2.016 Hydrodynamics Prof. A.H. Techet

Size: px
Start display at page:

Download "2.016 Hydrodynamics Prof. A.H. Techet"

Transcription

1 .016 Hydodynmics Reding #5.016 Hydodynmics Po. A.H. Techet Fluid Foces on Bodies 1. Stedy Flow In ode to design oshoe stuctues, suce vessels nd undewte vehicles, n undestnding o the bsic luid oces cting on body is needed. In the cse o stedy viscous low, these oces e stightowd. Lit oce, pependicul to the velocity, nd Dg oce, inline with the low, cn be clculted bsed on the luid velocity, U, oce coeicients, C D nd C, the object s dimensions o e, A, nd luid density, ρ. Fo L viscous lows the dg nd lit on body e deined s ollows 1 F Dg = ρu A C D (5.1) 1 F Lit = ρu A C L (5.) These equtions cn lso be used in quiescent (sttiony) luid o stedy tnslting body, whee U is the body velocity insted o the luid velocity, since U is still the eltive velocity o the luid with espect to the body. The dg oce ises due to viscous ubbing o the luid. The luid my be thought o s compised o sevel lyes which move eltive to one nothe. The lye t the suce o the body sticks to the suce due to the no-slip condition. The net lye o luid wy om the suce ubs ginst the lye below, nd this ubbing equies cetin mount o oce becuse o viscosity. One would epect tht in the bsence o viscosity, the oce would go to zeo. Jen Le Rond d'alembet ( ) peomed seies o epeiments to mesue the dg on sphee in lowing luid, nd on the bsis o the potentil low nlysis he epected tht the oce would ppoch zeo s the viscosity o the luid ppoched zeo. Howeve, this ws not the cse. The net oce seemed to convege on non-zeo vlue s the viscosity ppoched zeo. Hence, the vnishing o the net oce in the potentil low nlysis is known s d'alembet's Pdo. vesion.0 updted 8/0/ A. Techet

2 .016 Hydodynmics Reding #5 D Allembet s Pdo o ied sphee in uniom inlow: Foce on sphee (dius ) in n unbounded STEADY moving luid with velocity U is eploed in the ollowing discussion. U z θ The coesponding D potentil unction o sphee in uniom inlow is simply: φ (,θ ) = U + cos θ (5.) The hydodynmic oce on the body due to the unstedy motion o the sphee is given s suce integl o pessue ound the body. Pessue omultion comes om the unstedy om o Benoulli. Foce in the -diection is F = ρ 1 + φ n ds (5.4) t B Hee, the time deivtive o the potentil is zeo since the low is stedy nd velocity is not unction o time. Since we wnt the oce cting on the body we need the velocity components on the sphee suce ( = ). In spheicl coodintes the velocity is ound by tking the gdient o the potentil unction s ollows: K 1 1 V = φ = V, V,V ϕ =, θ, (5.5) θ sinθ ϕ The velocity t the body, on =, cn only be tngentil to the body due to the kinemtic boundy condition ( KBC V = 0 ): K V = φ = (0, U sin θ, 0 ) (5.6) vesion.0 updted 8/0/ A. Techet

3 .016 Hydodynmics Reding #5 The mgnitude o the velocity is simply: 1 φ = 9 U sin θ (5.7) 8 Using (5.7) in the omultion o F, om eqution (5.4), we get the hoizontl oce on the body: F = ρ )( ) cos 9 θ sin θ ( 8 U sin θ 0 d θ (5.8) F = 9 ρ U sin θ cos θ dθ (5.9) 4 0 This integl cn be integted by pts o substitution o vibles: p = sinθ ; dp = cosθ dθ (5.10) sin θ cos θ d θ = p dp 4 4 = p = sin θ (5.11) 4 4 sin 4 θ 9 F = 4 ρ U = 0 (5.1) 4 0 THERE IS NO FORCE ON A BODY IN A STEADY FLOW IN THE ABSENCE OF VISCOSITY! THIS IS D ALLEMBERT S PARADOX. The esolution becomes cle when we elize tht ny non-zeo viscosity, no mtte how smll, will esult in boundy lye nd the tngentil low velocity vnishing t the suce o the sphee. As we lowe the viscosity, the thickness o the boundy lye is educed, but the low velocity still dops to zeo coss tht lye (the "no-slip" condition). The esults o this boundy lye led to losses in the momentum o the lowing luid nd the tnseence o momentum to the sphee, i.e., to net unblnced oce. vesion.0 updted 8/0/ A. Techet

4 .016 Hydodynmics Reding #5. Unstedy Motion nd Added Mss. Do this t home: A) Wve you hnd in the i. Feel the oce it tkes to ccelete you hnd. F=m. B) Fill you bthtub with wte. Run you hnd though (with the plm cing owd) t slow, constnt speed. Feel the dg on you hnd. Notice tht the wte must move to low ound you hnd. B1.5) Run you hnd though t nothe constnt, ste speed. Notice tht it tkes moe oce. Recll the dg oce is popotionl to U^. Notice tht the wte now moves t some constnt, ste speed ound you hnd. C) Ty nd ccelete you hnd om the slow speed to the st speed. It s hd, huh?! Notice tht the wte lowing pst you hnd hs to ccelete s you hnd cceletes. Since some mss o wte must ccelete, you hnd eels hevie. We cptue this ide with the concept o dded mss. Beyond stedy low, especilly in the pesence o ee suce wves, we must conside unstedy, time dependent motions o both the luid nd the body nd the luid inetil oces ise, dding to the totl ocing on body. Tke the cse o n unstedy moving body, Ub( t), in n unbounded inviscid, iottionl luid ( µ = 0 ) with zeo velocity, U = 0. The time-dependent oce on the body is diectly popotionl to the body cceletion: t Ft () = m du () b (5.1) dt whee m, is the system dded mss, depends on the body geomety nd diection o motion. This is n dded inetil oce o dded mss oce on the body. By compison, in n inviscid stedy low, by D Alembet s Pdo, the oce on the body would be zeo. vesion.0 updted 8/0/ A. Techet

5 .016 Hydodynmics Reding #5 Unstedy Moving Body Sttiony Fluid: Foce on sphee (dius ) cceleting in n unbounded quiescent (non-moving) luid. U = U () t is the unstedy body velocity. z U(t) θ The Kinemtic Boundy Condition on the sphee, gunteeing no luid low though the body suce, is = = U() t cos θ. (5.14) The potentil unction o moving sphee with no ee stem (still luid) is simply φ = Ut () cos θ. (5.15) You cn double check this solution o the velocity potentil by substituting φ into the Kinemtic Boundy Condtion (eq. (5.14)) to mke sue this potentil woks t the boundy o the sphee. The hydodynmic oce on the body due to the unstedy motion o the sphee is given s suce integl o pessue ound the body. Pessue omultion comes om the unstedy om o Benoulli. Foce in the -diection is F = ρ 1 + φ n ds t B (5.16) Since we wnt the oce cting on the body we need the velocity components on the sphee suce ( = ). In spheicl coodintes the velocity is ound by tking the gdient o the potentil vesion.0 updted 8/0/ A. Techet

6 .016 Hydodynmics Reding #5 unction s ollows: K 1 1 V = φ = V, V,V ϕ =, θ, (5.17) θ sinθ ϕ such tht the gdient o φ() t o moving sphee is 1 φ = Ut () cos θ, Ut)sin ( θ,0 =. (5.18) To evlute the pessue ound the sphee we need the mgnitude o the velocity φ on the suce ( = ): ( 4 φ ) = U cos θ + 1 U sin θ; n = ê ; n = cosθ (5.19) Net, the time deivtive o the velocity potentil, evluted t the sphee suce, is = U () t cos θ = U t t 1 () cos θ (5.0) nd the suce integl cn be e-witten in spheicl coodintes s b ds = ( d θ )( sin θ ) (5.1) 0 Substituting (5.19), (5.0), nd (5.1) into (5.16) we cn solve o F, the dded mss oce on spheicl body moving with n unstedy cceletion: The volume o sphee is = s F () ρ = U t (5.) unit =Mss thus eqution (5.) is simply F = U () t ( 1 ρ s ) (5.) 4 vesion.0 updted 8/0/ A. Techet

7 .016 Hydodynmics Reding #5 1 whee m = ρ s is the dded mss in the system. Unstedy Moving Fluid Sttiony Body: Foce on sphee (dius ) in n unbounded unstedy moving luid. U = U (t) is the unstedy luid velocity. U (t) z θ The coesponding potentil unction is simply: φ (, θ, t ) = U (t ) + cos θ (5.4) The velocity, t the body on, cn only be tngentil to the body due to the kinemtic boundy condition ( KBC V = 0 ) : The time deivtive o the potentil is K V = φ = (0, U sin θ, 0 ) (5.5) = U cos θ (5.6) t The mgnitude o the velocity is simply: 1 φ = 9 U sin θ (5.7) 8 Agin, using (5.6), (5.7), (5.1) in the omultion o F, om eqution (5.16), we get vesion.0 updted 8/0/ A. Techet

8 .016 Hydodynmics Reding #5 the hoizontl oce on the body: F = ρ )( ) 0 cos θ sinθ U cos θ + 8 U sin θ d θ 9 ( (5.8) 9 F = ρ U cos θ sin θ d θ + 4 ρ U sin θ cos θ dθ 0 0 (5.9) By pts the ight most tem in the integl in (5.9) educes to zeo, nd the integl om let tem is simply: cos θ sin θ dθ = (5.0) 0 so we e let with oce: F = ρ U = ρ U (5.1) 4 This cn be ewitten in tems o the sphee volume, s =, nd dded mss, m = 1 ρ s, om (5.) s ollows F = U (ρ + m ) (5.) The non-dded mss tem o eqution (5.) is due to the pessue gdient necessy to ccelete the luid ound the sphee. This is like buoyncy eect. Unstedy Moving Fluid; Unstedy Moving Body: Foce on moving sphee (dius ) vesion.0 updted 8/0/ A. Techet

9 .016 Hydodynmics Reding #5 in n unbounded moving luid. U = U (t) is the unstedy luid velocity nd U b = U b (t) is the body velocity. U (t) z U b (t) θ The cse o the unstedy moving body nd luid cn be detemined by combining the esults om the pevious two cses. 1 F = U b ( ρ s ) F = U (ρ + Moving Body Moving Fluid Still Fluid Still Body Moving Body, Moving Fluid: m ) F = U b (m ) +U (ρ + m ) = U ρ + m (U U b ) (5.) So now, ll we hve to do is ind the dded mss! vesion.0 updted 8/0/ A. Techet

(Ch. 22.5) 2. What is the magnitude (in pc) of a point charge whose electric field 50 cm away has a magnitude of 2V/m?

(Ch. 22.5) 2. What is the magnitude (in pc) of a point charge whose electric field 50 cm away has a magnitude of 2V/m? Em I Solutions PHY049 Summe 0 (Ch..5). Two smll, positively chged sphees hve combined chge of 50 μc. If ech sphee is epelled fom the othe by n electosttic foce of N when the sphees e.0 m pt, wht is the

More information

Exam in physics, El-grunder (Electromagnetism), 2014-03-26, kl 9.00-15.00

Exam in physics, El-grunder (Electromagnetism), 2014-03-26, kl 9.00-15.00 Umeå Univesitet, Fysik 1 Vitly Bychkov Em in physics, El-gunde (Electomgnetism, 14--6, kl 9.-15. Hjälpmedel: Students my use ny book(s. Mino notes in the books e lso llowed. Students my not use thei lectue

More information

Formulas and Units. Transmission technical calculations Main Formulas. Size designations and units according to the SI-units.

Formulas and Units. Transmission technical calculations Main Formulas. Size designations and units according to the SI-units. Fomuls nd Units Tnsmission technicl clcultions Min Fomuls Size designtions nd units ccoding to the SI-units Line movement: s v = m/s t s = v t m s = t m v = m/s t P = F v W F = m N Rottion ω = π f d/s

More information

r (1+cos(θ)) sin(θ) C θ 2 r cos θ 2

r (1+cos(θ)) sin(θ) C θ 2 r cos θ 2 icles xmple 66: Rounding one ssume we hve cone of ngle θ, nd we ound it off with cuve of dius, how f wy fom the cone does the ound stt? nd wht is the chod length? (1+cos(θ)) sin(θ) θ 2 cos θ 2 xmple 67:

More information

Cypress Creek High School IB Physics SL/AP Physics B 2012 2013 MP2 Test 1 Newton s Laws. Name: SOLUTIONS Date: Period:

Cypress Creek High School IB Physics SL/AP Physics B 2012 2013 MP2 Test 1 Newton s Laws. Name: SOLUTIONS Date: Period: Nme: SOLUTIONS Dte: Period: Directions: Solve ny 5 problems. You my ttempt dditionl problems for extr credit. 1. Two blocks re sliding to the right cross horizontl surfce, s the drwing shows. In Cse A

More information

Curvature. (Com S 477/577 Notes) Yan-Bin Jia. Oct 8, 2015

Curvature. (Com S 477/577 Notes) Yan-Bin Jia. Oct 8, 2015 Cuvtue Com S 477/577 Notes Yn-Bin Ji Oct 8, 205 We wnt to find mesue of how cuved cuve is. Since this cuvtue should depend only on the shpe of the cuve, it should not be chnged when the cuve is epmetized.

More information

(1) continuity equation: 0. momentum equation: u v g (2) u x. 1 a

(1) continuity equation: 0. momentum equation: u v g (2) u x. 1 a Comment on The effect of vible viscosity on mied convection het tnsfe long veticl moving sufce by M. Ali [Intentionl Jounl of Theml Sciences, 006, Vol. 45, pp. 60-69] Asteios Pntoktos Associte Pofesso

More information

VEHICLE PLANAR DYNAMICS BICYCLE MODEL

VEHICLE PLANAR DYNAMICS BICYCLE MODEL Auptions -Do, VEHE PANA DYNAMS BYE MODE o tel, (esued o instntneous cente o ottion O) o Yw, (wt Globl Ais) ongitudinl elocit is ued to be constnt. Sll slip ngles, i.e. ties opete in the line egion. No

More information

Summary: Vectors. This theorem is used to find any points (or position vectors) on a given line (direction vector). Two ways RT can be applied:

Summary: Vectors. This theorem is used to find any points (or position vectors) on a given line (direction vector). Two ways RT can be applied: Summ: Vectos ) Rtio Theoem (RT) This theoem is used to find n points (o position vectos) on given line (diection vecto). Two ws RT cn e pplied: Cse : If the point lies BETWEEN two known position vectos

More information

GRAVITATION 1. BASIC FORCES IN NATURE

GRAVITATION 1. BASIC FORCES IN NATURE GRAVITATION. BASIC ORCES IN NATURE POINTS TO REMEMBER. Bsing on the ntue nd eltive stength the bsic foces in ntue e clssified into fou ctegoies. They e ) Gvittionl foce ) Electomgnetic foce 3) Stong Nucle

More information

2.016 Hydrodynamics Prof. A.H. Techet

2.016 Hydrodynamics Prof. A.H. Techet .01 Hydrodynics Reding #.01 Hydrodynics Prof. A.H. Techet Added Mss For the cse of unstedy otion of bodies underwter or unstedy flow round objects, we ust consider the dditionl effect (force) resulting

More information

Chapter 22 The Electric Field II: Continuous Charge Distributions

Chapter 22 The Electric Field II: Continuous Charge Distributions Chpte The lectic Field II: Continuous Chge Distibutions Conceptul Poblems [SSM] Figue -7 shows n L-shped object tht hs sides which e equl in length. Positive chge is distibuted unifomly long the length

More information

N V V L. R a L I. Transformer Equation Notes

N V V L. R a L I. Transformer Equation Notes Tnsfome Eqution otes This file conts moe etile eivtion of the tnsfome equtions thn the notes o the expeiment 3 wite-up. t will help you to unestn wht ssumptions wee neee while eivg the iel tnsfome equtions

More information

Chapter 23 Electrical Potential

Chapter 23 Electrical Potential hpte Electicl Potentil onceptul Polems [SSM] A poton is moved to the left in unifom electic field tht points to the ight. Is the poton moving in the diection of incesing o decesing electic potentil? Is

More information

Orbits and Kepler s Laws

Orbits and Kepler s Laws Obits nd Keple s Lws This web pge intoduces some of the bsic ides of obitl dynmics. It stts by descibing the bsic foce due to gvity, then consides the ntue nd shpe of obits. The next section consides how

More information

Mathematics. Vectors. hsn.uk.net. Higher. Contents. Vectors 128 HSN23100

Mathematics. Vectors. hsn.uk.net. Higher. Contents. Vectors 128 HSN23100 hsn.uk.net Higher Mthemtics UNIT 3 OUTCOME 1 Vectors Contents Vectors 18 1 Vectors nd Sclrs 18 Components 18 3 Mgnitude 130 4 Equl Vectors 131 5 Addition nd Subtrction of Vectors 13 6 Multipliction by

More information

Harvard College. Math 21a: Multivariable Calculus Formula and Theorem Review

Harvard College. Math 21a: Multivariable Calculus Formula and Theorem Review Hrvrd College Mth 21: Multivrible Clculus Formul nd Theorem Review Tommy McWillim, 13 [email protected] December 15, 2009 1 Contents Tble of Contents 4 9 Vectors nd the Geometry of Spce 5 9.1

More information

LAPLACE S EQUATION IN SPHERICAL COORDINATES. With Applications to Electrodynamics

LAPLACE S EQUATION IN SPHERICAL COORDINATES. With Applications to Electrodynamics LALACE S EQUATION IN SHERICAL COORDINATES With Appitions to Eetodynmis We hve seen tht Lpe s eqution is one of the most signifint equtions in physis. It is the soution to pobems in wide viety of fieds

More information

1. In the Bohr model, compare the magnitudes of the electron s kinetic and potential energies in orbit. What does this imply?

1. In the Bohr model, compare the magnitudes of the electron s kinetic and potential energies in orbit. What does this imply? Assignment 3: Bohr s model nd lser fundmentls 1. In the Bohr model, compre the mgnitudes of the electron s kinetic nd potentil energies in orit. Wht does this imply? When n electron moves in n orit, the

More information

Multiple choice questions [60 points]

Multiple choice questions [60 points] 1 Multiple choice questions [60 points] Answe all o the ollowing questions. Read each question caeully. Fill the coect bubble on you scanton sheet. Each question has exactly one coect answe. All questions

More information

4.11 Inner Product Spaces

4.11 Inner Product Spaces 314 CHAPTER 4 Vector Spces 9. A mtrix of the form 0 0 b c 0 d 0 0 e 0 f g 0 h 0 cnnot be invertible. 10. A mtrix of the form bc d e f ghi such tht e bd = 0 cnnot be invertible. 4.11 Inner Product Spces

More information

5.2. LINE INTEGRALS 265. Let us quickly review the kind of integrals we have studied so far before we introduce a new one.

5.2. LINE INTEGRALS 265. Let us quickly review the kind of integrals we have studied so far before we introduce a new one. 5.2. LINE INTEGRALS 265 5.2 Line Integrls 5.2.1 Introduction Let us quickly review the kind of integrls we hve studied so fr before we introduce new one. 1. Definite integrl. Given continuous rel-vlued

More information

Introduction to Fluid Mechanics

Introduction to Fluid Mechanics Chapte 1 1 1.6. Solved Examples Example 1.1 Dimensions and Units A body weighs 1 Ibf when exposed to a standad eath gavity g = 3.174 ft/s. (a) What is its mass in kg? (b) What will the weight of this body

More information

COMPONENTS: COMBINED LOADING

COMPONENTS: COMBINED LOADING LECTURE COMPONENTS: COMBINED LOADING Third Edition A. J. Clrk School of Engineering Deprtment of Civil nd Environmentl Engineering 24 Chpter 8.4 by Dr. Ibrhim A. Asskkf SPRING 2003 ENES 220 Mechnics of

More information

Physics 2102 Lecture 2. Physics 2102

Physics 2102 Lecture 2. Physics 2102 Physics 10 Jonthn Dowling Physics 10 Lecture Electric Fields Chrles-Augustin de Coulomb (1736-1806) Jnury 17, 07 Version: 1/17/07 Wht re we going to lern? A rod mp Electric chrge Electric force on other

More information

Module 2. Analysis of Statically Indeterminate Structures by the Matrix Force Method. Version 2 CE IIT, Kharagpur

Module 2. Analysis of Statically Indeterminate Structures by the Matrix Force Method. Version 2 CE IIT, Kharagpur Module Anlysis of Stticlly Indeterminte Structures by the Mtrix Force Method Version CE IIT, Khrgpur esson 9 The Force Method of Anlysis: Bems (Continued) Version CE IIT, Khrgpur Instructionl Objectives

More information

Small Business Cloud Services

Small Business Cloud Services Smll Business Cloud Services Summry. We re thick in the midst of historic se-chnge in computing. Like the emergence of personl computers, grphicl user interfces, nd mobile devices, the cloud is lredy profoundly

More information

Vector Calculus: Are you ready? Vectors in 2D and 3D Space: Review

Vector Calculus: Are you ready? Vectors in 2D and 3D Space: Review Vecto Calculus: Ae you eady? Vectos in D and 3D Space: Review Pupose: Make cetain that you can define, and use in context, vecto tems, concepts and fomulas listed below: Section 7.-7. find the vecto defined

More information

MATH 150 HOMEWORK 4 SOLUTIONS

MATH 150 HOMEWORK 4 SOLUTIONS MATH 150 HOMEWORK 4 SOLUTIONS Section 1.8 Show tht the product of two of the numbers 65 1000 8 2001 + 3 177, 79 1212 9 2399 + 2 2001, nd 24 4493 5 8192 + 7 1777 is nonnegtive. Is your proof constructive

More information

Experiment 6: Friction

Experiment 6: Friction Experiment 6: Friction In previous lbs we studied Newton s lws in n idel setting, tht is, one where friction nd ir resistnce were ignored. However, from our everydy experience with motion, we know tht

More information

, and the number of electrons is -19. e e 1.60 10 C. The negatively charged electrons move in the direction opposite to the conventional current flow.

, and the number of electrons is -19. e e 1.60 10 C. The negatively charged electrons move in the direction opposite to the conventional current flow. Prolem 1. f current of 80.0 ma exists in metl wire, how mny electrons flow pst given cross section of the wire in 10.0 min? Sketch the directions of the current nd the electrons motion. Solution: The chrge

More information

Or more simply put, when adding or subtracting quantities, their uncertainties add.

Or more simply put, when adding or subtracting quantities, their uncertainties add. Propgtion of Uncertint through Mthemticl Opertions Since the untit of interest in n eperiment is rrel otined mesuring tht untit directl, we must understnd how error propgtes when mthemticl opertions re

More information

Fluids Lecture 15 Notes

Fluids Lecture 15 Notes Fluids Lectue 15 Notes 1. Unifom flow, Souces, Sinks, Doublets Reading: Andeson 3.9 3.12 Unifom Flow Definition A unifom flow consists of a velocit field whee V = uî + vĵ is a constant. In 2-D, this velocit

More information

LINEAR TRANSFORMATIONS AND THEIR REPRESENTING MATRICES

LINEAR TRANSFORMATIONS AND THEIR REPRESENTING MATRICES LINEAR TRANSFORMATIONS AND THEIR REPRESENTING MATRICES DAVID WEBB CONTENTS Liner trnsformtions 2 The representing mtrix of liner trnsformtion 3 3 An ppliction: reflections in the plne 6 4 The lgebr of

More information

Operations with Polynomials

Operations with Polynomials 38 Chpter P Prerequisites P.4 Opertions with Polynomils Wht you should lern: Write polynomils in stndrd form nd identify the leding coefficients nd degrees of polynomils Add nd subtrct polynomils Multiply

More information

Intro to Circle Geometry By Raymond Cheong

Intro to Circle Geometry By Raymond Cheong Into to Cicle Geomety By Rymond Cheong Mny poblems involving cicles cn be solved by constucting ight tingles then using the Pythgoen Theoem. The min chllenge is identifying whee to constuct the ight tingle.

More information

FUNCTIONS DEFINED BY IMPROPER INTEGRALS

FUNCTIONS DEFINED BY IMPROPER INTEGRALS FUNCTIONS DEFINED BY IMPROPER INTEGRALS Willim F. Tench Andew G. Cowles Distinguished Pofesso Emeitus Deptment of Mthemtics Tinity Univesity Sn Antonio, Tes, USA [email protected] This is supplement to

More information

Math 135 Circles and Completing the Square Examples

Math 135 Circles and Completing the Square Examples Mth 135 Circles nd Completing the Squre Exmples A perfect squre is number such tht = b 2 for some rel number b. Some exmples of perfect squres re 4 = 2 2, 16 = 4 2, 169 = 13 2. We wish to hve method for

More information

Physics 43 Homework Set 9 Chapter 40 Key

Physics 43 Homework Set 9 Chapter 40 Key Physics 43 Homework Set 9 Chpter 4 Key. The wve function for n electron tht is confined to x nm is. Find the normliztion constnt. b. Wht is the probbility of finding the electron in. nm-wide region t x

More information

AREA OF A SURFACE OF REVOLUTION

AREA OF A SURFACE OF REVOLUTION AREA OF A SURFACE OF REVOLUTION h cut r πr h A surfce of revolution is formed when curve is rotted bout line. Such surfce is the lterl boundr of solid of revolution of the tpe discussed in Sections 7.

More information

Random Variables and Distribution Functions

Random Variables and Distribution Functions Topic 7 Rndom Vibles nd Distibution Functions 7.1 Intoduction Fom the univese of possible infomtion, we sk question. To ddess this question, we might collect quntittive dt nd ognize it, fo emple, using

More information

Graphs on Logarithmic and Semilogarithmic Paper

Graphs on Logarithmic and Semilogarithmic Paper 0CH_PHClter_TMSETE_ 3//00 :3 PM Pge Grphs on Logrithmic nd Semilogrithmic Pper OBJECTIVES When ou hve completed this chpter, ou should be ble to: Mke grphs on logrithmic nd semilogrithmic pper. Grph empiricl

More information

Lecture 5. Inner Product

Lecture 5. Inner Product Lecture 5 Inner Product Let us strt with the following problem. Given point P R nd line L R, how cn we find the point on the line closest to P? Answer: Drw line segment from P meeting the line in right

More information

Answer, Key Homework 6 David McIntyre 45123 Mar 25, 2004 1

Answer, Key Homework 6 David McIntyre 45123 Mar 25, 2004 1 Answe, Key Homewok 6 vid McInye 4513 M 5, 004 1 This pin-ou should hve 0 quesions. Muliple-choice quesions my coninue on he nex column o pge find ll choices befoe mking you selecion. The due ime is Cenl

More information

- momentum conservation equation ρ = ρf. These are equivalent to four scalar equations with four unknowns: - pressure p - velocity components

- momentum conservation equation ρ = ρf. These are equivalent to four scalar equations with four unknowns: - pressure p - velocity components J. Szantyr Lecture No. 14 The closed system of equations of the fluid mechanics The above presented equations form the closed system of the fluid mechanics equations, which may be employed for description

More information

The Velocity Factor of an Insulated Two-Wire Transmission Line

The Velocity Factor of an Insulated Two-Wire Transmission Line The Velocity Fctor of n Insulted Two-Wire Trnsmission Line Problem Kirk T. McDonld Joseph Henry Lbortories, Princeton University, Princeton, NJ 08544 Mrch 7, 008 Estimte the velocity fctor F = v/c nd the

More information

Review guide for the final exam in Math 233

Review guide for the final exam in Math 233 Review guide for the finl exm in Mth 33 1 Bsic mteril. This review includes the reminder of the mteril for mth 33. The finl exm will be cumultive exm with mny of the problems coming from the mteril covered

More information

AMPERE S LAW. by Kirby Morgan MISN-0-138

AMPERE S LAW. by Kirby Morgan MISN-0-138 MISN-0-138 AMPERE S LAW by Kiby Mogn 1. Usefullness................................................ 1 AMPERE S LAW 2. The Lw................................................... 1. The Integl Reltionship...............................

More information

12. Rolling, Torque, and Angular Momentum

12. Rolling, Torque, and Angular Momentum 12. olling, Toque, and Angula Momentum 1 olling Motion: A motion that is a combination of otational and tanslational motion, e.g. a wheel olling down the oad. Will only conside olling with out slipping.

More information

Integration by Substitution

Integration by Substitution Integrtion by Substitution Dr. Philippe B. Lvl Kennesw Stte University August, 8 Abstrct This hndout contins mteril on very importnt integrtion method clled integrtion by substitution. Substitution is

More information

SOLUTIONS TO CONCEPTS CHAPTER 5

SOLUTIONS TO CONCEPTS CHAPTER 5 1. m k S 10m Let, ccelertion, Initil velocity u 0. S ut + 1/ t 10 ½ ( ) 10 5 m/s orce: m 5 10N (ns) 40000. u 40 km/hr 11.11 m/s. 3600 m 000 k ; v 0 ; s 4m v u ccelertion s SOLUIONS O CONCEPS CHPE 5 0 11.11

More information

AP Physics Gravity and Circular Motion

AP Physics Gravity and Circular Motion AP Phyic Gity nd icul Motion Newton theoy i ey iple. Gity i foce of ttction between ny two object tht he. Two object itting on dektop ttct ech othe with foce tht we cll gity. They don t go flying togethe

More information

9.3. The Scalar Product. Introduction. Prerequisites. Learning Outcomes

9.3. The Scalar Product. Introduction. Prerequisites. Learning Outcomes The Sclr Product 9.3 Introduction There re two kinds of multipliction involving vectors. The first is known s the sclr product or dot product. This is so-clled becuse when the sclr product of two vectors

More information

PROF. BOYAN KOSTADINOV NEW YORK CITY COLLEGE OF TECHNOLOGY, CUNY

PROF. BOYAN KOSTADINOV NEW YORK CITY COLLEGE OF TECHNOLOGY, CUNY MAT 0630 INTERNET RESOURCES, REVIEW OF CONCEPTS AND COMMON MISTAKES PROF. BOYAN KOSTADINOV NEW YORK CITY COLLEGE OF TECHNOLOGY, CUNY Contents 1. ACT Compss Prctice Tests 1 2. Common Mistkes 2 3. Distributive

More information

Physics 235 Chapter 5. Chapter 5 Gravitation

Physics 235 Chapter 5. Chapter 5 Gravitation Chapte 5 Gavitation In this Chapte we will eview the popeties of the gavitational foce. The gavitational foce has been discussed in geat detail in you intoductoy physics couses, and we will pimaily focus

More information

Forces & Magnetic Dipoles. r r τ = μ B r

Forces & Magnetic Dipoles. r r τ = μ B r Foces & Magnetic Dipoles x θ F θ F. = AI τ = U = Fist electic moto invented by Faaday, 1821 Wie with cuent flow (in cup of Hg) otates aound a a magnet Faaday s moto Wie with cuent otates aound a Pemanent

More information

DlNBVRGH + Sickness Absence Monitoring Report. Executive of the Council. Purpose of report

DlNBVRGH + Sickness Absence Monitoring Report. Executive of the Council. Purpose of report DlNBVRGH + + THE CITY OF EDINBURGH COUNCIL Sickness Absence Monitoring Report Executive of the Council 8fh My 4 I.I...3 Purpose of report This report quntifies the mount of working time lost s result of

More information

Lectures 8 and 9 1 Rectangular waveguides

Lectures 8 and 9 1 Rectangular waveguides 1 Lectures 8 nd 9 1 Rectngulr wveguides y b x z Consider rectngulr wveguide with 0 < x b. There re two types of wves in hollow wveguide with only one conductor; Trnsverse electric wves

More information

Example A rectangular box without lid is to be made from a square cardboard of sides 18 cm by cutting equal squares from each corner and then folding

Example A rectangular box without lid is to be made from a square cardboard of sides 18 cm by cutting equal squares from each corner and then folding 1 Exmple A rectngulr box without lid is to be mde from squre crdbord of sides 18 cm by cutting equl squres from ech corner nd then folding up the sides. 1 Exmple A rectngulr box without lid is to be mde

More information

AAPT UNITED STATES PHYSICS TEAM AIP 2010

AAPT UNITED STATES PHYSICS TEAM AIP 2010 2010 F = m Exm 1 AAPT UNITED STATES PHYSICS TEAM AIP 2010 Enti non multiplicnd sunt preter necessittem 2010 F = m Contest 25 QUESTIONS - 75 MINUTES INSTRUCTIONS DO NOT OPEN THIS TEST UNTIL YOU ARE TOLD

More information

Chapter 22. Outside a uniformly charged sphere, the field looks like that of a point charge at the center of the sphere.

Chapter 22. Outside a uniformly charged sphere, the field looks like that of a point charge at the center of the sphere. Chapte.3 What is the magnitude of a point chage whose electic field 5 cm away has the magnitude of.n/c. E E 5.56 1 11 C.5 An atom of plutonium-39 has a nuclea adius of 6.64 fm and atomic numbe Z94. Assuming

More information

Week 11 - Inductance

Week 11 - Inductance Week - Inductnce November 6, 202 Exercise.: Discussion Questions ) A trnsformer consists bsiclly of two coils in close proximity but not in electricl contct. A current in one coil mgneticlly induces n

More information

Euler Euler Everywhere Using the Euler-Lagrange Equation to Solve Calculus of Variation Problems

Euler Euler Everywhere Using the Euler-Lagrange Equation to Solve Calculus of Variation Problems Euler Euler Everywhere Using the Euler-Lgrnge Eqution to Solve Clculus of Vrition Problems Jenine Smllwood Principles of Anlysis Professor Flschk My 12, 1998 1 1. Introduction Clculus of vritions is brnch

More information

Binary Representation of Numbers Autar Kaw

Binary Representation of Numbers Autar Kaw Binry Representtion of Numbers Autr Kw After reding this chpter, you should be ble to: 1. convert bse- rel number to its binry representtion,. convert binry number to n equivlent bse- number. In everydy

More information

Vectors 2. 1. Recap of vectors

Vectors 2. 1. Recap of vectors Vectors 2. Recp of vectors Vectors re directed line segments - they cn be represented in component form or by direction nd mgnitude. We cn use trigonometry nd Pythgors theorem to switch between the forms

More information

Vectors. The magnitude of a vector is its length, which can be determined by Pythagoras Theorem. The magnitude of a is written as a.

Vectors. The magnitude of a vector is its length, which can be determined by Pythagoras Theorem. The magnitude of a is written as a. Vectors mesurement which onl descries the mgnitude (i.e. size) of the oject is clled sclr quntit, e.g. Glsgow is 11 miles from irdrie. vector is quntit with mgnitude nd direction, e.g. Glsgow is 11 miles

More information

2005-06 Second Term MAT2060B 1. Supplementary Notes 3 Interchange of Differentiation and Integration

2005-06 Second Term MAT2060B 1. Supplementary Notes 3 Interchange of Differentiation and Integration Source: http://www.mth.cuhk.edu.hk/~mt26/mt26b/notes/notes3.pdf 25-6 Second Term MAT26B 1 Supplementry Notes 3 Interchnge of Differentition nd Integrtion The theme of this course is bout vrious limiting

More information

Bayesian Updating with Continuous Priors Class 13, 18.05, Spring 2014 Jeremy Orloff and Jonathan Bloom

Bayesian Updating with Continuous Priors Class 13, 18.05, Spring 2014 Jeremy Orloff and Jonathan Bloom Byesin Updting with Continuous Priors Clss 3, 8.05, Spring 04 Jeremy Orloff nd Jonthn Bloom Lerning Gols. Understnd prmeterized fmily of distriutions s representing continuous rnge of hypotheses for the

More information

6 Energy Methods And The Energy of Waves MATH 22C

6 Energy Methods And The Energy of Waves MATH 22C 6 Energy Methods And The Energy of Wves MATH 22C. Conservtion of Energy We discuss the principle of conservtion of energy for ODE s, derive the energy ssocited with the hrmonic oscilltor, nd then use this

More information

dz + η 1 r r 2 + c 1 ln r + c 2 subject to the boundary conditions of no-slip side walls and finite force over the fluid length u z at r = 0

dz + η 1 r r 2 + c 1 ln r + c 2 subject to the boundary conditions of no-slip side walls and finite force over the fluid length u z at r = 0 Poiseuille Flow Jean Louis Maie Poiseuille, a Fench physicist and physiologist, was inteested in human blood flow and aound 1840 he expeimentally deived a law fo flow though cylindical pipes. It s extemely

More information

Rotating DC Motors Part II

Rotating DC Motors Part II Rotting Motors rt II II.1 Motor Equivlent Circuit The next step in our consiertion of motors is to evelop n equivlent circuit which cn be use to better unerstn motor opertion. The rmtures in rel motors

More information

Rate and Activation Energy of the Iodination of Acetone

Rate and Activation Energy of the Iodination of Acetone nd Activtion Energ of the Iodintion of Acetone rl N. eer Dte of Eperiment: //00 Florence F. Ls (prtner) Abstrct: The rte, rte lw nd ctivtion energ of the iodintion of cetone re detered b observing the

More information

Integration. 148 Chapter 7 Integration

Integration. 148 Chapter 7 Integration 48 Chpter 7 Integrtion 7 Integrtion t ech, by supposing tht during ech tenth of second the object is going t constnt speed Since the object initilly hs speed, we gin suppose it mintins this speed, but

More information

Solution to Problem Set 1

Solution to Problem Set 1 CSE 5: Introduction to the Theory o Computtion, Winter A. Hevi nd J. Mo Solution to Prolem Set Jnury, Solution to Prolem Set.4 ). L = {w w egin with nd end with }. q q q q, d). L = {w w h length t let

More information

Polynomial Functions. Polynomial functions in one variable can be written in expanded form as ( )

Polynomial Functions. Polynomial functions in one variable can be written in expanded form as ( ) Polynomil Functions Polynomil functions in one vrible cn be written in expnded form s n n 1 n 2 2 f x = x + x + x + + x + x+ n n 1 n 2 2 1 0 Exmples of polynomils in expnded form re nd 3 8 7 4 = 5 4 +

More information

Algebra Review. How well do you remember your algebra?

Algebra Review. How well do you remember your algebra? Algebr Review How well do you remember your lgebr? 1 The Order of Opertions Wht do we men when we write + 4? If we multiply we get 6 nd dding 4 gives 10. But, if we dd + 4 = 7 first, then multiply by then

More information

Lecture 25: More Rectangular Domains: Neumann Problems, mixed BC, and semi-infinite strip problems

Lecture 25: More Rectangular Domains: Neumann Problems, mixed BC, and semi-infinite strip problems Introductory lecture notes on Prtil ifferentil Equtions - y Anthony Peirce UBC 1 Lecture 5: More Rectngulr omins: Neumnn Prolems, mixed BC, nd semi-infinite strip prolems Compiled 6 Novemer 13 In this

More information

9 CONTINUOUS DISTRIBUTIONS

9 CONTINUOUS DISTRIBUTIONS 9 CONTINUOUS DISTIBUTIONS A rndom vrible whose vlue my fll nywhere in rnge of vlues is continuous rndom vrible nd will be ssocited with some continuous distribution. Continuous distributions re to discrete

More information

Use Geometry Expressions to create a more complex locus of points. Find evidence for equivalence using Geometry Expressions.

Use Geometry Expressions to create a more complex locus of points. Find evidence for equivalence using Geometry Expressions. Lerning Objectives Loci nd Conics Lesson 3: The Ellipse Level: Preclculus Time required: 120 minutes In this lesson, students will generlize their knowledge of the circle to the ellipse. The prmetric nd

More information

Applications to Physics and Engineering

Applications to Physics and Engineering Section 7.5 Applictions to Physics nd Engineering Applictions to Physics nd Engineering Work The term work is used in everydy lnguge to men the totl mount of effort required to perform tsk. In physics

More information

2 r2 θ = r2 t. (3.59) The equal area law is the statement that the term in parentheses,

2 r2 θ = r2 t. (3.59) The equal area law is the statement that the term in parentheses, 3.4. KEPLER S LAWS 145 3.4 Keple s laws You ae familia with the idea that one can solve some mechanics poblems using only consevation of enegy and (linea) momentum. Thus, some of what we see as objects

More information

32. The Tangency Problem of Apollonius.

32. The Tangency Problem of Apollonius. . The Tngeny olem of Apollonius. Constut ll iles tngent to thee given iles. This eleted polem ws posed y Apollinius of eg (. 60-70 BC), the getest mthemtiin of ntiquity fte Eulid nd Ahimedes. His mjo wok

More information

GFI MilAchive 6 vs H&S Exchnge@PAM GFI Softwe www.gfi.com GFI MilAchive 6 vs H&S Exchnge@PAM GFI MilAchive 6 H&S Exchnge@PAM Who we e Genel fetues Suppots Micosoft Exchnge 2000, 2003 & 2007 Suppots distibuted

More information

PHY 222 Lab 8 MOTION OF ELECTRONS IN ELECTRIC AND MAGNETIC FIELDS

PHY 222 Lab 8 MOTION OF ELECTRONS IN ELECTRIC AND MAGNETIC FIELDS PHY 222 Lb 8 MOTION OF ELECTRONS IN ELECTRIC AND MAGNETIC FIELDS Nme: Prtners: INTRODUCTION Before coming to lb, plese red this pcket nd do the prelb on pge 13 of this hndout. From previous experiments,

More information

Econ 4721 Money and Banking Problem Set 2 Answer Key

Econ 4721 Money and Banking Problem Set 2 Answer Key Econ 472 Money nd Bnking Problem Set 2 Answer Key Problem (35 points) Consider n overlpping genertions model in which consumers live for two periods. The number of people born in ech genertion grows in

More information

Carter-Penrose diagrams and black holes

Carter-Penrose diagrams and black holes Cate-Penose diagams and black holes Ewa Felinska The basic intoduction to the method of building Penose diagams has been pesented, stating with obtaining a Penose diagam fom Minkowski space. An example

More information

Helicopter Theme and Variations

Helicopter Theme and Variations Helicopter Theme nd Vritions Or, Some Experimentl Designs Employing Pper Helicopters Some possible explntory vribles re: Who drops the helicopter The length of the rotor bldes The height from which the

More information

SPECIAL PRODUCTS AND FACTORIZATION

SPECIAL PRODUCTS AND FACTORIZATION MODULE - Specil Products nd Fctoriztion 4 SPECIAL PRODUCTS AND FACTORIZATION In n erlier lesson you hve lernt multipliction of lgebric epressions, prticulrly polynomils. In the study of lgebr, we come

More information

Chapter 4 Newton s Laws

Chapter 4 Newton s Laws Chpte 4 Newton s Lws Conceptul Pobles While on ve sooth level tnscontinentl plne fliht, ou coffee cup sits otionless on ou t. Ae thee foces ctin on the cup? If so, how do the diffe fo the foces tht would

More information

Exam 3: Equation Summary

Exam 3: Equation Summary MASSACHUSETTS INSTITUTE OF TECHNOLOGY Depatment of Physics Physics 8.1 TEAL Fall Tem 4 Momentum: p = mv, F t = p, Fext ave t= t f t= Exam 3: Equation Summay total = Impulse: I F( t ) = p Toque: τ = S S,P

More information

SPH simulation of fluid-structure interaction problems

SPH simulation of fluid-structure interaction problems Diprtimento di ingegneri idrulic e mientle SPH simultion of fluid-structure interction prolems C. Antoci, M. Gllti, S. Siill Reserch project Prolem: deformtion of plte due to the ction of fluid (lrge displcement

More information

Adaptive Control of a Production and Maintenance System with Unknown Deterioration and Obsolescence Rates

Adaptive Control of a Production and Maintenance System with Unknown Deterioration and Obsolescence Rates Int J of Mthemtic Sciences nd Appictions, Vo, No 3, Septembe Copyight Mind Rede Pubictions wwwjounshubcom Adptive Conto of Poduction nd Mintennce System with Unknown Deteiotion nd Obsoescence Rtes Fwzy

More information

(d) False. The orbital period of a planet is independent of the planet s mass.

(d) False. The orbital period of a planet is independent of the planet s mass. hpte Gvity onceptul Pobles ue o flse: () (b) (c) (d) o Keple s lw of equl es to be vlid, the foce of vity ust vy invesely with the sque of the distnce between iven nd the. he closest to the hs the shotest

More information

G.GMD.1 STUDENT NOTES WS #5 1 REGULAR POLYGONS

G.GMD.1 STUDENT NOTES WS #5 1 REGULAR POLYGONS G.GMD.1 STUDENT NOTES WS #5 1 REGULAR POLYGONS Regul polygon e of inteet to u becue we begin looking t the volume of hexgonl pim o Tethedl nd to do thee type of clcultion we need to be ble to olve fit

More information

Factoring Polynomials

Factoring Polynomials Fctoring Polynomils Some definitions (not necessrily ll for secondry school mthemtics): A polynomil is the sum of one or more terms, in which ech term consists of product of constnt nd one or more vribles

More information

RIGHT TRIANGLES AND THE PYTHAGOREAN TRIPLETS

RIGHT TRIANGLES AND THE PYTHAGOREAN TRIPLETS RIGHT TRIANGLES AND THE PYTHAGOREAN TRIPLETS Known for over 500 yers is the fct tht the sum of the squres of the legs of right tringle equls the squre of the hypotenuse. Tht is +b c. A simple proof is

More information

Solution Derivations for Capa #8

Solution Derivations for Capa #8 Solution Deivations fo Capa #8 1) A ass spectoete applies a voltage of 2.00 kv to acceleate a singly chaged ion (+e). A 0.400 T field then bends the ion into a cicula path of adius 0.305. What is the ass

More information

Magnetic Field and Magnetic Forces. Young and Freedman Chapter 27

Magnetic Field and Magnetic Forces. Young and Freedman Chapter 27 Magnetic Field and Magnetic Foces Young and Feedman Chapte 27 Intoduction Reiew - electic fields 1) A chage (o collection of chages) poduces an electic field in the space aound it. 2) The electic field

More information