Chapter 6 Best Linear Unbiased Estimate (BLUE)

Size: px
Start display at page:

Download "Chapter 6 Best Linear Unbiased Estimate (BLUE)"

Transcription

1 hpter 6 Bet Lner Unbed Etmte BLUE

2 Motvton for BLUE Except for Lner Model ce, the optml MVU etmtor mght:. not even ext. be dffcult or mpoble to fnd Reort to ub-optml etmte BLUE one uch ub-optml etmte Ide for BLUE:. Retrct etmte to be lner n dt x. Retrct etmte to be unbed 3. Fnd the bet one.e. wth mnmum vrnce dvntge of BLUE:eed only t nd nd moment of PDF Ddvntge of BLUE:. Sub-optml n generl. Sometme totlly npproprte ee bottom of p. 34 Men & ovrnce

3 6.3 Defnton of BLUE clr ce Oberved Dt: x [x[0] x[]... x[ ] ] PDF: px;θ depend on unknown θ BLUE contrned to be lner n dt: hooe to gve: θˆ BLU nx[ n] x n0. unbed etmtor. then mnmze vrnce Vrnce Lner Unbed Etmtor BLUE onlner Unbed Etmtor MVUE ote: h not Fg. 6. 3

4 6.4 Fndng he BLUE Sclr e. ontrn to be Lner: ˆ θ n 0 n x[ n]. ontrn to be Unbed: E { θˆ} θ Ung lner contrnt n 0 n E { x[ n ]} θ Q: When cn we meet both of thee contrnt? : Only for certn obervton model e.g., lner obervton 4

5 Fndng BLUE for Sclr Lner Obervton onder clr-prmeter lner obervton: x[n] θ[n] + w[n] E{x[n]} θ[n] hen for the unbed condton we need: ell how to chooe weght to ue n the BLUE etmtor form { ˆ} E θ θ n ow gven tht thee contrnt re met We need to mnmze the vrnce!! 0 eed ˆ θ n n[ n] θ #"! 0 n x[ n] Gven tht the covrnce mtrx of x we hve: vr θˆ { } { } vr x BLU Lke vr{x} vr{x} 5

6 6 Gol: mnmze ubject to ontrned optmzton ppendx 6: Ue Lgrngn Multpler: Mnmze J + λ 0 : Set J λ λ λ $ #$"$! ˆ vr θ x x ˆ θ BLUE ppendx 6 how tht th cheve globl mnmum

7 pplcblty of BLUE We jut derved the BLUE under the followng:. Lner obervton but wth no contrnt on the noe PDF. o knowledge of the noe PDF other thn t men nd cov!! Wht doe th tell u??? BLUE pplcble to lner obervton But noe need not be Gun!!! w umed n h. 4 Lner Model nd ll we need re the t nd nd moment of the PDF!!! But we ll ee n the Exmple tht we cn often lnerze nonlner model!!! 7

8 6.5 Vector Prmeter e: Gu-Mrkov hm Gu-Mrkov heorem: If dt cn be modeled hvng lner obervton n noe: x Hθ + w Known Mtrx Known Men & ov PDF otherwe rbtrry & unknown ˆ hen the BLUE : θ H H H x BLUE nd t covrnce : θ ˆ H H ote: If noe Gun then BLUE MVUE 8

9 Ex. 4.3: DO-Bed Emtter Locton t x,y t t Rx x,y t t Rx t t 3 x,y Rx 3 x 3,y 3 Hyperbol: τ t t contnt Hyperbol: τ 3 t 3 t contnt DO me-dfference-of-rrvl ume tht the th Rx cn meure t O: t hen from the et of O compute DO hen from the et of DO etmte locton x,y We won t worry bout how they do tht. lo there re DO ytem tht never ctully etmte O! 9

10 O Meurement Model ume meurement of O t recever only 3 hown bove: t 0, t,,t - here re meurement error O meurement model: o me the gnl emtted R Rnge from x to Rx c Speed of Propgton for EM: c 3x0 8 m/ t o + R /c + 0,,..., - Meurement oe zero-men, vrnce σ, ndependent but PDF unknown vrnce determned from etmtor ued to etmte t ow ue: R [ x x + y - y ] / t f x, y o + c x x + y y + onlner Model 0

11 Lnerzton of O Model So we lnerze the model o we cn pply BLUE: ume ome rough etmte vlble x n, y n x x n + δx y y n + δy know etmte know etmte θ [δx δy] ow ue truncted ylor ere to lnerze R x n, y n : R Known R n + xn x δx Rn # $"$! + yn y δy Rn # $"$! B ~ Rn B pply to O: t t o + δ x + δy + c c c known known known hree unknown prmeter to etmte: o, δy, δy

12 O Model v. DO Model wo opton now:. Ue O to etmte 3 prmeter: o, δy, δy. Ue DO to etmte prmeter: δy, δy Generlly the fewer prmeter the better Everythng ele beng the me. But here everythng ele not the me: Opton & hve dfferent noe model Opton h ndependent noe Opton h correlted noe In prctce we d explore both opton nd ee whch bet.

13 3 onveron to DO Model DO rther thn O DO:,,,, ~ ~ t t τ $"$! # #$"$! $"$! # noe correlted known known + + y c B B x c δ δ In mtrx form: x Hθ + w w H B B B B B B c & & & & & & & [ ] τ τ τ ' x [ ] y δx δ θ See book for tructure of mtrx w w } cov{ σ

14 pply BLUE to DO Lnerzed Model θˆ BLUE H H w H w x θˆ H H w H Dependence on σ cncel out!!! H H x σ H Decrbe how lrge the locton error H hng we cn now do:. Explore etmton error cov for dfferent x/rx geometre Plot error ellpe. nlytclly explore mple geometre to fnd trend See next chrt more detl n book 4

15 pply DO Reult to Smple Geometry x R R x α R x α R x3 d d hen cn how: θˆ σ c co 0 α 0 3/ nα Dgonl Error ov lgned Error Ellpe e y nd y-error lwy bgger thn x-error e x 5

16 σ x /cσ or σ y /cσ σ x σ y α degre e Ued Std. Dev. to how unt of X & Y ormlzed by cσ get ctul vlue by multplyng by your pecfc cσ vlue x R R x α R x α R x3 d d For Fxed Rnge R: Increng Rx Spcng d Improve ccurcy For Fxed Spcng d: Decreng Rnge R Improve ccurcy 6

Basically, logarithmic transformations ask, a number, to what power equals another number?

Basically, logarithmic transformations ask, a number, to what power equals another number? Wht i logrithm? To nwer thi, firt try to nwer the following: wht i x in thi eqution? 9 = 3 x wht i x in thi eqution? 8 = 2 x Biclly, logrithmic trnformtion k, number, to wht power equl nother number? In

More information

Solution to Problem Set 1

Solution to Problem Set 1 CSE 5: Introduction to the Theory o Computtion, Winter A. Hevi nd J. Mo Solution to Prolem Set Jnury, Solution to Prolem Set.4 ). L = {w w egin with nd end with }. q q q q, d). L = {w w h length t let

More information

Optimal Pricing Scheme for Information Services

Optimal Pricing Scheme for Information Services Optml rcng Scheme for Informton Servces Shn-y Wu Opertons nd Informton Mngement The Whrton School Unversty of ennsylvn E-ml: [email protected] e-yu (Shron) Chen Grdute School of Industrl Admnstrton

More information

Use Geometry Expressions to create a more complex locus of points. Find evidence for equivalence using Geometry Expressions.

Use Geometry Expressions to create a more complex locus of points. Find evidence for equivalence using Geometry Expressions. Lerning Objectives Loci nd Conics Lesson 3: The Ellipse Level: Preclculus Time required: 120 minutes In this lesson, students will generlize their knowledge of the circle to the ellipse. The prmetric nd

More information

Vectors 2. 1. Recap of vectors

Vectors 2. 1. Recap of vectors Vectors 2. Recp of vectors Vectors re directed line segments - they cn be represented in component form or by direction nd mgnitude. We cn use trigonometry nd Pythgors theorem to switch between the forms

More information

Goals Rotational quantities as vectors. Math: Cross Product. Angular momentum

Goals Rotational quantities as vectors. Math: Cross Product. Angular momentum Physcs 106 Week 5 Torque and Angular Momentum as Vectors SJ 7thEd.: Chap 11.2 to 3 Rotatonal quanttes as vectors Cross product Torque expressed as a vector Angular momentum defned Angular momentum as a

More information

Chapter 7 Kinetic energy and work

Chapter 7 Kinetic energy and work Chpter 7 Kc energy nd wor I. Kc energy. II. or. III. or - Kc energy theorem. IV. or done by contnt orce - Grttonl orce V. or done by rble orce. VI. Power - Sprng orce. - Generl. D-Anly 3D-Anly or-kc Energy

More information

Newton-Raphson Method of Solving a Nonlinear Equation Autar Kaw

Newton-Raphson Method of Solving a Nonlinear Equation Autar Kaw Newton-Rphson Method o Solvng Nonlner Equton Autr Kw Ater redng ths chpter, you should be ble to:. derve the Newton-Rphson method ormul,. develop the lgorthm o the Newton-Rphson method,. use the Newton-Rphson

More information

9 CONTINUOUS DISTRIBUTIONS

9 CONTINUOUS DISTRIBUTIONS 9 CONTINUOUS DISTIBUTIONS A rndom vrible whose vlue my fll nywhere in rnge of vlues is continuous rndom vrible nd will be ssocited with some continuous distribution. Continuous distributions re to discrete

More information

Graphs on Logarithmic and Semilogarithmic Paper

Graphs on Logarithmic and Semilogarithmic Paper 0CH_PHClter_TMSETE_ 3//00 :3 PM Pge Grphs on Logrithmic nd Semilogrithmic Pper OBJECTIVES When ou hve completed this chpter, ou should be ble to: Mke grphs on logrithmic nd semilogrithmic pper. Grph empiricl

More information

Treatment Spring Late Summer Fall 0.10 5.56 3.85 0.61 6.97 3.01 1.91 3.01 2.13 2.99 5.33 2.50 1.06 3.53 6.10 Mean = 1.33 Mean = 4.88 Mean = 3.

Treatment Spring Late Summer Fall 0.10 5.56 3.85 0.61 6.97 3.01 1.91 3.01 2.13 2.99 5.33 2.50 1.06 3.53 6.10 Mean = 1.33 Mean = 4.88 Mean = 3. The nlysis of vrince (ANOVA) Although the t-test is one of the most commonly used sttisticl hypothesis tests, it hs limittions. The mjor limittion is tht the t-test cn be used to compre the mens of only

More information

9.3. The Scalar Product. Introduction. Prerequisites. Learning Outcomes

9.3. The Scalar Product. Introduction. Prerequisites. Learning Outcomes The Sclr Product 9.3 Introduction There re two kinds of multipliction involving vectors. The first is known s the sclr product or dot product. This is so-clled becuse when the sclr product of two vectors

More information

Lecture 3 Gaussian Probability Distribution

Lecture 3 Gaussian Probability Distribution Lecture 3 Gussin Probbility Distribution Introduction l Gussin probbility distribution is perhps the most used distribution in ll of science. u lso clled bell shped curve or norml distribution l Unlike

More information

Resistive Network Analysis. The Node Voltage Method - 1

Resistive Network Analysis. The Node Voltage Method - 1 esste Network Anlyss he nlyss of n electrcl network conssts of determnng ech of the unknown rnch currents nd node oltges. A numer of methods for network nlyss he een deeloped, sed on Ohm s Lw nd Krchoff

More information

Binary Representation of Numbers Autar Kaw

Binary Representation of Numbers Autar Kaw Binry Representtion of Numbers Autr Kw After reding this chpter, you should be ble to: 1. convert bse- rel number to its binry representtion,. convert binry number to n equivlent bse- number. In everydy

More information

Bayesian Updating with Continuous Priors Class 13, 18.05, Spring 2014 Jeremy Orloff and Jonathan Bloom

Bayesian Updating with Continuous Priors Class 13, 18.05, Spring 2014 Jeremy Orloff and Jonathan Bloom Byesin Updting with Continuous Priors Clss 3, 8.05, Spring 04 Jeremy Orloff nd Jonthn Bloom Lerning Gols. Understnd prmeterized fmily of distriutions s representing continuous rnge of hypotheses for the

More information

and thus, they are similar. If k = 3 then the Jordan form of both matrices is

and thus, they are similar. If k = 3 then the Jordan form of both matrices is Homework ssignment 11 Section 7. pp. 249-25 Exercise 1. Let N 1 nd N 2 be nilpotent mtrices over the field F. Prove tht N 1 nd N 2 re similr if nd only if they hve the sme miniml polynomil. Solution: If

More information

LINEAR TRANSFORMATIONS AND THEIR REPRESENTING MATRICES

LINEAR TRANSFORMATIONS AND THEIR REPRESENTING MATRICES LINEAR TRANSFORMATIONS AND THEIR REPRESENTING MATRICES DAVID WEBB CONTENTS Liner trnsformtions 2 The representing mtrix of liner trnsformtion 3 3 An ppliction: reflections in the plne 6 4 The lgebr of

More information

Figure 1. Inventory Level vs. Time - EOQ Problem

Figure 1. Inventory Level vs. Time - EOQ Problem IEOR 54 Sprng, 009 rof Leahman otes on Eonom Lot Shedulng and Eonom Rotaton Cyles he Eonom Order Quantty (EOQ) Consder an nventory tem n solaton wth demand rate, holdng ost h per unt per unt tme, and replenshment

More information

Example 27.1 Draw a Venn diagram to show the relationship between counting numbers, whole numbers, integers, and rational numbers.

Example 27.1 Draw a Venn diagram to show the relationship between counting numbers, whole numbers, integers, and rational numbers. 2 Rtionl Numbers Integers such s 5 were importnt when solving the eqution x+5 = 0. In similr wy, frctions re importnt for solving equtions like 2x = 1. Wht bout equtions like 2x + 1 = 0? Equtions of this

More information

PROF. BOYAN KOSTADINOV NEW YORK CITY COLLEGE OF TECHNOLOGY, CUNY

PROF. BOYAN KOSTADINOV NEW YORK CITY COLLEGE OF TECHNOLOGY, CUNY MAT 0630 INTERNET RESOURCES, REVIEW OF CONCEPTS AND COMMON MISTAKES PROF. BOYAN KOSTADINOV NEW YORK CITY COLLEGE OF TECHNOLOGY, CUNY Contents 1. ACT Compss Prctice Tests 1 2. Common Mistkes 2 3. Distributive

More information

A.7.1 Trigonometric interpretation of dot product... 324. A.7.2 Geometric interpretation of dot product... 324

A.7.1 Trigonometric interpretation of dot product... 324. A.7.2 Geometric interpretation of dot product... 324 A P P E N D I X A Vectors CONTENTS A.1 Scling vector................................................ 321 A.2 Unit or Direction vectors...................................... 321 A.3 Vector ddition.................................................

More information

16. Mean Square Estimation

16. Mean Square Estimation 6 Me Sque stmto Gve some fomto tht s elted to uow qutty of teest the poblem s to obt good estmte fo the uow tems of the obseved dt Suppose epeset sequece of dom vbles bout whom oe set of obsevtos e vlble

More information

Algebra Review. How well do you remember your algebra?

Algebra Review. How well do you remember your algebra? Algebr Review How well do you remember your lgebr? 1 The Order of Opertions Wht do we men when we write + 4? If we multiply we get 6 nd dding 4 gives 10. But, if we dd + 4 = 7 first, then multiply by then

More information

Alternatives to an Inefficient International Telephony. Settlement System

Alternatives to an Inefficient International Telephony. Settlement System Alterntve to n Ineffent Interntonl Telephony Settlement Sytem Alterntve to n Ineffent Interntonl Telephony Settlement Sytem Koj Domon Shool of Sol Sene Wed Unverty -6- Nh-Wed Shnjuku-ku Tokyo 69-8050 JAPAN

More information

4.11 Inner Product Spaces

4.11 Inner Product Spaces 314 CHAPTER 4 Vector Spces 9. A mtrix of the form 0 0 b c 0 d 0 0 e 0 f g 0 h 0 cnnot be invertible. 10. A mtrix of the form bc d e f ghi such tht e bd = 0 cnnot be invertible. 4.11 Inner Product Spces

More information

Review guide for the final exam in Math 233

Review guide for the final exam in Math 233 Review guide for the finl exm in Mth 33 1 Bsic mteril. This review includes the reminder of the mteril for mth 33. The finl exm will be cumultive exm with mny of the problems coming from the mteril covered

More information

Ring structure of splines on triangulations

Ring structure of splines on triangulations www.oeaw.ac.at Rng structure of splnes on trangulatons N. Vllamzar RICAM-Report 2014-48 www.rcam.oeaw.ac.at RING STRUCTURE OF SPLINES ON TRIANGULATIONS NELLY VILLAMIZAR Introducton For a trangulated regon

More information

Lectures 8 and 9 1 Rectangular waveguides

Lectures 8 and 9 1 Rectangular waveguides 1 Lectures 8 nd 9 1 Rectngulr wveguides y b x z Consider rectngulr wveguide with 0 < x b. There re two types of wves in hollow wveguide with only one conductor; Trnsverse electric wves

More information

MODULE 3. 0, y = 0 for all y

MODULE 3. 0, y = 0 for all y Topics: Inner products MOULE 3 The inner product of two vectors: The inner product of two vectors x, y V, denoted by x, y is (in generl) complex vlued function which hs the following four properties: i)

More information

benefit is 2, paid if the policyholder dies within the year, and probability of death within the year is ).

benefit is 2, paid if the policyholder dies within the year, and probability of death within the year is ). REVIEW OF RISK MANAGEMENT CONCEPTS LOSS DISTRIBUTIONS AND INSURANCE Loss and nsurance: When someone s subject to the rsk of ncurrng a fnancal loss, the loss s generally modeled usng a random varable or

More information

Math 135 Circles and Completing the Square Examples

Math 135 Circles and Completing the Square Examples Mth 135 Circles nd Completing the Squre Exmples A perfect squre is number such tht = b 2 for some rel number b. Some exmples of perfect squres re 4 = 2 2, 16 = 4 2, 169 = 13 2. We wish to hve method for

More information

Irregular Repeat Accumulate Codes 1

Irregular Repeat Accumulate Codes 1 Irregulr epet Accumulte Codes 1 Hu Jn, Amod Khndekr, nd obert McElece Deprtment of Electrcl Engneerng, Clforn Insttute of Technology Psden, CA 9115 USA E-ml: {hu, mod, rjm}@systems.cltech.edu Abstrct:

More information

Logistic Regression. Lecture 4: More classifiers and classes. Logistic regression. Adaboost. Optimization. Multiple class classification

Logistic Regression. Lecture 4: More classifiers and classes. Logistic regression. Adaboost. Optimization. Multiple class classification Lecture 4: More classfers and classes C4B Machne Learnng Hlary 20 A. Zsserman Logstc regresson Loss functons revsted Adaboost Loss functons revsted Optmzaton Multple class classfcaton Logstc Regresson

More information

Lecture 5. Inner Product

Lecture 5. Inner Product Lecture 5 Inner Product Let us strt with the following problem. Given point P R nd line L R, how cn we find the point on the line closest to P? Answer: Drw line segment from P meeting the line in right

More information

WHAT HAPPENS WHEN YOU MIX COMPLEX NUMBERS WITH PRIME NUMBERS?

WHAT HAPPENS WHEN YOU MIX COMPLEX NUMBERS WITH PRIME NUMBERS? WHAT HAPPES WHE YOU MIX COMPLEX UMBERS WITH PRIME UMBERS? There s n ol syng, you n t pples n ornges. Mthemtns hte n t; they love to throw pples n ornges nto foo proessor n see wht hppens. Sometmes they

More information

8.5 UNITARY AND HERMITIAN MATRICES. The conjugate transpose of a complex matrix A, denoted by A*, is given by

8.5 UNITARY AND HERMITIAN MATRICES. The conjugate transpose of a complex matrix A, denoted by A*, is given by 6 CHAPTER 8 COMPLEX VECTOR SPACES 5. Fnd the kernel of the lnear transformaton gven n Exercse 5. In Exercses 55 and 56, fnd the mage of v, for the ndcated composton, where and are gven by the followng

More information

Brillouin Zones. Physics 3P41 Chris Wiebe

Brillouin Zones. Physics 3P41 Chris Wiebe Brillouin Zones Physics 3P41 Chris Wiebe Direct spce to reciprocl spce * = 2 i j πδ ij Rel (direct) spce Reciprocl spce Note: The rel spce nd reciprocl spce vectors re not necessrily in the sme direction

More information

How To Understand The Recipe Notes Of A Recipe Card

How To Understand The Recipe Notes Of A Recipe Card Audo Engneerng Socety Conventon per reented t the th Conventon 6 My 3 r, Frnce Th conventon pper h been reproduced fro the uthor' dvnce nucrpt, wthout edtng, correcton, or conderton by the Revew Bord.

More information

LECTURE #05. Learning Objective. To describe the geometry in and around a unit cell in terms of directions and planes.

LECTURE #05. Learning Objective. To describe the geometry in and around a unit cell in terms of directions and planes. LECTURE #05 Chpter 3: Lttice Positions, Directions nd Plnes Lerning Objective To describe the geometr in nd round unit cell in terms of directions nd plnes. 1 Relevnt Reding for this Lecture... Pges 64-83.

More information

The Velocity Factor of an Insulated Two-Wire Transmission Line

The Velocity Factor of an Insulated Two-Wire Transmission Line The Velocity Fctor of n Insulted Two-Wire Trnsmission Line Problem Kirk T. McDonld Joseph Henry Lbortories, Princeton University, Princeton, NJ 08544 Mrch 7, 008 Estimte the velocity fctor F = v/c nd the

More information

JFET AMPLIFIER CONFIGURATIONS

JFET AMPLIFIER CONFIGURATIONS JFET MPFE CONFGUTON 5 5 5 n G OUT n G OUT n OUT [a] Cn urce plfer [b] Cn ran [urce Fllwer] plfer [c] Cn Gate plfer Cte a: n ce, cure ateral fr 6.0 ntructry nal Electrnc abratry, prn 2007.MT OpenCureWare

More information

N V V L. R a L I. Transformer Equation Notes

N V V L. R a L I. Transformer Equation Notes Tnsfome Eqution otes This file conts moe etile eivtion of the tnsfome equtions thn the notes o the expeiment 3 wite-up. t will help you to unestn wht ssumptions wee neee while eivg the iel tnsfome equtions

More information

Physics 43 Homework Set 9 Chapter 40 Key

Physics 43 Homework Set 9 Chapter 40 Key Physics 43 Homework Set 9 Chpter 4 Key. The wve function for n electron tht is confined to x nm is. Find the normliztion constnt. b. Wht is the probbility of finding the electron in. nm-wide region t x

More information

NMT EE 589 & UNM ME 482/582 ROBOT ENGINEERING. Dr. Stephen Bruder NMT EE 589 & UNM ME 482/582

NMT EE 589 & UNM ME 482/582 ROBOT ENGINEERING. Dr. Stephen Bruder NMT EE 589 & UNM ME 482/582 NMT EE 589 & UNM ME 482/582 ROBOT ENGINEERING Dr. Stephen Bruder NMT EE 589 & UNM ME 482/582 7. Root Dynamcs 7.2 Intro to Root Dynamcs We now look at the forces requred to cause moton of the root.e. dynamcs!!

More information

Chapter 04.05 System of Equations

Chapter 04.05 System of Equations hpter 04.05 System of Equtios After redig th chpter, you should be ble to:. setup simulteous lier equtios i mtrix form d vice-vers,. uderstd the cocept of the iverse of mtrix, 3. kow the differece betwee

More information

Vector Geometry for Computer Graphics

Vector Geometry for Computer Graphics Vector Geometry for Computer Grphcs Bo Getz Jnury, 7 Contents Prt I: Bsc Defntons Coordnte Systems... Ponts nd Vectors Mtrces nd Determnnts.. 4 Prt II: Opertons Vector ddton nd sclr multplcton... 5 The

More information

Problem Set 3. a) We are asked how people will react, if the interest rate i on bonds is negative.

Problem Set 3. a) We are asked how people will react, if the interest rate i on bonds is negative. Queston roblem Set 3 a) We are asked how people wll react, f the nterest rate on bonds s negatve. When

More information

Polynomial Functions. Polynomial functions in one variable can be written in expanded form as ( )

Polynomial Functions. Polynomial functions in one variable can be written in expanded form as ( ) Polynomil Functions Polynomil functions in one vrible cn be written in expnded form s n n 1 n 2 2 f x = x + x + x + + x + x+ n n 1 n 2 2 1 0 Exmples of polynomils in expnded form re nd 3 8 7 4 = 5 4 +

More information

Chapter 4 ECONOMIC DISPATCH AND UNIT COMMITMENT

Chapter 4 ECONOMIC DISPATCH AND UNIT COMMITMENT Chapter 4 ECOOMIC DISATCH AD UIT COMMITMET ITRODUCTIO A power system has several power plants. Each power plant has several generatng unts. At any pont of tme, the total load n the system s met by the

More information

Example A rectangular box without lid is to be made from a square cardboard of sides 18 cm by cutting equal squares from each corner and then folding

Example A rectangular box without lid is to be made from a square cardboard of sides 18 cm by cutting equal squares from each corner and then folding 1 Exmple A rectngulr box without lid is to be mde from squre crdbord of sides 18 cm by cutting equl squres from ech corner nd then folding up the sides. 1 Exmple A rectngulr box without lid is to be mde

More information

Integration by Substitution

Integration by Substitution Integrtion by Substitution Dr. Philippe B. Lvl Kennesw Stte University August, 8 Abstrct This hndout contins mteril on very importnt integrtion method clled integrtion by substitution. Substitution is

More information

Lecture 2: Single Layer Perceptrons Kevin Swingler

Lecture 2: Single Layer Perceptrons Kevin Swingler Lecture 2: Sngle Layer Perceptrons Kevn Sngler [email protected] Recap: McCulloch-Ptts Neuron Ths vastly smplfed model of real neurons s also knon as a Threshold Logc Unt: W 2 A Y 3 n W n. A set of synapses

More information

Physics 2102 Lecture 2. Physics 2102

Physics 2102 Lecture 2. Physics 2102 Physics 10 Jonthn Dowling Physics 10 Lecture Electric Fields Chrles-Augustin de Coulomb (1736-1806) Jnury 17, 07 Version: 1/17/07 Wht re we going to lern? A rod mp Electric chrge Electric force on other

More information

Section 5.4 Annuities, Present Value, and Amortization

Section 5.4 Annuities, Present Value, and Amortization Secton 5.4 Annutes, Present Value, and Amortzaton Present Value In Secton 5.2, we saw that the present value of A dollars at nterest rate per perod for n perods s the amount that must be deposted today

More information

Distributions. (corresponding to the cumulative distribution function for the discrete case).

Distributions. (corresponding to the cumulative distribution function for the discrete case). Distributions Recll tht n integrble function f : R [,] such tht R f()d = is clled probbility density function (pdf). The distribution function for the pdf is given by F() = (corresponding to the cumultive

More information

Cypress Creek High School IB Physics SL/AP Physics B 2012 2013 MP2 Test 1 Newton s Laws. Name: SOLUTIONS Date: Period:

Cypress Creek High School IB Physics SL/AP Physics B 2012 2013 MP2 Test 1 Newton s Laws. Name: SOLUTIONS Date: Period: Nme: SOLUTIONS Dte: Period: Directions: Solve ny 5 problems. You my ttempt dditionl problems for extr credit. 1. Two blocks re sliding to the right cross horizontl surfce, s the drwing shows. In Cse A

More information

ACUSCOMP and ACUSYS A powerful hybrid linear/non linear simulation suite to analyse pressure pulsations in piping

ACUSCOMP and ACUSYS A powerful hybrid linear/non linear simulation suite to analyse pressure pulsations in piping ACUSCOMP n ACUSYS A owerful hybr lner/non lner multon ute to nlye reure ulton n ng Ing Attlo Brghent, Ing Anre Pvn, SATE Sytem n Avnce Technology Engneerng, Snt Croce 664/A, 335 Venez, Itly e-ml: ttlobrghent@te-tlycom

More information

Rotation Kinematics, Moment of Inertia, and Torque

Rotation Kinematics, Moment of Inertia, and Torque Rotaton Knematcs, Moment of Inerta, and Torque Mathematcally, rotaton of a rgd body about a fxed axs s analogous to a lnear moton n one dmenson. Although the physcal quanttes nvolved n rotaton are qute

More information

Experiment 6: Friction

Experiment 6: Friction Experiment 6: Friction In previous lbs we studied Newton s lws in n idel setting, tht is, one where friction nd ir resistnce were ignored. However, from our everydy experience with motion, we know tht

More information

Mathematics. Vectors. hsn.uk.net. Higher. Contents. Vectors 128 HSN23100

Mathematics. Vectors. hsn.uk.net. Higher. Contents. Vectors 128 HSN23100 hsn.uk.net Higher Mthemtics UNIT 3 OUTCOME 1 Vectors Contents Vectors 18 1 Vectors nd Sclrs 18 Components 18 3 Mgnitude 130 4 Equl Vectors 131 5 Addition nd Subtrction of Vectors 13 6 Multipliction by

More information

s-domain Circuit Analysis

s-domain Circuit Analysis S-Doman naly -Doman rcut naly Tme doman t doman near rcut aplace Tranform omplex frequency doman doman Tranformed rcut Dfferental equaton lacal technque epone waveform aplace Tranform nvere Tranform -

More information

RIGHT TRIANGLES AND THE PYTHAGOREAN TRIPLETS

RIGHT TRIANGLES AND THE PYTHAGOREAN TRIPLETS RIGHT TRIANGLES AND THE PYTHAGOREAN TRIPLETS Known for over 500 yers is the fct tht the sum of the squres of the legs of right tringle equls the squre of the hypotenuse. Tht is +b c. A simple proof is

More information

α α λ α = = λ λ α ψ = = α α α λ λ ψ α = + β = > θ θ β > β β θ θ θ β θ β γ θ β = γ θ > β > γ θ β γ = θ β = θ β = θ β = β θ = β β θ = = = β β θ = + α α α α α = = λ λ λ λ λ λ λ = λ λ α α α α λ ψ + α =

More information

EQUATIONS OF LINES AND PLANES

EQUATIONS OF LINES AND PLANES EQUATIONS OF LINES AND PLANES MATH 195, SECTION 59 (VIPUL NAIK) Corresponding mteril in the ook: Section 12.5. Wht students should definitely get: Prmetric eqution of line given in point-direction nd twopoint

More information

3. Present value of Annuity Problems

3. Present value of Annuity Problems Mathematcs of Fnance The formulae 1. A = P(1 +.n) smple nterest 2. A = P(1 + ) n compound nterest formula 3. A = P(1-.n) deprecaton straght lne 4. A = P(1 ) n compound decrease dmshng balance 5. P = -

More information

Regular Sets and Expressions

Regular Sets and Expressions Regulr Sets nd Expressions Finite utomt re importnt in science, mthemtics, nd engineering. Engineers like them ecuse they re super models for circuits (And, since the dvent of VLSI systems sometimes finite

More information

ALABAMA ASSOCIATION of EMERGENCY MANAGERS

ALABAMA ASSOCIATION of EMERGENCY MANAGERS LBM SSOCTON of EMERGENCY MNGERS ON O PCE C BELLO MER E T R O CD NCY M N G L R PROFESSONL CERTFCTON PROGRM .. E. M. CERTFCTON PROGRM 2014 RULES ND REGULTONS 1. THERE WLL BE FOUR LEVELS OF CERTFCTON. BSC,

More information

Lesson 4.1 Triangle Sum Conjecture

Lesson 4.1 Triangle Sum Conjecture Lesson 4.1 ringle um onjecture Nme eriod te n ercises 1 9, determine the ngle mesures. 1. p, q 2., y 3., b 31 82 p 98 q 28 53 y 17 79 23 50 b 4. r, s, 5., y 6. y t t s r 100 85 100 y 30 4 7 y 31 7. s 8.

More information

SIMPLE LINEAR CORRELATION

SIMPLE LINEAR CORRELATION SIMPLE LINEAR CORRELATION Smple lnear correlaton s a measure of the degree to whch two varables vary together, or a measure of the ntensty of the assocaton between two varables. Correlaton often s abused.

More information

Words Symbols Diagram. abcde. a + b + c + d + e

Words Symbols Diagram. abcde. a + b + c + d + e Logi Gtes nd Properties We will e using logil opertions to uild mhines tht n do rithmeti lultions. It s useful to think of these opertions s si omponents tht n e hooked together into omplex networks. To

More information

Answer: A). There is a flatter IS curve in the high MPC economy. Original LM LM after increase in M. IS curve for low MPC economy

Answer: A). There is a flatter IS curve in the high MPC economy. Original LM LM after increase in M. IS curve for low MPC economy 4.02 Quz Solutons Fall 2004 Multple-Choce Questons (30/00 ponts) Please, crcle the correct answer for each of the followng 0 multple-choce questons. For each queston, only one of the answers s correct.

More information

Luby s Alg. for Maximal Independent Sets using Pairwise Independence

Luby s Alg. for Maximal Independent Sets using Pairwise Independence Lecture Notes for Randomzed Algorthms Luby s Alg. for Maxmal Independent Sets usng Parwse Independence Last Updated by Erc Vgoda on February, 006 8. Maxmal Independent Sets For a graph G = (V, E), an ndependent

More information

v a 1 b 1 i, a 2 b 2 i,..., a n b n i.

v a 1 b 1 i, a 2 b 2 i,..., a n b n i. SECTION 8.4 COMPLEX VECTOR SPACES AND INNER PRODUCTS 455 8.4 COMPLEX VECTOR SPACES AND INNER PRODUCTS All the vector spaces we have studed thus far n the text are real vector spaces snce the scalars are

More information

Rotating DC Motors Part II

Rotating DC Motors Part II Rotting Motors rt II II.1 Motor Equivlent Circuit The next step in our consiertion of motors is to evelop n equivlent circuit which cn be use to better unerstn motor opertion. The rmtures in rel motors

More information

Support Vector Machines

Support Vector Machines Support Vector Machnes Max Wellng Department of Computer Scence Unversty of Toronto 10 Kng s College Road Toronto, M5S 3G5 Canada [email protected] Abstract Ths s a note to explan support vector machnes.

More information

COMPONENTS: COMBINED LOADING

COMPONENTS: COMBINED LOADING LECTURE COMPONENTS: COMBINED LOADING Third Edition A. J. Clrk School of Engineering Deprtment of Civil nd Environmentl Engineering 24 Chpter 8.4 by Dr. Ibrhim A. Asskkf SPRING 2003 ENES 220 Mechnics of

More information

Babylonian Method of Computing the Square Root: Justifications Based on Fuzzy Techniques and on Computational Complexity

Babylonian Method of Computing the Square Root: Justifications Based on Fuzzy Techniques and on Computational Complexity Bbylonin Method of Computing the Squre Root: Justifictions Bsed on Fuzzy Techniques nd on Computtionl Complexity Olg Koshelev Deprtment of Mthemtics Eduction University of Texs t El Pso 500 W. University

More information

QUADRATURE METHODS. July 19, 2011. Kenneth L. Judd. Hoover Institution

QUADRATURE METHODS. July 19, 2011. Kenneth L. Judd. Hoover Institution QUADRATURE METHODS Kenneth L. Judd Hoover Institution July 19, 2011 1 Integrtion Most integrls cnnot be evluted nlyticlly Integrls frequently rise in economics Expected utility Discounted utility nd profits

More information

Lesson 2.1 Inductive Reasoning

Lesson 2.1 Inductive Reasoning Lesson.1 Inutive Resoning Nme Perio Dte For Eerises 1 7, use inutive resoning to fin the net two terms in eh sequene. 1. 4, 8, 1, 16,,. 400, 00, 100, 0,,,. 1 8, 7, 1, 4,, 4.,,, 1, 1, 0,,. 60, 180, 10,

More information

Causal, Explanatory Forecasting. Analysis. Regression Analysis. Simple Linear Regression. Which is Independent? Forecasting

Causal, Explanatory Forecasting. Analysis. Regression Analysis. Simple Linear Regression. Which is Independent? Forecasting Causal, Explanatory Forecastng Assumes cause-and-effect relatonshp between system nputs and ts output Forecastng wth Regresson Analyss Rchard S. Barr Inputs System Cause + Effect Relatonshp The job of

More information

Series Solutions of ODEs 2 the Frobenius method. The basic idea of the Frobenius method is to look for solutions of the form 3

Series Solutions of ODEs 2 the Frobenius method. The basic idea of the Frobenius method is to look for solutions of the form 3 Royal Holloway Unversty of London Department of Physs Seres Solutons of ODEs the Frobenus method Introduton to the Methodology The smple seres expanson method works for dfferental equatons whose solutons

More information

Trivial lump sum R5.0

Trivial lump sum R5.0 Optons form Once you have flled n ths form, please return t wth your orgnal brth certfcate to: Premer PO Box 2067 Croydon CR90 9ND. Fll n ths form usng BLOCK CAPITALS and black nk. Mark all answers wth

More information

1 Example 1: Axis-aligned rectangles

1 Example 1: Axis-aligned rectangles COS 511: Theoretcal Machne Learnng Lecturer: Rob Schapre Lecture # 6 Scrbe: Aaron Schld February 21, 2013 Last class, we dscussed an analogue for Occam s Razor for nfnte hypothess spaces that, n conjuncton

More information

Homework 3 Solutions

Homework 3 Solutions CS 341: Foundtions of Computer Science II Prof. Mrvin Nkym Homework 3 Solutions 1. Give NFAs with the specified numer of sttes recognizing ech of the following lnguges. In ll cses, the lphet is Σ = {,1}.

More information

Formulating & Solving Integer Problems Chapter 11 289

Formulating & Solving Integer Problems Chapter 11 289 Formulatng & Solvng Integer Problems Chapter 11 289 The Optonal Stop TSP If we drop the requrement that every stop must be vsted, we then get the optonal stop TSP. Ths mght correspond to a ob sequencng

More information

5.2. LINE INTEGRALS 265. Let us quickly review the kind of integrals we have studied so far before we introduce a new one.

5.2. LINE INTEGRALS 265. Let us quickly review the kind of integrals we have studied so far before we introduce a new one. 5.2. LINE INTEGRALS 265 5.2 Line Integrls 5.2.1 Introduction Let us quickly review the kind of integrls we hve studied so fr before we introduce new one. 1. Definite integrl. Given continuous rel-vlued

More information

STATISTICAL PROPERTIES OF LEAST SQUARES ESTIMATORS. x, where. = y - ˆ " 1

STATISTICAL PROPERTIES OF LEAST SQUARES ESTIMATORS. x, where. = y - ˆ  1 STATISTICAL PROPERTIES OF LEAST SQUARES ESTIMATORS Recall Assumpto E(Y x) η 0 + η x (lear codtoal mea fucto) Data (x, y ), (x 2, y 2 ),, (x, y ) Least squares estmator ˆ E (Y x) ˆ " 0 + ˆ " x, where ˆ

More information

c b 5.00 10 5 N/m 2 (0.120 m 3 0.200 m 3 ), = 4.00 10 4 J. W total = W a b + W b c 2.00

c b 5.00 10 5 N/m 2 (0.120 m 3 0.200 m 3 ), = 4.00 10 4 J. W total = W a b + W b c 2.00 Chter 19, exmle rolems: (19.06) A gs undergoes two roesses. First: onstnt volume @ 0.200 m 3, isohori. Pressure inreses from 2.00 10 5 P to 5.00 10 5 P. Seond: Constnt ressure @ 5.00 10 5 P, isori. olume

More information

Exact Confidence Intervals

Exact Confidence Intervals Math 541: Statistical Theory II Instructor: Songfeng Zheng Exact Confidence Intervals Confidence intervals provide an alternative to using an estimator ˆθ when we wish to estimate an unknown parameter

More information

1. Measuring association using correlation and regression

1. Measuring association using correlation and regression How to measure assocaton I: Correlaton. 1. Measurng assocaton usng correlaton and regresson We often would lke to know how one varable, such as a mother's weght, s related to another varable, such as a

More information

Chapter 7: Answers to Questions and Problems

Chapter 7: Answers to Questions and Problems 19. Based on the nformaton contaned n Table 7-3 of the text, the food and apparel ndustres are most compettve and therefore probably represent the best match for the expertse of these managers. Chapter

More information

Production. 2. Y is closed A set is closed if it contains its boundary. We need this for the solution existence in the profit maximization problem.

Production. 2. Y is closed A set is closed if it contains its boundary. We need this for the solution existence in the profit maximization problem. Producer Theory Producton ASSUMPTION 2.1 Propertes of the Producton Set The producton set Y satsfes the followng propertes 1. Y s non-empty If Y s empty, we have nothng to talk about 2. Y s closed A set

More information

Factoring Polynomials

Factoring Polynomials Fctoring Polynomils Some definitions (not necessrily ll for secondry school mthemtics): A polynomil is the sum of one or more terms, in which ech term consists of product of constnt nd one or more vribles

More information

CS 2750 Machine Learning. Lecture 3. Density estimation. CS 2750 Machine Learning. Announcements

CS 2750 Machine Learning. Lecture 3. Density estimation. CS 2750 Machine Learning. Announcements Lecture 3 Densty estmaton Mlos Hauskrecht [email protected] 5329 Sennott Square Next lecture: Matlab tutoral Announcements Rules for attendng the class: Regstered for credt Regstered for audt (only f there

More information

Calculation of Sampling Weights

Calculation of Sampling Weights Perre Foy Statstcs Canada 4 Calculaton of Samplng Weghts 4.1 OVERVIEW The basc sample desgn used n TIMSS Populatons 1 and 2 was a two-stage stratfed cluster desgn. 1 The frst stage conssted of a sample

More information