton. Cho, H.H.; Vu, N..-. n Jung, J.-W. (). Desgn n Imementton o kg-sugeno Fuzzy See Reguto o Pemnent Mgnet Synchonous Moto. IEEE nsctons on Inust Eectoncs, Vo. 59, No. 8,. 369-377. Jung, J.-W.; Km,.H. n Cho, H.H. (). See Conto o Pemnent Mgnet Synchonous Moto Wth oue Obseve: Fuzzy och. IE Conto heoy ctons, Vo. 4, No.,. 97-98. Ln, K.-Y.; Chng, C.-H.; n u, H-W. (7). LMI-se Sensoess Conto o Pemnent- Mgnet Synchonous Moto. IEEE. nsctons on Inust Eectoncs, Vo. 54, No. 5,. 769-778. Montgne, V.F.; Mcc, L.. n Ove, R.C.L.F. (). Desgn n Exement vton o Robust H Contoe e to oost Convete. Congesso seo e utomátc,. 549-554. No, M. K.. M. n Okubo, S. (). he Desgn o Nonne Sevo System Usng Fuzzy Metho. Intenton Coneence on Fuzzy Systems n Knowege Dscovey,. 54-544. Ogt, K. (). Moen Conto Engneeng, Ue Se Rve, NJ, Pentce H. O, C.; Leyv, R.; E ou,. n Quennec, I (9). Robust LQR Conto o PWM Convetes: n LMI och. IEEE nsctons on Inust Eectoncs, Vo. 56, No. 7,. 548-558. O, C.; Leyv, R.; Quennec, I. n Mksmovc, M (). Robust Gn-Scheue Conto o Swtche-Moe DC-DC Convetes. IEEE nsctons on Powe Eectoncs, Vo. 7, No. 6,. 36-39. Py, P. n Kshnn, R. (988). Moeng o Pemnent Mgnet Moto Dves. IEEE nsctons on Inust Eectoncs, Vo. 35, No. 4,. 537-54. Pecu, R.-E.; Pet, S. n Koon, P. (7). Fuzzy Contoes wth mxmum senstvty o sevosystems, IEEE nsctons on Inust Eectoncs, Vo. 54, No. 3,. 98-3. Schute, H. (5). oxmte moeng o css o nonne osctos usng kg-sugeno uzzy systems n ts cton to conto esgn. Poceengs o 44 th IEEE Coneence on Decson n Conto n the Euoen Conto Coneence,. 3387-339. kg,. n Sugeno, M. (985). Fuzzy Ientcton o Systems n ts ctons o Moeng n Conto. IEEE nsctons on Systems, Mn n Cybenetcs, Vo 5, No.,. 6-3. nguch,.; nk, K. n Wng, H.O. (). Fuzzy Descto Systems n Nonne Moe Foowng Conto. IEEE nsctons on Fuzzy Systems, Vo. 8, No. 4,. 44-45. nguch,.; nk, K.; Ohtke, H. n Wng, H.O. (). Moe Constucton, Rue Reucton n Robust Comenston o Geneze Fom o kg-sugeno Fuzzy Systems. IEEE nsctons on Fuzzy Systems, Vo. 9, No. 4,. 55-538. exe, M.C.M. n Zk, S.H. (999). Stbzng Contoe Desgn o Uncetn Nonne Systems Usng Fuzzy Moes. IEEE nsctons on Fuzzy Systems, Vo. 7, No.,. 33-4. exe, M.C.M., ssunção, E. n ve, R.G. (3). On Rexe LMI-se Desgn o Fuzzy Regutos n Fuzzy Obseves. IEEE nsctons on Fuzzy Systems, Vo., No. 5,. 63-63. ezc,. n Jc, M. (). Desgn n Imementton o the Extene Kmn Fte o the See n Roto Poston Estmton o ushess DC Moto, IEEE nsctons on Inust Eectoncs, Vo. 48, No. 6,. 65-73. Un, M.N.; Rwn,.S.; Rhmn, M.. n Geoge, G.H. (). Fuzzy Logc bse Poston Conto o Pemnent Mgnet Synchonous Moto. Cnn Coneence on Eectc n Comute Engneeng, Vo.,. 93-97. Wng, F.G.; Pk, S.K.; Yoon,. n hn, H.K. (). -S Fuzzy Moeng o Inteo Pemnent Mgnet Synchonous Moto. Intenton Coneence on Integent Systems Desgn n ctons,. 8-86, ISN: 978-85-8-69-5 4759