Flip Chip Package Qualification of RF-IC Packages

Similar documents
Solder Reflow Guide for Surface Mount Devices

A Manufacturing Technology Perspective of: Embedded Die in Substrate and Panel Based Fan-Out Packages

RJR Polymers Reliability Qualification Report RQFN55-24-A and RQFN44-12-A

Suggested PCB Land Pattern Designs for Leaded and Leadless Packages, and Surface Mount Guidelines for Leadless Packages

BGA - Ball Grid Array Inspection Workshop. Bob Willis leadfreesoldering.com

Copyright 2008 IEEE. Reprinted from ECTC2008 Proceedings.

Molded. By July. A chip scale. and Omega. Guidelines. layer on the silicon chip. of mold. aluminum or. Bottom view. Rev. 1.

GUIDELINES FOR PRINTED CIRCUIT BOARD ASSEMBLY (PCBA) OF UTAC GROUP S GRID ARRAY PACKAGE (GQFN) AND ITS BOARD LEVEL RELIABILITY

MuAnalysis. Printed Circuit Board Reliability and Integrity Characterization Using MAJIC. M. Simard-Normandin MuAnalysis Inc. Ottawa, ON, Canada

Ball Grid Array (BGA) Technology

JOINT INDUSTRY STANDARD

IPC/JEDEC J-STD-020C. Moisture/Reflow Sensitivity Classification for Non-hermetic Solid State Surface Mount Devices

Introduction to the Plastic Ball Grid Array (PBGA)

DRIVING COST OUT OF YOUR DESIGNS THROUGH YOUR PCB FABRICATOR S EYES!

AND8464/D. Board Level Application Note for 0402, 0502 and 0603 DSN2 Packages APPLICATION NOTE

Edition Published by Infineon Technologies AG Munich, Germany 2013 Infineon Technologies AG All Rights Reserved.

Good Boards = Results

Investigation of Components Attachment onto Low Temperature Flex Circuit

8-bit Atmel Microcontrollers. Application Note. Atmel AVR211: Wafer Level Chip Scale Packages

Designing with High-Density BGA Packages for Altera Devices

Accelerated Thermal Cycling and Failure Mechanisms For BGA and CSP Assemblies

1.Introduction. Introduction. Most of slides come from Semiconductor Manufacturing Technology by Michael Quirk and Julian Serda.

Customer Service Note Lead Frame Package User Guidelines

PCB Assembly Guidelines for Intersil Wafer Level Chip Scale Package Devices

How do you create a RoHS Compliancy-Lead-free Roadmap?

Assembly of LPCC Packages AN-0001

JOINT INDUSTRY STANDARD

REVISION HISTORY APPROVERS

Lead-free Defects in Reflow Soldering

Dual Integration - Verschmelzung von Wafer und Panel Level Technologien

Q&A. Contract Manufacturing Q&A. Q&A for those involved in Contract Manufacturing using Nelco Electronic Materials

Xilinx Advanced Packaging

, Yong-Min Kwon 1 ) , Ho-Young Son 1 ) , Jeong-Tak Moon 2 ) Byung-Wook Jeong 2 ) , Kyung-In Kang 2 )

CASE STUDY: SCREEN PRINTING SOLUTIONS FOR SMALL DIE & PRECISION ALIGNMENT CHALLENGES

LEAD FREE HALOGENFREE. Würth Elektronik PCB Design Conference Lothar Weitzel 2007 Seite 1


Self Qualification Results

Comparison of Advanced PoP Package Configurations

FLEXIBLE CIRCUITS MANUFACTURING

What is surface mount?

PCB inspection is more important today than ever before!

Bob Willis leadfreesoldering.com

Wafer Level Chip Scale Package (WLCSP)

MODERN 2D / 3D X-RAY INSPECTION -- EMPHASIS ON BGA, QFN, 3D PACKAGES, AND COUNTERFEIT COMPONENTS

Technical Note Recommended Soldering Parameters

HOT BAR REFLOW SOLDERING FUNDAMENTALS. A high quality Selective Soldering Technology

Selective Soldering Defects and How to Prevent Them

How to Build a Printed Circuit Board. Advanced Circuits Inc 2004

Quad Flat Package (QFP)

White Paper. Modification of Existing NEBS Requirements for Pb-Free Electronics. By Craig Hillman, PhD

Application Note AN Audio Power Quad Flat No-Lead (PQFN) Board Mounting Application Note

Taking the Pain Out of Pb-free Reflow

Flex Circuit Design and Manufacture.

Printed Circuits. Danilo Manstretta. microlab.unipv.it/ AA 2012/2013 Lezioni di Tecnologie e Materiali per l Elettronica

Edition Published by Infineon Technologies AG Munich, Germany 2012 Infineon Technologies AG All Rights Reserved.

Advancements in High Frequency, High Resolution Acoustic Micro Imaging for Thin Silicon Applications

Lead-Free Product Transition: Impact on Printed Circuit Board Design and Material Selection

POWER GOLD FOR 175 C Tj-max

Wafer Level Testing Challenges for Flip Chip and Wafer Level Packages

Evaluation of Soft Soldering on Aluminium Nitride (AlN) ESTEC Contract No /05/NL/PA. CTB Hybrids WG ESTEC-22nd May 2007

How to avoid Layout and Assembly got chas with advanced packages

Effect of PWB Plating on the Microstructure and Reliability of SnAgCu Solder Joints

Design and Assembly Process Implementation for BGAs

Failure Analysis (FA) Introduction

Electroless Nickel / Immersion Gold Process Technology for Improved Ductility of Flex and Rigid-Flex Applications

Electronic Board Assembly

JEDEC SOLID STATE TECHNOLOGY ASSOCIATION

Fraunhofer ISIT, Itzehoe 14. Juni Fraunhofer Institut Siliziumtechnologie (ISIT)

Integrated Circuit Packaging and Thermal Design

JEDEC SOLID STATE TECHNOLOGY ASSOCIATION

PRINTED CIRCUIT BOARD SURFACE FINISHES - ADVANTAGES AND DISADVANTAGES

PCB Quality Inspection. Student Manual

0.08 to 0.31 mils. IC Metal Interconnect. 6 mils. Bond Wire. Metal Package Lead Frame. 40 mils. PC Board. Metal Trace on PC Board 18507

HDI. HDI = High Density Interconnect. Kenneth Jonsson Bo Andersson. NCAB Group

Recommended Soldering Techniques for ATC 500 Series Capacitors

RoHS-Compliant Through-Hole VI Chip Soldering Recommendations

Dry Film Photoresist & Material Solutions for 3D/TSV

POWER FORUM, BOLOGNA

Faszination Licht. Entwicklungstrends im LED Packaging. Dr. Rafael Jordan Business Development Team. Dr. Rafael Jordan, Business Development Team

Reliability Performance of Very Thin Printed Circuit Boards with regard to Different any-layer Manufacturing Technologies

Reliability Stress Test Descriptions

A New Manufacturing Process for High Volume Production of Ceramic Column Grid Array Modules

DirectFET TM - A Proprietary New Source Mounted Power Package for Board Mounted Power

ENIG with Ductile Electroless Nickel for Flex Circuit Applications

Analysis of BGA Solder Joint Reliability for Selected Solder Alloy and Surface Finish Configurations

Winbond W2E512/W27E257 EEPROM

SURFACE FINISHING FOR PRINTED CIRCUIT BOARDS

Wurth Electronics Midcom Policy Statement on RoHS Compliance And Lead-Free Products

Electronic component assembly

Lead-Free Rework Optimization Project

PCB Land Pattern Design and Surface Mount Guidelines for QFN Packages

TN0991 Technical note

Welcome & Introduction

RoHS / Lead-Free Initiative. Microsemi Analog Mixed Signal Group

The Alphabet soup of IPC Specifications. 340 Raleigh Street Holly Springs, NC 27540

Surface Mount Technology cooling for high volumes applications by: Cesare Capriz Aavid Thermalloy via XXV Aprile 32 Cadriano (BO) ITALY

Reballing Rework Bright New Future

Chapter 14. Printed Circuit Board

Rework stations: Meeting the challenges of lead-free solders

Transcription:

Flip Chip Package Qualification of RF-IC Packages Mumtaz Y. Bora Peregrine Semiconductor San Diego, Ca. 92121 mbora@psemi.com Abstract Quad Flat Pack No Leads (QFNs) are thermally enhanced plastic packages that use conventional copper leadframe with wire bonded interconnects.. These leadless components provide an advanced packaging solution that reduces board real estate, with improved electrical and thermal performance over traditional leaded packages. The move towards finer pitch is resulting in using flip chip bumps as interconnects on an interposer substrate and packaging as QFN. [1] The QFN devices commonly known as BTC (bottom terminated components) are attractive due to their low cost per I/O, performance and low profile; they are also a challenge for assembly due to their low to zero standoff height. Successful assembly yields and solder joint reliability requires careful selection of substrate materials, fluxes, component plating finishes, controlled reflow processes and flatness of package and PWB. [2] This challenge is enhanced with the transition to lead free reflow as the higher peak reflow temperatures results in more thermal and CTE mismatch between package and PWB. Wire bonded leadframe packages are typically plated with 100% Matte tin or NiPdgold on the solderable terminations. Interposer substrate is typically plated with Electroless nickel /gold for solderability of terminations. War page characteristics of interposer substrates have to be evaluated to minimize stress on the flip chip bumps. Reflowing packages with flip chip bump interconnects requires a good balance of substrate /package material sets and controlled reflow profiles to ensure proper melt of the bump interconnects and solder joint reliability thru subsequent reflow processes at assembly facilities. The paper reviews the qualification efforts for solder interconnects on interposer substrates, X-ray and X-sectional analysis of packages and process optimization efforts to improve reliability of the interconnects Introduction Flip chip interconnects are in demand for consumer electronics as these packages shorten the signals, reduce inductance and improve functionality of these packages as compared to the wire bonded packages. These packages are commonly known as LGA (Land Grid Array) packages. To ensure reliability of these packages in high volume SMT assembly production requires careful selection of critical commodities like IC Packages and PWBs. SMT assembly yields depend on good quality components, solder paste print processes and oven reflow profiles. This has become more critical in lead free reflow due to higher peak reflow temp. And narrow process windows. Proper storage and handling controls of components and process controls in production are necessary for good yields and reliability. The paper summarizes the qualification of solder and copper interconnects. Package construction analysis was conducted to assess integrity of die attach, molding and plating processes. X-section and SEM/EDX analysis, and reliability test results for thermal cycling tests are presented including continuous improvement efforts at subcontract locations. Substrate Selection and Design The substrates used for interposer packages are typically 2 layers thin laminate approximately 150-200 micron thick BT resin with 100 micron drilled visa for layer interconnects. The typical pad pitch is 200 microns with the option of having solder mask defined or non-solder mask de fined pads. Figure 1 shows the bottom side of the substrate pads with the terminations that solder to the board. Figure 2 shows an X-Ray image of a typical leadframe wire bonded package.

Figure 1. Subtrate bottom side terminations Figure 2. Wirebonded QFN Package Flip Chip Bump Options The bumping options require evaluation as there are many different metallurgies that can be used for flip chip bumping depending on the application and use environement for commercial products, Hi-Reliability products etc. The most common bump material used is eutectic or lead free solder. Other materials used are copper bumps or pillars with solder cap to attach to the substrate pad or gold stud bumps for some hi-reliability applications. The early process development work was done using daisy chain dies with lead free solder bumps.followed by product. Figure 3 shows a X-section of solder bump and Figure 4 shows an example of Copper bump in X-section. Figure 3 - Solder Bump Figure 4 Copper Bump Assembly Process The assembly process requires proper optimization of die placement on the interposer pads to get an optimized solder profile. Die placement is done using automated placement equipment. A tacky flux is sprayed on the substrate to facilitate the wetting of the solder bump. In some cases, the bottom one third of the bumps are dipped in flux and then placed on the substrate for reflow. Flux spray process on the substrate appears to give more uniformity and facilitates wetting of the bump. X-Ray Inspection Inspection after placement is done using X-Ray to ensure that thebump is aligned to the pad. A first article inspection is conducted using X-Ray, prior to die placement on the balance of the lot and the necessary adjustments are made to align the die. Reflow Profile Package was reflowed using a lead free solder profile for both solder bump and copper bump using a peak reflow temp of 250C. Multiple reflow profiles were evaluated until the heating and the cooling rate was sufficiently controlled to get an optimum bump profile post reflow. Profiles that are not optimized can result in open bumps post reflow or post thermal shock. X-Ray of the reflowed bumps is also conducted toensure proper melt of the bumps. Figure 5 shows the X-Ray image post reflow.

Post Reflow X-sectioning was conducted to understand the solder joint profile, alignment, presence or absence of voids also to evaluate the grain structure of the solder joint. Voids can get trapped at the bump to substrate interface and cause assembly issues. Generally acceptable criteria for voids is less than 30% of the bump diameter. Figure 6 shows X-section of a reflowed package Figure 5- X-Ray image Post-Reflow Figure 6- X-section of a reflowed solder bump Reflow profile evaluations were also conducted on the copper bump to optimize the reflow profile and minimizes stress on the reflowed bump. Open bumps can occur on the reflowed side or at the die to bump interface due to coefficient of thermal expansion (CTE) mismatch and substrate warpage during reflow. Figure 7 shows the X-section of the copper bump post reflow Overmolding: Figure 7- Copper bump Post Reflow Package is overmolded with a mold compound and post mold cured at 175C for 6 hours. Proper selection of molding materials is essenttial to minimize impact on electrical properties. Multiple runs were conducted to optimize the cure profile, mold pressure, cure time, temp. etc. Figure 8 shows the X-section of an overmolded package Mold Compound Solder mask for mask defined pads. Figure 8 X-section of overmolded package

Reliability Testing A prerequisite to package reliability testing is moisture pre-conditioning to classify package MSL class and ensure that it survives reliability test post moisture soak. The package delamination testing was done using Pre/Post CSAM testing (Scanning Acoustic Microscopy). Packages were subjected to MSL-3 pre conditioning at 60C/30% RH for 192hours followed by 3X reflows at 260C. Both Pre-CSAM and post CSAM images showed no delamination in the packages as shown in Figure 9. The packages were classified MSL-3.per J-STD-020D.1 [3] as laminate based substrates cannot achieve MSL -1 (unlimited floor life). Figure 10 shows the CSAM image post- preconditioning showing no delamination. The reliability tests are summarized in Table 1. Solder bumps were characterized using JEDEC JEP154-Guideline for characterizing solder bump under constant current and temp. Stress. [4] Figure 9 X-section post preconditioning Figure 10 CSAM Image post preconditioning Reliability Test Condition Acceptance High Temp. Storage Life 150C-1000 hours Pass electrical/visual Autoclave Test 121C,100% RH 15Psig-96 hours Pass electrical/decap Thermal Cycling -65C to +150C 500hours Pass electrical /X-section The initial evaluations at thermal cycling reliability test did show some cracking of bumps at the substrate bump interface. Figure 11 shows the X-section post thermal shock. Figure 11 Bump Interface cracks post thermal shock. This condiiton was eliminated by optimization of the reflow profile and controlling the heating and cooling rate during bump reflow. The solder bumped package passed reliability tests, except some bump voids were observed at various stages of testing as shown in Figure 12..

Bump Void Figure 12- Bump void Conclusion: Bumped interconnects are a reliable form of interconnect if reflow process, mold material sets, substrate pads and solder mask are optimized. This will minimize CTE mismatch failures, dewetting of the bump and cracks at the bump to substrate interface. Solder bumps have the ability to self centre during reflow which minimizes failure due to misplacement. Package integrity can be maintained by proper control of processes. References: 1.Leadfree solder Flip chip Assemblyon Laminate and Reliability.Zhen Wei Yu,Erin Yaeger etal. 2.IPC-7093- Design and Assembly guideline for soldering of Bottom Terminated Components. 3. J-STD-020D.1 Moisture refllow Sensitivity Classification of Non HermeticSolid State Devices 4. JEDEC JEP154-Guideline for characterizing solder bump under constant current and temp. stress.

Flip Chip Package Qualification of RF-ICs Mumtaz Y. Bora Peregrine Semiconductor San Diego, CA

Overview Flip Chip vs. Wire bond Package Substrate Selection and Design Bump Technology Options Assembly Process Reliability Testing X-section/CSAM Analysis Future Outlook

Flip chip vs. wire bond package Wire Bonds

Bump Options Solder Bump Collapse after reflow Eutectic or lead Free Copper Bump Maintains standoff

Substrate Selection Substrate Design 2 Layer Interposer BT resin Solder mask Defined/Etch Defined Pads 150-200 micron thick Via 100 micron diameter Trace Width 75-100 micron

Assembly Process Flux Application Spray on substrate Flux Dip Package Die Placement Alignment of bump to pad X-Ray Inspection Bump Alignment

Assembly Process- Reflow Typically 250-260C for lead free bumps Optimized Reflow Profile Controlled Heating and Cooling Rate Typical Defects Cracks Voids Opens Voids

Solder bump vs. Copper pillar Bump collapse post reflow Bump stand off post reflow

Over molding Mold Compound Solder Mask Type of mold compound, cure profile, cure time needs optimization. It can impact electrical properties.

Moisture Classification Test All packages need to be tested for MSL Class per J-STD 020D.1 Conduct Pre- CSAM( Scanning Acoustic Microscopy) Preconditioned at 60C/30% RH for 192 hours for MSL Class 3. 3X Reflow at 260C Post-CSAM Evaluate for die to mold compound or die to laminate delamination and electrical test Cross-section Post Pre-conditioning Post-CSAM Image-No Delamination

Post-CSAM Inspection Acceptance Criteria No delamination on die surface No delamination change>10% along mold/laminate interface and die/mold interface No delamination change>10% solder mask/laminate interface No delamination change>10% within the laminate No delamination cracking>10% through the die attach region No delamination between underfills/die and underfills/laminate

Reliability Test Reliability Test Condition Acceptance High Temp. Storage Life 150C-1000 hours Pass electrical/visual Autoclave Test (Preconditioned) 121C,100% RH 15Psig 96 hours Pass electrical/decamp Thermal Cycling (preconditioned) -65C to +150C 500hours Pass electrical /Xsection

Failure Evaluation Crack at bump to substrate -500 thermal cycles Optimized solder mask application on interposer and improved reflow profile to eliminate this condition

Void Evaluation Bump void Typical spec is <30% bump diameter, can be an issue for subsequent assembly cycles if not controlled within spec

Conclusion Bumped interconnects are a reliable form of interconnect. Process controls are critical for laminate packages: substrate pads, solder mask, reflow profile Molding materials and cure Process/material improvements will minimize CTE mismatch, cracking,dewetting etc.