Student Handbook. Extra Practice Skills Bank EP2 SB2. 632 Student Handbook



Similar documents
of surface, , , of triangle, 548 Associative Property of addition, 12, 331 of multiplication, 18, 433

Scope and Sequence KA KB 1A 1B 2A 2B 3A 3B 4A 4B 5A 5B 6A 6B

MEASUREMENTS. U.S. CUSTOMARY SYSTEM OF MEASUREMENT LENGTH The standard U.S. Customary System units of length are inch, foot, yard, and mile.

ACT Math Vocabulary. Altitude The height of a triangle that makes a 90-degree angle with the base of the triangle. Altitude

Exercise Worksheets. Copyright Susan D. Phillips

Quick Reference ebook

Math 0980 Chapter Objectives. Chapter 1: Introduction to Algebra: The Integers.

Illinois State Standards Alignments Grades Three through Eleven

CAMI Education linked to CAPS: Mathematics

Assessment For The California Mathematics Standards Grade 3

MATH REVIEW SHEETS BEGINNING ALGEBRA MATH 60

MATHS LEVEL DESCRIPTORS

Built-In Workbooks. Skills. Reference. Prerequisite Skills Extra Practice Mixed Problem Solving

How do you compare numbers? On a number line, larger numbers are to the right and smaller numbers are to the left.

numerical place value additional topics rounding off numbers power of numbers negative numbers addition with materials fundamentals

North Carolina Community College System Diagnostic and Placement Test Sample Questions

FSCJ PERT. Florida State College at Jacksonville. assessment. and Certification Centers

Assessment For The California Mathematics Standards Grade 4

Possible Stage Two Mathematics Test Topics

FINAL EXAM REVIEW MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION INTEGRATED ALGEBRA. Tuesday, January 24, :15 a.m. to 12:15 p.m.

Number Sense and Operations

Florida Math Correlation of the ALEKS course Florida Math 0018 to the Florida Mathematics Competencies - Lower

EVERY DAY COUNTS CALENDAR MATH 2005 correlated to

Chapter 8 Geometry We will discuss following concepts in this chapter.

PERIMETER AND AREA. In this unit, we will develop and apply the formulas for the perimeter and area of various two-dimensional figures.

Charlesworth School Year Group Maths Targets

NEW MEXICO Grade 6 MATHEMATICS STANDARDS

The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION COURSE I. Thursday, August 16, :30 to 11:30 a.m.

Keystone National High School Placement Exam Math Level 1. Find the seventh term in the following sequence: 2, 6, 18, 54

ModuMath Basic Math Basic Math Naming Whole Numbers Basic Math The Number Line Basic Math Addition of Whole Numbers, Part I

SECTION P.5 Factoring Polynomials

Course 2 Summer Packet For students entering 8th grade in the fall

Math 5th grade. Create your own number and explain how to use expanded form to show place value to the ten millions place.

Answer Key For The California Mathematics Standards Grade 7

Applications for Triangles

Algebra II. Administered May 2013 RELEASED

Math 0306 Final Exam Review

Summer Math Exercises. For students who are entering. Pre-Calculus

Factoring Polynomials

Math - 5th Grade. two digit by one digit multiplication fact families subtraction with regrouping

Geometry and Measurement

6. The given function is only drawn for x > 0. Complete the function for x < 0 with the following conditions:

Revision Notes Adult Numeracy Level 2

McDougal Littell California:

Quadratic Equations and Functions

Everyday Mathematics GOALS

4 th Grade Summer Mathematics Review #1. Name: 1. How many sides does each polygon have? 2. What is the rule for this function machine?

Numeracy Targets. I can count at least 20 objects

Graphing and Solving Nonlinear Inequalities

How many of these intersection points lie in the interior of the shaded region? If 1. then what is the value of

2nd Semester Geometry Final Exam Review

INVESTIGATIONS AND FUNCTIONS Example 1

Georgia Online Formative Assessment Resource (GOFAR) AG geometry domain

Voyager Sopris Learning Vmath, Levels C-I, correlated to the South Carolina College- and Career-Ready Standards for Mathematics, Grades 2-8

The Australian Curriculum Mathematics

Everyday Mathematics CCSS EDITION CCSS EDITION. Content Strand: Number and Numeration

Expression. Variable Equation Polynomial Monomial Add. Area. Volume Surface Space Length Width. Probability. Chance Random Likely Possibility Odds

MTH 092 College Algebra Essex County College Division of Mathematics Sample Review Questions 1 Created January 17, 2006

Review of Intermediate Algebra Content

TEKS TAKS 2010 STAAR RELEASED ITEM STAAR MODIFIED RELEASED ITEM

XIV. Mathematics, Grade 8

Algebra Geometry Glossary. 90 angle

Objective To introduce a formula to calculate the area. Family Letters. Assessment Management

Geometry B Exam Review

Biggar High School Mathematics Department. National 5 Learning Intentions & Success Criteria: Assessing My Progress

Higher Education Math Placement

Lesson 9.1 Solving Quadratic Equations

Indiana University Purdue University Indianapolis. Marvin L. Bittinger. Indiana University Purdue University Indianapolis. Judith A.

Mathematics Scope and Sequence, K-8

Chapter 3 & Determine whether the pair of equations represents parallel lines. Work must be shown. 2) 3x - 4y = 10 16x + 8y = 10

Keystone National Middle School Math Level 8 Placement Exam

Everyday Mathematics. Grade 4 Grade-Level Goals CCSS EDITION. Content Strand: Number and Numeration. Program Goal Content Thread Grade-Level Goal

Assessment For The California Mathematics Standards Grade 6

Big Bend Community College. Beginning Algebra MPC 095. Lab Notebook

Teacher Page Key. Geometry / Day # 13 Composite Figures 45 Min.

RELEASED. North Carolina READY End-of-Grade Assessment Mathematics. Grade 8. Student Booklet

GRADE 6 MATHEMATICS CORE 1 VIRGINIA STANDARDS OF LEARNING. Spring 2006 Released Test. Property of the Virginia Department of Education

COMMON CORE STATE STANDARDS FOR MATHEMATICS 3-5 DOMAIN PROGRESSIONS

Prentice Hall Mathematics: Course Correlated to: Arizona Academic Standards for Mathematics (Grades 6)

Area of Parallelograms, Triangles, and Trapezoids (pages )

Fourth Grade Math Standards and "I Can Statements"

Parallel and Perpendicular. We show a small box in one of the angles to show that the lines are perpendicular.

Grade 5 Mathematics Curriculum Guideline Scott Foresman - Addison Wesley Chapter 1: Place, Value, Adding, and Subtracting

Primary Curriculum 2014

MATHCOUNTS TOOLBOX Facts, Formulas and Tricks

ISAT Mathematics Performance Definitions Grade 4

Standards and progression point examples

SPECIAL PRODUCTS AND FACTORS

CRLS Mathematics Department Algebra I Curriculum Map/Pacing Guide

Lesson 9.1 The Theorem of Pythagoras

( ) ( ) Math 0310 Final Exam Review. # Problem Section Answer. 1. Factor completely: Factor completely: 3. Factor completely:

7 th Grade Study guide IV Partial Remember to practice the constructions that are not part of this guide.

Core Maths C2. Revision Notes

Quarter One: August-October

FOREWORD. Executive Secretary

The symbols indicate where the topic is first introduced or specifically addressed.

Polynomial Degree and Finite Differences

Use order of operations to simplify. Show all steps in the space provided below each problem. INTEGER OPERATIONS

CCSS Mathematics Implementation Guide Grade First Nine Weeks

Transcription:

Student Handbook Etra Practice Skills Bank EP SB Place Value to the Billions........................... SB Round Whole Numbers and Decimals................. SB Compare and Order Whole Numbers.................. SB3 Compare and Order Decimals........................ SB3 Divisibilit Rules................................... SB Factors and Multiples............................... SB Prime and Composite Numbers...................... SB5 Prime Factorization................................. SB5 Greatest Common Divisor (GCD)..................... SB6 Least Common Multiple (LCM)....................... SB6 Multipl and Divide b Powers of Ten................. SB7 Dividing Whole Numbers............................ SB7 Plot Numbers on a Number Line..................... SB8 Simplest Form of Fractions.......................... SB8 Mied Numbers and Improper Fractions.............. SB9 Finding a Common Denominator.................... SB9 Adding Fractions.................................. SB0 Subtracting Fractions.............................. SB0 63 Student Handbook

Multipling Fractions.............................. SB Dividing Fractions................................. SB Adding Decimals.................................. SB Subtracting Decimals.............................. SB Multipling Decimals.............................. SB3 Dividing Decimals................................. SB3 Order of Operations............................... SB Measurement..................................... SB5 Polgons......................................... SB6 Geometric Patterns................................ SB6 Classif Triangles and Quadrilaterals................ SB7 Bar Graphs....................................... SB8 Line Graphs...................................... SB9 Histograms....................................... SB0 Circle Graphs..................................... SB Sampling......................................... SB Bias.............................................. SB Compound Events................................. SB3 Inductive and Deductive Reasoning................. SB Selected Answers Glossar Inde Table of Formulas and Smbols SA G I inside back cover 633

Etra Practice Chapter LESSON - Evaluate each epression for the given value(s) of the variable(s).. 3 for 5. 6m for m 3 3. (p 3) for p 8. for, 3 5. for 3, 6 6. 5.5 for, LESSON - Write an algebraic epression for each word phrase. 7. seven less than a number b 8. eight more than the product of 7 and a 9. a quotient of 8 and a number m 0. five times the sum of c and 8 Write a word phrase for each algebraic epression.. 9 3. 9 3. 3 ( ). 00 5. Write a word problem that can be evaluated b the algebraic epression, and then evaluate the epression for 5. LESSON -3 6. In a miniature golf game the scores of four brothers relative to par are Jesse 3, Jack, James 5, and Jarod. Use,, or to compare Jack s and Jarod s scores. Then list the brothers in order from the lowest score to the highest. Write the integers in order from least to greatest. 7., 6, 8., 6, 9 9.,, 9 Simplif each epression. 0. 9. 3 9. 5 3. 5 7 8 6. 3 5. 3 9 5 LESSON - Add. 6. 6 7. 3 (8) 8. 6 () 9. 7 () Evaluate each epression for the given value of the variable. 30. 9 for 8 3. 3 for 3 3. 5 for 7 33. The middle school registrar is checking her records. Use the information in the table to find the net change in the number of students for this school for the week. EP Etra Practice Students Students Da Registering Withdrawing Monda Tuesda 6 7 Wednesda 5 5 Thursda Frida 0

Etra Practice Chapter LESSON -5 Subtract. 3. 6 35. 8 (3) 36. 6 (3) 37. 5 8 Evaluate each epression for the given value of the variable. 38. 7 for 39. 8 s for s 6 0. 8 b for b. 3 for. 7 b for b 0 3. 5 m 6 for m 3. An elevator rises 35 feet above ground level and then drops 5 feet to the basement. What is the position of the elevator relative to ground level? LESSON -6 Multipl or divide. 5. 8(6) 6. 63 5 7 7. 7(3) 8. Simplif. 9. 8( 5) 50. 5(9) 5. (6 ) 5. 3 7(0 ) LESSON -7 Solve. 53. 3 5. t 3 8 55. 7 m 56. 5 a 7 57. p 5 3 58. 3 50 59. 8 k 3 60. g 6 3 6. Richard biked 39 miles on Saturda. This distance is 3 more miles than Trevor biked. How man miles did Trevor bike on Saturda? LESSON -8 Solve and check. 6. a c 63. 9 7d 6. 8 65. 57 3p 66. 8b 6 67. 9 68. 78 69. 9c 5 70. Jessica hiked a total of 36 miles on her vacation. This distance is times as far as she tpicall hikes. How man miles does Jessica tpicall hike? LESSON -9 Translate each sentence into an equation. 7. 8 less than the product of 5 and a number is 53. 7. 7 more than the quotient of a number t and 6 is 9. Solve. 73. 3m 5 3 7. 9 3 75. 6 m 76. 6 7 5 Etra Practice EP3

Etra Practice Chapter LESSON - Write each fraction as a decimal.. 8. 7 3. 5 3. 9 0 Write each decimal as a fraction in simplest form. 5. 0. 6. 0.05 7. 0.5 8. 0.65 Write each repeating decimal as a fraction in simplest form. 9. 0.7 0. 0.5. 0.5. 0.009 LESSON - Compare. Write,,or. 3. 6 7 5. 9 5 0 5. 3 5 6 6. 5 8 7. 5 8 3 8. 8 5 9. 7 0.75 0. 5 7 8 5.9. In a sewing class, students were instructed to measure and cut cloth to a width of 3 ards. While checking four students work, the teacher found that the four pieces of cloth were cut to the following measurements: ards, and 3 3 6 8 ards. List these measurements from least to greatest. LESSON -3. Hannah and Elizabeth drove to Niagara Falls for vacation. Hannah drove 98 3 miles, and Elizabeth drove 06. miles. How far did the drive together? Add or subtract. Write each answer in simplest form. 3. 3 7. 9 5. 5 8 8 5 6. 7 7. 9 5 8. 9. 9 30. 6 3 3 Evaluate each epression for the given value of the variable. 3. 3.9 for 5.8 3..3 a for a 37.6 33. 3 5 z for z 3 5 LESSON - Multipl. Write each answer in simplest form. 3. 3 5 9 7 35. 3 5 36. 5 9 0 37. 3 7 3 38..7(8) 39..(8.6) 0. 0.06(5.). 0.003(.6). Rosie ate bananas on Saturda. On Sunda she ate as man bananas as she ate on Saturda. How man bananas did Rosie eat over the weekend? EP Etra Practice

Etra Practice Chapter LESSON -5 Divide. Write each answer in simplest form. 3. 3 3. 5 5 7 8 5. 35 9 3 6. 3 8 5 7. 5.68 0. 8. 7.65 0.05 9..76 0.8 50. 0.7 8 Evaluate each epression for the given value of the variable. 5. 7..88 for 0.5 5. for 0.08 5. Yolanda is making bows that each take inches of ribbon to make. She has 3 inches of ribbon. How man bows can she make? LESSON -6 53. 5.3 for. Add or subtract. Write each answer in simplest form. 55. 8 9 7 56. 3 8 3 57. 3 7 58. 5 6 9 59. 5 7 60. 3 3 7 8 6. 8 3 5 6. 8 7 Evaluate each epression for the given value of the variable. 63. 8 for 9 6. n 9 for n 7 8 65. 8 for 7 66. A container has 0 gallons of milk. If the children at a preschool drink 7 3 gallons of milk, how man gallons of milk are left in the container? LESSON -7 Solve. a 67. 3. 5. 68. 3.p 5.5 69. 7.9 70..3 3..3 7. m 3 5 8 7. 3 7 9 73. 5 w 3 7. 9 z 5 0 8 75. Peter estimates that it will take him 9 3 hours to paint a room. If he gets two of his friends to help him and the work at the same rate as he does, how long will the take to paint the room? LESSON -8 76. A bill from the plumber was $383. The plumber charged $75 for parts and $5 per hour for labor. How long did the plumber work at this job? Solve. 77. a 3 8 78.. 0.8 3. 79. 0.9m.6 5. 80. b 5 3 8. 7 3 8. 8.6 3.k.8 83. 6c.. 8. 7 d 8 85. 9 3 0 Etra Practice EP5

Etra Practice Chapter 3 LESSON 3- Name the propert that is illustrated in each equation.. 5 (6 ) (5 6). 8 () () 8 3. m m Simplif each epression. Justif each step.. 5 9 35 5. 3 7 6. 7 6 5 7 Write each product using the Distributive Propert. Then simplif. 7. 3(9) 8. 8(7) 9. 6(5) LESSON 3- Combine like terms. 0. 5 7. 6 9 5 7. 3 5 3. 7a b 6 b 5a. s 9t 9 5. 6m n 6m n Simplif. 6. 6( ) 7. 3(3b 3) 3b 8. ( ) 3 8 LESSON 3-3 Solve. 9. a 5 a 9 8 0. 5 8b 6 b 6. 6 8 9. g 9 g 6 3. 3f 5 5f 6. r 8 7 6r 9 5. a 7 5 5 3 5 6. 3 b 7 3 3 7. z 3 8. f 9. 0c 6 5 6 30. 9 5 3 6 6 8 3 9 6 9 3. A round-trip car ride took hours. The first half of the trip took 7 hours at a rate of 5 miles per hour. What was the average rate of speed on the return trip? LESSON 3- Solve. 3. z z 33. a a 3. p 6 3 p 35. 6 5c 3c 36. 7d 3 d 5d 8 37. 3f 5f f f 38. 5k k 3k 6 k 39. w 5 8 w 7 8 w a 0. 3 6 5 a 9 6 6 a a 3 3. q 5 3 9 q 6 5 q 6 8. A cafeteria charges a fied price per ounce for the salad bar. A sandwich costs $3.0, and a large drink costs $.75. If a 7-ounce salad and a drink cost the same as a -ounce salad and a sandwich, how much does the salad cost per ounce? EP6 Etra Practice

Etra Practice Chapter 3 LESSON 3-5 Write an inequalit for each situation or statement. 3. The cafeteria could hold no more than 50 people.. There were fewer than 0 boats in the marina. 5. A number n decreased b is more than 3. 6. A number divided b 5 is at most 8. Graph each inequalit. 7. 8. f 3 9. n.5 50. Write a compound inequalit for each statement. 5. A number m is both less than 8.5 and greater than or equal to 0. 5. A number c is either greater than.5 or less than or equal to. LESSON 3-6 Solve and graph. 53. 3.5 7 5. h 5 3 55. 5 q 3 56. m 0.5 57. n 3 5 3 58. q 0.5 59. 30 h 3 60. 7 6 5 LESSON 3-7 Solve and graph. 6. 5 v 6. 0 q 63. 9 7 6. 3 s 65. p 3 6 66. 3 w 67. f 68. 5 55 5 69. Reese is running for student council president. In order for a student to be elected president, at least 3 of the students must vote for him. If there are 3 students in a class, at least how man students must vote for Reese in order for him to be elected class president? LESSON 3-8 Solve and graph. 70. 3a 6 7. 5 7 7. b 8 6 73. z 8 7. 6 3 3 75. k 8 9 76. d 5 77. 3 p 6 7 6 78. Nikko wants to make flers promoting a librar book sale. The printer charges $0 plus $0.03 per fler. How man flers can Nikko make without spending more than the librar s $5 budget? Etra Practice EP7

Etra Practice Chapter LESSON - Write in eponential form.. 3 3 3 3. 6a 6a 6a 6a 6a 3. (9) (9). b Simplif. 5. 5 6. 3 7. (6) 8. (3) 5 Evaluate each epression for the given values of the variables. 9. s (s 3) for s and 0. 0 ( ) for 3 and LESSON - Simplif the powers of 0.. 0. 0 3. 0 3. 0 Simplif. 5. () 6. 3 3 7. (5) 8. 3 3 (9 3) 0 9. 3 (3) 9( ) 0. 5 3 (3) 3 LESSON -3 Simplif each epression. Write our answer in eponential form.. 5. w 7 w 7 3. 9 c 9. 6 c 5. 3 6. (3 0 3 ) 7. (3 ) 3 8. (a 3 ) LESSON - Multipl or divide. Assume that no denominator equals zero. 9. ( 5 )( ) 30. (7a b )(3b ) 3. (8m 6 n 3 )(5mn 7 ) 3. 0 m 5 33. 8 8 8 m 7 3. 5 9 5a 9 b 5 a b Simplif. 35. (3) 5 36. (9p 3 r) 37. (a 7 b ) 3 LESSON -5 Write each number in scientific notation. 38. 0.0038 39.,50,000,000 0. 0.65 Write each number in standard form... 0 3. 3.6 0 5 3. 5.036 0. 8.93 0 5. The population of the United States was approimatel.9 0 8 people in Jul 006. In the same month, the population of Canada was approimatel 3.3 0 7 people. Which countr had the greater population in Jul 006? EP8 Etra Practice

Etra Practice Chapter LESSON -6 Find the two square roots of each number. 6. 5 7. 9 8. 89 9. 69 50. The area of a square garden is,68 square feet. What are the dimensions of the garden? Simplif each epression. 5. 00 0 5. 9 6 LESSON -7 53. m n 5. 96a 6 b 8 Each square root is between two integers. Name the integers. Eplain our answer. 55. 30 56. 6 57. 93 58. 59. Each tile on Michelle s patio is 8 square inches. If her patio is square shaped and consists of 8 tiles, about how big is her patio? Approimate each square root to the nearest hundredth. 60. 5 6. 83 6. 66 63. 6 LESSON -8 Write all classifications that appl to each number. 6. 5 65. 6. 66. 6 67. 6 State if the number is rational, irrational, or not a real number. 68. 69. 9 70. 7 7. 3 5 0 Find a real number between each pair of numbers. 7. 5 8 and 5 8 73. 3 and 3 7. 35 7 and 36 7 LESSON -9 Use the Pthagorean Theorem to find each missing measure. 75. 76. 77. b 78. c 5 in. 8 km 9 cm 0 cm 5 ft 0 ft km in. Tell whether the given side lengths form a right triangle. 79. 6, 8, 0 80. 8,, 3 8. 7, 0, 8. 0.8,.5,.7 Etra Practice EP9

Etra Practice Chapter 5 LESSON 5- Write each ratio in simplest form.. cups of milk to 8 eggs. 36 inches to feet 3. feet to 0 ards Simplif to tell whether the ratios are equivalent. 5 3. 3 and 0 5. and 6 6. 5 and 0 7. 5 9 and 8 8 6 6 LESSON 5-8. Nikko jogs 3 miles in 30 minutes. How man miles does she jog per hour? 9. A penn has a mass of.5 g and a volume of approimatel 0. cm 3. What is the approimate densit of a penn? Estimate the unit rate. 0. 38 mg of calcium for 8 oz of ogurt. $57.50 for 5 hours. Determine which brand of detergent has the lower unit rate. LESSON 5-3 Tell whether the ratios are proportional. 3. 7 8 and 3. 3 and 5. 3 and 8 6. 6 and 3 8 7 0 7. Mark is making 35 sandwiches for a luncheon. He made the first 5 sandwiches in 5 minutes. If he continues to work at the same rate, how man more minutes will he take to complete the job? 8. An 8-pound weight is positioned 6 inches from a fulcrum. At what distance from the fulcrum must a -pound weight be positioned to keep the scale balanced? LESSON 5- Detergent Brand Size (oz) Price ($) Pizzazz 8 3.08 Spring Clean 6.60 Bubbling 96.5 9. A water fountain dispenses 8 cups of water per minute. Find this rate in pints per minute. 0. Jo s car uses 66 quarts of gas per ear. Find this rate in gallons per week.. Tob walked 35 feet in one minute. What is his rate in miles per hour?. A three-toed sloth has a top speed of 0. feet per second. A giant tortoise has a top speed of.99 inches per second. Convert both speeds to miles per hour, and determine which animal is faster. 3. There are markers ever 000 feet along the side of a road. While ccling, Ben passes marker number 6 at 3:35 P.M. and marker number at 3:7 P.M. Find Ben s average speed in feet per minute. Use dimensional analsis to check the reasonableness of our answer. EP0 Etra Practice

Etra Practice Chapter 5 LESSON 5-5. Which triangles are similar? A A B C G D 60 0 ft E ft 30. ft 60 C 5 ft B 5 0 ft. ft 5 I 0 ft H. ft ft 30 5. Khaled scans a photo that is 5 in. wide b 7 in. long into his computer. If the length of the scanned photo is reduced to 3.5 in., how wide should the scanned photo be for the two photos to be similar? F 6. Mutsuko drew an 8.5-inch-wide b -inch-tall picture that will be turned into a 3-inch-wide poster. How tall will the similar poster be? 7. A right triangle has legs that measure 3 cm and cm. The shorter leg of a similar right triangle measures 6 cm. What is the length of the other leg of the similar triangle? LESSON 5-6 8. Brian casts a 9 ft shadow at the same time that Carrie casts an 8 ft shadow. If Brian is 6 ft tall, how tall is Carrie? 9. A telephone pole casts an 80 ft shadow, and a child standing nearb who is 3.5 ft tall casts a 6 ft shadow. How tall is the pole? LESSON 5-7 Use the map to answer each question. 30. On the map, the distance from State College to Belmont is cm. What is the actual distance between the two locations? 3. Henderson Cit is 83 miles from State College. How man centimeters apart should the two locations be placed on the map? State College Scale: cm:5 mi 3. What is the scale of a drawing in which a building that is 95 ft tall is drawn 6 in. tall? 33. A model of a skscraper was made using a scale of 0.5 in:5 ft. If the actual skscraper is 570 feet tall, what is the height of the model? 3. Julio uses a scale of 8 inch foot when he paints landscapes. In one painting, a giant sequoia tree is 3.375 inches tall. How tall is the actual tree? 35. On a scale drawing of a house plan, the master bathroom is inches wide and 5 8 inches long. If the scale of the drawing is 3 6 inches foot, what are the actual dimensions of the bathroom? Belmont Etra Practice EP

Etra Practice Chapter 6 LESSON 6- Compare. Write,,or.. 3 5 6%. 3 66 % 3. % 0.5. % 0. 3 Order the numbers from least to greatest. 5. 0.,.5%, 0%, 8 6. 5, 00%, 6 %, 0.3 3 7. 7 6, 5%, 83, 83.3% 8. 67.5%, 7, 60%,. 3 9. A molecule of ammonia is made up of 3 atoms of hdrogen and atom of nitrogen. What percent of an ammonia molecule is made up of hdrogen atoms? LESSON 6- Estimate. 0. 5% of 09. 33% of 60. 60% of 79 3. 66 % of 3. Approimatel 3% of each class walks to school. A student said that in a class of 0 students, approimatel students walk to school. Estimate to determine if the student s number is reasonable. Eplain. LESSON 6-3 5. What percent of 36 is 9? 6. What percent of 8 is 5? 7. What percent of 6 is? 8. What percent of 50 is? 9. Mt. McKinle in Alaska is 0,30 feet tall. The height of Mt. Everest is about 3% of the height of Mt. McKinle. Estimate the height of Mt. Everest. Round to the nearest thousand. 0. A restaurant bill for $6.5 was split among four people. Dona paid 5% of the bill. Sand paid 5 of the bill. Mara paid $.5. Greta paid the remainder of the bill. Who paid the most mone? LESSON 6-. 38 is % of what number?. 6 is 7% of what number? 3. 3 is 8% of what number?. 93 is 6% of what number? 5. 35 is 9% of what number? 6. 5 is 0% of what number? 7. A certain rock is a compound of several minerals. Tests show that the sample contains 7.3 grams of quartz. If 7.5% of the rock is quartz, find the mass in grams of the entire rock. 8. The Alabama River is 79 miles in length, or about 3% of the length of the Mississippi River. Estimate the length of the Mississippi River. Round to the nearest mile. EP Etra Practice

Etra Practice Chapter 6 LESSON 6-5 Find each percent of increase or decrease to the nearest percent. 9. from 0 to 7 30. from 38 to 65 3. from 9 to 3. from 3 to 5 33. from 86 to 7 3. from 38 to 6 35. from 9 to 60 36. from 88 to 3 37. A stereo that sells for $895 is on sale for 0% off the regular price. What is the discounted price of the stereo? 38. Mr. Schultz s hardware store marks up merchandise 8% over warehouse cost. What is the selling price for a wrench that costs him $.5? LESSON 6-6 Find each sales ta to the nearest cent. 39. total sales: $.89 0. total sales: $87.95. total sales: $9.99 sales ta rate: 8.5% sales ta rate: 6.5% sales ta rate: 7% Find the total sales.. commission: $7.9 3. commission: $3.5 commission rate: 8% commission rate: 5%. An electronics salesperson sold $5,86 worth of computers last month. She makes 3% commission on all sales and earns a monthl salar of $00. What was her total pa last month? 5. Jon bought a printer for $89 and a set of printer cartridges for $9. Sales ta on these items was 6.5%. How much ta did Jon pa for those items? 6. In her shop, Stephanie earns 6% profit on all of the clothes she sells. If total sales were $390 this month, what was her profit? LESSON 6-7 Find the simple interest and the total amount to the nearest cent. 7. $3000 at 5.5% per ear for ears 8. $5,599 at 9% per ear for 3 ears 9. $3,000 at 3.6% per ear for 5 ears 50. $,500 at 8% per ear for 0 ears 5. Rebekah invested $5,000 in a mutual fund at a earl rate of 8%. She earned $700 in simple interest. How long was the mone invested? 5. Shu invested $6000 in a savings account for ears at a rate of 5%. a. What would be the value of the investment if the account is compounded semiannuall? b. What would be the value of the investment if the account is compounded quarterl? Etra Practice EP3

Etra Practice Chapter 7 LESSON 7- Identif the quadrant that contains each point. Plot each point on a coordinate plane. A. M(, ). N(, ) 3. Q(3, ) Give the coordinates of each point.. A 5. B 6. C C B LESSON 7- Determine if each relationship represents a function. 7. 8. 9. 3 O 0 0 O LESSON 7-3 Graph each linear function. 0.. 3. 3. The outside temperature is 5 F and is increasing at a rate of 6 F per hour. Write a linear function that describes the temperature over time. Then make a graph to show the temperature over the first 3 hours. LESSON 7- Create a table for each quadratic function, and use the table to graph the function.. 5. 8 6. 6 LESSON 7-5 Create a table for each cubic function, and use the table to graph the function. 7. 3 8. 3 9. 3 Tell whether each function is linear, quadratic, or cubic. 0... EP Etra Practice

Etra Practice Chapter 7 LESSON 7-6 Find the slope of each line. 3.. 5. 3 O O O 3 LESSON 7-7 Find the slope of the line that passes through each pair of points. 6. (3, ) and (, ) 7. (6, ) and (, 6) 8. (3, 3) and (, ) 9. (, ) and (, ) 30. The table shows how much mone And and Margie made while working at the concession stand at a baseball game one weekend. Use the data to make a graph. Find the slope of the line, and eplain what the slope means. Time (h) 6 8 Mone Earned ($) 5 30 5 60 LESSON 7-8 3. Abb rode her bike to the park. She had a picnic there with friends and then rode home. Which graph best shows the situation? Graph A Graph B Graph C Distance from home Distance from home Distance from home Time Time 3. Greg walked to a café for lunch. Then he walked across the street to a store before returning home. Sketch a graph to show Greg s distance compared to time. LESSON 7-9 33. Instructions for a chemical-concentrate swimming-pool cleaner state that ounces of concentrate should be added to ever gallons of water used. How man ounces of concentrate should be added to 8 gallons of water? 3. The distance d that an object falls varies directl with the square of the time t of the fall. This relationship is epressed b the formula d k t. An object falls 90 feet in 3 seconds. How far will the object fall in 5 seconds? Time Etra Practice EP5

Etra Practice Chapter 8 LESSON 8- Use the diagram to name each figure.. a line. three ras A C N 3. a plane. three segments B Use the diagram to name each figure. 5. a right angle 6. two acute angles 7. an obtuse angle 8. a pair of complementar angles LESSON 8- Identif two lines that have the given relationship. 9. perpendicular lines C B C 55 35 90 E A A B D D 0. skew lines. parallel lines E Identif two planes that appear to have the given relationship.. parallel planes H I 3. perpendicular planes. neither parallel nor perpendicular D E G F LESSON 8-3 Use the diagram to find each angle measure. 5. If m 07, find m3. 6. If m 6, find m. 3 In the figure, line d line f. Find the measure of each angle. 7. 8. 9. 3 d g 0 LESSON 8- Find the missing angle measures in each triangle. f 3 0.. 3. 5 3 66 3. In the figure, B is the midpoint of AC and BD is perpendicular to AC. Find the length of AD. A 6 m 6 m B C EP6 Etra Practice D

Etra Practice Chapter 8 LESSON 8-5 Give all of the names that appl to each figure.. A B 5. cm AB CD cm cm D C cm Find the coordinates of the missing verte. Then tell which lines are parallel and which lines are perpendicular. 6. rhombus ABCD with A(, 3), B(3, 0), and D(, 0) 7. square JKLM with J(, ), K(, ), and L(, ) 8. rectangle ABCD with A(, 3), B(, 3), and D(, ) 9. trapezoid JKLM with J(, ), K(, ), and L(, ) LESSON 8-6 In the figure, quadrilateral ABCD quadrilateral KLMN. 30. Find. A B 5 3. Find. 3. Find z. LESSON 8-7 Graph each transformation. 33. Rotate PQR 90 counter- 3. Reflect the figure across 35. Translate RST clockwise about verte R. the -ais. 3 units right and 3 units down. P Q R O D 8 C E D F G O M 3 N z 0 L 95 K R S O T LESSON 8-8 Create a tessellation with each figure. 36. 37. Etra Practice EP7

Etra Practice Chapter 9 LESSON 9- Find the perimeter of each figure... 3. m 6 m 3 3 in. m 9 m Graph and find the area of each figure with the given vertices.. (, ), (5, ), (, ), (5, ) 5. (, ), (, ), (5, ), (6, ) 6. Find the perimeter and area of the figure. 0 3 3 in. 6 6 6 6 0 LESSON 9- Find the missing measurement for each figure with the given perimeter. 7. perimeter 7 cm 8. perimeter 9 ft 9. perimeter 6 units 5 cm 0 cm 6 ft 6 ft 3 c d a 3 ft 5 Graph and find the area of each figure with the given vertices. 0. (, 3), (, 3), (, ). (, ), (5, 3), (0, ), (3, 3). The sail of a to sailboat forms a right triangle with legs that measure 5 inches each. Find the perimeter and area of the sail. LESSON 9-3 Name the parts of circle I. 3. radii. diameters J L I M K 5. chords H Find the central angle measure of the sector of a circle that represents the given percent of a whole. 6. % 7. 0.5% 8. 8% 9. 50% EP8 Etra Practice

Etra Practice Chapter 9 LESSON 9- Find the circumference and area of each circle, both in terms of π and to the nearest hundredth. Use 3. for π. 0... cm in. ft 3. A wheel has a radius of in. Approimatel how far does a point on the wheel travel if it makes 5 complete revolutions? Use 7 for π. LESSON 9-5 Find the shaded area. Round to the nearest tenth, if necessar.. 5. 3 ft 9 ft 5 m 3 ft 3 m 3 ft 3 ft 6. 8 m 7. 3 d m 8 m d 7 d d LESSON 9-6 Find the area of each figure. 8. 9. Use composite figures to estimate the shaded area. 30. 3. Etra Practice EP9

Etra Practice Chapter 0 LESSON 0- Describe the bases and faces of each figure. Then name the figure... 3. Classif each figure as a polhedron or not a polhedron. Then name the figure.. 5. 6. LESSON 0- Find the volume of each figure to the nearest tenth. Use 3. for π. 7. 8. cm 9. 8 ft ft 5 ft cm 7 in. 0. A can has a diameter of 3 in. and a height of 5 in. Eplain whether doubling onl the height of the can would have the same effect on the volume as doubling onl the diameter. 5 in. 5 in.. A shoe bo is 6.8 in. b 5.9 in. b 6 in. Estimate the volume of the shoe bo.. Find the volume of the composite figure. 3 7 5 LESSON 0-3 9 Find the volume of each figure to the nearest tenth. Use 3. for π. 3. 0 m.. d 5. 6 mm 3 mm 5 m 5 m 8 d 3 mm 6. A rectangular pramid has a height of 5 ft and a base that measures 5 ft b 7.5 ft. Find the volume of the pramid. EP0 Etra Practice

Etra Practice Chapter 0 LESSON 0- Find the surface area of each prism to the nearest tenth. 7. 8. 9. 9 cm 9 cm 9 cm Find the surface area of each clinder to the nearest tenth. Use 3. for π. 0.. 6 m. 0 m 7 ft mm 6 m 3 m 3 m ft 0 ft 0 ft 9 ft cm mm LESSON 0-5 Find the surface area of each figure to the nearest tenth. Use 3. for π. 3.. 5. m 5 in. 7 d 3 in. m 3 in. 0 d 0 d 0 d Find the surface area of each figure with the given dimensions. Use 3. for π. 6. cone: 7. regular square pramid: diameter in. base area 6 ft slant height 3 in. slant height 8 ft LESSON 0-6 Find the volume of each sphere, both in terms of π and to the nearest tenth. Use 3. for π. 8. r 5 ft 9. d 0 cm Find the surface area of each sphere, both in terms of π and to the nearest tenth. Use 3. for π. 30. r 3.8 mm 3. d.5 ft LESSON 0-7 An 8 cm cube and a 5 cm cube are both part of a demonstration kit for architects. Compare the following values of the two cubes. 3. edge length 33. surface area 3. volume Etra Practice EP

Etra Practice Chapter LESSON -. Use a line plot to organize the data showing the number of miles that students ccled over a weekend. What number of miles did students ccle the most? Number of Miles Ccled b Students 8 0 5 5 8 9 0 9 6 0 5 5 0 8 0 9. Use the given data to make a back-to-back stem-and-leaf plot. World Series Win/Loss Records of Selected Teams (through 00) Team Yankees Pirates Giants Tigers Cardinals Dodgers Orioles Wins 6 5 5 9 6 3 Losses 5 6 LESSON - Find the mean, median, mode, and range of each data set. 3. 3, 8, 0, 9, 5, 8., 9, 3, 6, 5, 5, 5 5. The table shows the number of points a plaer scored in ten games. Find the mean and median of the data. Which measure best describes the tpical number of points scored in a game? Justif our answer. Points a Plaer Scored in Ten Games Game 3 5 6 7 8 9 0 Points 36 3 8 50 30 30 3 7 55 9 LESSON -3 Find the lower and upper quartiles for each data set. 6. 7, 3, 6,, 33, 3,, 8, 7. 8, 79, 77, 7, 8, 8, 89, 9, 7, 3,,, 7, 3, 8, 6 80, 76, 80, 83, 86, 73 Use the given data to make a bo-and-whisker plot. 8.,, 9, 7, 6,, 5, 6, 9,, 3 9. 57, 53, 5, 3, 8, 59, 6, 86, 56, 5, 55 LESSON - 0. The table shows the relationship between the number of ears of post high school education and salar. Use the given data to make a scatter plot. Then describe the relationship between the data sets. Number of Years of Post High School Education and Salar Years 3 5 5 6 6 8 8 Salar ($000 s) 8 0.5 8 35 5 3 58 5 6 58 75 73.5 EP Etra Practice

Etra Practice Chapter LESSON -5 Refer to the spinner at right. Give the probabilit for each outcome.. not red. blue 3. not ellow A game consists of randoml selecting four colored marbles from a jar and counting the number of red marbles in the selection. The table gives the eperimental probabilit of each outcome. Number of Red Marbles 0 3 Probabilit 0.03 0.8 0.8 0.8 0.03. What is the probabilit of selecting or more red marbles? 5. What is the probabilit of selecting at most red marble? LESSON -6 A utensil is drawn from a drawer and replaced. The table shows the results after 00 draws. 6. Estimate the probabilit of drawing a spoon. 7. Estimate the probabilit of drawing a fork. A sales assistant tracks the sales of a particular sweater. The table shows the data after 000 sales. 8. Use the table to compare the probabilit that the net customer will bu a brown sweater to the probabilit that the net customer will bu a beige sweater. Outcomes Draws Spoon 33 Knife 36 Fork 3 Outcomes Sales White 36 Beige 07 Brown 89 Black 3 LESSON -7 An eperiment consists of rolling a fair number cube. There are si possible outcomes:,, 3,, 5, and 6. Find the probabilit of each event. 9. P(rolling an odd number) 0. P(rolling a ). P(rolling a number greater than 3). P(rolling a 7) An eperiment consists of rolling two fair number cubes. Find each probabilit. 3. P(rolling a total of ). P(rolling a total less than ) 5. P(rolling a total greater than ) 6. P(rolling a total of 9) LESSON -8 7. An eperiment consists of rolling a fair number cube three times. For each toss, all outcomes are equall likel. What is the probabilit of rolling a three times in a row? 8. A jar contains 3 blue marbles and 9 red marbles. What is the probabilit of drawing red marbles at the same time? Etra Practice EP3

Etra Practice Chapter LESSON - Determine whether each epression is a monomial.. r st 5. 6 3 3.. 3 3 m 5 n Classif each epression as a monomial, a binomial, a trinomial, or not a polnomial. 5. 3 6. 9 5 z 7. 5 m n 3 m 3 8. h h 0.5 9. w 7 7wz 3 0. z. 3 a a 3 5. 3st 6 Find the degree of each polnomial. 3. 3 3 5 8. b 9b 3 b 8 5. z 5z 6 9z 3 6. t 7. The trinomial 6t vt describes the height in feet of a baseball thrown straight up from a -foot platform with a velocit of v ft/s after t seconds. What is the height of the ball after 3 seconds if v 55 ft/s? 8. The trinomial 70 000 gives the net profit in dollars that a custom biccle manufacturer earns b selling bikes in a given month. What is the net profit for a month if 5 biccles? LESSON - Identif the like terms in each polnomial. 9. s 5r 7r 9r 3s 0. 9 7 5 0. 5 7 z 7z 3 z. 3mn 3p 3p 5p 3mn 3. 8s 6 7s 6s 3. 5 5 0 3 5 5 Simplif. 5. 5z z z z 9 6. 5 7(a 9) 3a 7 7. z 8z 6 0 z 8. 5c cd d 5(c d ) c(c d) 9. 5(a b 3ab) 3(ab 5ab) 30. s t st 5s t 7s t 3st s t 3. A rectangle has a width of cm and a length of ( 6) cm. The area is given b the epression ( 6) cm. Use the Distributive Propert to write an equivalent epression. 3. A parallelogram has a base of (3 ) in. and a height of in. The area is given b the epression (3 ) in. Use the Distributive Propert to write an equivalent epression. EP Etra Practice

Etra Practice Chapter LESSON -3 Add. 33. ( 3 7 3 ) ( 3 3 3) 3. (3a ab ) (a b b ) (a b 7ab ) 35. (m 3 3m n ) (6m n 9) 36. (0r 3 s 7r s r) (r 3 s 3r) 37. A rectangle has a width of ( 7) cm and a length of (3 5) cm. An equilateral triangle has sides of length 3. Write an epression for the sum of the perimeters of the rectangle and the triangle. LESSON - Find the opposite of each polnomial. 38. 6 3 39. a 3 b 7ab 8 0. 6 3 3. 7g 5 gh Subtract.. (5 3 ) (3 8) 3. a (5a 3 3a 6). (5r s 9r s rs) (3r s 7rs r ) 5. ( 3 6 ) (8 ) 6. The area of the larger rectangle is (0 5) cm. The area of the smaller rectangle is (5 3) cm. What is the area of the shaded region? LESSON -5 Multipl. 7. (5 )(7 3 ) 8. (a bc )(5a 3 b ) 9. (6m 3 n )(mn) 50. 6t(9s 5t) 5. p(p pq 5) 5. 3 ( 3 6 ) 53. A rectangle has a width of 3 ft and a length of ( 7) ft. Write and simplif an epression for the area of the rectangle. Then find the area of the rectangle if and 3. LESSON -6 Multipl. 5. ( 5)( 3) 55. (s 3)(s 5) 56. (3m )(m 3) 57. ( ) 58. (d 5) 59. (a 9)(a 9) 60. ( )( 5) 6. (7b )(7b ) 6. (m n)(6m 8n) Etra Practice EP5

Skills Bank Review Skills Place Value to the Billions NS. A place-value chart can help ou read and write numbers. The number 35,0,678,9.578 (three hundred fort-five billion, twelve million, si hundred sevent-eight thousand, nine hundred twelve and five thousand seven hundred eight-four ten-thousandths) is shown. Billions Millions Thousands Ones Tenths Hundredths Thousandths Ten-Thousandths 35, 0, 678, 9. 5 7 8 EXAMPLE Name the place value of the digit. A the 7 in the thousands column B the 0 in the millions column 7 ten thousands place 0 hundred millions place C the 5 in the billions column D the 8 to the right of the decimal point 5 one billion, or billions, place 8 thousandths PRACTICE Name the place value of the underlined digit.. 3,56,789,3.059. 3,56,789,3.059 3. 3,56,789,3.059. 3,56,789,3.059 5. 3,56,789,3.059 6. 3,56,789,3.059 Round Whole Numbers and Decimals NS.3, 5NS. To round to a certain place, follow these steps.. Locate the digit in that place, and consider the net digit to the right.. If the digit to the right is 5 or greater, round up. Otherwise, round down. 3. Change each digit to the right of the rounding place to zero. EXAMPLE A Round 5,39.378 to the nearest B Round 5,39.378 to the nearest thousand. tenth. 5,39.378 Locate the digit. 5,39.378 Locate the digit. The digit to the right,, is less than 5, The digit to the right, 7, is greater so round down. than 5, so round up. 5,000.000 5,000 5,39.00 5,539. PRACTICE Round 59,35.78 to the place indicated.. hundred thousand. ten thousand 3. thousand. hundredth SB Skills Bank

Compare and Order Whole Numbers NS. You can use place values to compare and order whole numbers. EXAMPLE Order the numbers from least to greatest:,80;,997;,79;,638. Start at the left most place value. There is one number with a digit in the greatest place.,80 It is the greatest of the four numbers. Compare the remaining three numbers. All values in,997 the net two places, the ten thousands and thousands, are the same.,79 In the hundreds place, the values are different. Use this digit to order the remaining numbers.,638,638;,79;,80;,997 PRACTICE Order the numbers in each set from least to greatest..,56;,56;,65;,65. 6,37; 6,37; 6,73; 6,37 3. 3,957; 3,795; 3,975; 3,999. 9,6; 9,6; 9,6; 9,6 Compare and Order Decimals NS. You can also use place values to compare and order decimals. EXAMPLE Order the decimals from least to greatest:.35,.3,.05..35.30.35 Compare two of the numbers at a time..30 Write.3 as.30..35.05.35 Start at the left and compare the digits..05.30.05.30 Look for the first place the digits are different..05 Graph the numbers on a number line..05.30.35...3..5.6.7.8.9 5 The numbers are in order from left to right:.05,.3, and.35. PRACTICE Order the decimals in each set from least to greatest.. 9.5, 9.35, 9.65..8,.,.09 3..56,.6,.5. 6.7, 6.07, 6.3 Skills Bank SB3

Divisibilit Rules NS. A number is divisible b another number if the division results in a remainder of 0. Some divisibilit rules are shown below. A number is divisible b... Divisible Not Divisible if the last digit is an even number.,99 75 3 if the sum of the digits is divisible b 3. 6 79 if the last two digits form a number divisible b. 08 6 5 if the last digit is 0 or 5. 5,95 0,007 6 if the number is even and divisible b 3. 33 8 if the last three digits form a number divisible b 8. 5,06,00 9 if the sum of the digits is divisible b 9. 33 0 if the last digit is 0. 790 935 PRACTICE Determine whether each number is divisible b, 3,, 5, 6, 8, 9, or 0.. 56. 00 3. 75. 3 5. 6. 8 7. 78 8. 50 9. 35 0. 555,555. 3009. 00 Factors and Multiples NS. When two numbers are multiplied to form a third, the two numbers are said to be factors of the third number. Multiples of a number can be found b multipling the number b,, 3,, and so on. EXAMPLE A List all the factors of 8. B Find the first five multiples of 3. The possible factors are whole numbers from to 8. 8 8, 8, 3 6 8, 8, and 6 8 8 The factors of 8 are,, 3,, 6, 8,, 6,, and 8. PRACTICE 3 3, 3 6, 3 3 9, 3, and 3 5 5 The first five multiples of 3 are 3, 6, 9,, and 5. List all the factors of each number.. 8. 0 3. 9. 5 5. 6 6. 7 Find the first five multiples of each number. 7. 9 8. 0 9. 0 0. 5. 7. 8 SB Skills Bank

Prime and Composite Numbers NS. A prime number has eactl two factors, and the number itself. A composite number factors. has more than two Factors: and ; prime Factors: and ; prime 7 Factors: and 7; prime EXAMPLE Determine whether each number is prime or composite. Factors:,, and ; composite Factors:,, 3,, 6, and ; composite 63 Factors:, 3, 7, 9,, and 63; composite A 7 B 6 C 5 Factors Factors Factors, 7 prime,,, 8, 6 composite, 3, 7, 5 composite PRACTICE Determine whether each number is prime or composite.. 5. 3. 8. 5. 3 6. 7 7. 3 8. 39 9. 7 0. 9. 9. 89 Prime Factorization 5NS. A composite number can be epressed as a product of prime numbers. This is the prime factorization of the number. To find the prime factorization of a number, ou can use a factor tree. EXAMPLE Find the prime factorization of. 3 3 3 8 3 3 6 3 The prime factorization of is 3, or 3 3. PRACTICE Find the prime factorization of each number.. 5. 6 3. 56. 8 5. 7 6. 0 Skills Bank SB5

Greatest Common Divisor (GCD) 6NS. The greatest common divisor (GCD) of two or more whole numbers is the greatest whole number that divides evenl into each number. EXAMPLE Find the greatest common divisor of and 3. Method : List all the factors of both numbers. Then find all the common factors. :,, 3,, 6, 8,, 3:,,, 8, 6, 3 The common factors are,,, and 8, so the GCD of and 3 is 8. Method : Find the prime factorization. Then find the common prime factors. : 3 3: The common prime factors are,, and. The GCD is the product of the factors, so the GCD of and 3 is 8. PRACTICE Find the GCD of each pair of numbers b either method.. 9, 5. 5, 75 3. 8, 30., 0 5., 7 6. 30, 96 7. 5, 7 8. 5, 0 9. 0, 60 0. 0, 50.,., 8 Least Common Multiple (LCM) 6NS. The least common multiple (LCM) of two or more numbers is the common multiple with the least value. EXAMPLE Find the least common multiple of 8 and 0. Method : List multiples of both numbers. Then find the least value that is in both lists. 8: 8, 6,, 3, 0, 8, 56 0: 0, 0, 30, 0, 50, 60 The least value that is in both lists is 0, so the LCM of 8 and 0 is 0. Method : Find the prime factorization. Then find the most occurrences of each factor. 8: 0: 5 The LCM is the product of the factors, so the LCM of 8 and 0 is 5 0. PRACTICE Find the LCM of each pair of numbers b either method..,. 3, 5 3. 0, 5. 0, 5 5. 3, 7 6. 8, 7 7., 8. 9, 9., 30 0. 9, 8. 6,. 8, 36 SB6 Skills Bank

Multipl and Divide b Powers of Ten NS3., 5NS. When ou multipl b powers of ten, move the decimal point one place to the right for each zero in the power of ten. When ou divide b powers of ten, move the decimal point one place to the left for each zero in the power of ten. EXAMPLE Find each product or quotient. A 0.37 00 B 3 000 0.37 00 0.37 3 000 3.000 37 3,000 C 0. 0 D 67 00 0. 0 0. 67 00 67. 0.0.67 PRACTICE Find each product or quotient.. 0 8.53. 0.55 0 3. 8.6 000..87 000 5. 6.03 0 3 6. 0 3. 7. 3.75 0 8. 8.5 0 9. 60 0 3 0..9 0 Dividing Whole Numbers 5NS. Division is used to separate a quantit into equal groups. The number to be divided is the dividend, and the number ou are dividing b is the divisor. The answer to a division problem is known as the quotient. EXAMPLE Divide 808 b 7. 7808 7 00 7 88 88 0 Write the dividend under the long division smbol. Subtract. Bring down the net digit. Subtract. Bring down the net digit. Subtract. PRACTICE Divide.. 55. 580,698 3. 68556. 3937 5. 99653 6. 338,8 7. 0500 8. 080,76 9. 707,5 Skills Bank SB7

Plot Numbers on a Number Line 5NS.5, 6NS. You can order rational numbers b graphing them on a number line. EXAMPLE Put the numbers 0.5, 3, 0., and 5 on a number line. Then order the numbers from least to greatest. 0. 0.5 3 5 3 0.75 0 0.5 5 0.8 The values increase from left to right: 0., 0.5, 3, 5. PRACTICE Plot each set of numbers on a number line. Then order the numbers from least to greatest...6, 5,. 0.5, 3 8, 9 3. 0.55,, 0.6 3. 5.5, 5 3, 5.05, 5.5 5. 0., 3 5,, 0. 6. 5 8, 9, 0.6, 6 7 7. 0.8, 7, 6, 0. 8. 0.3, 7, 0., 3 8 9. 7 8, 5 6,, 0.65 7 Simplest Form of Fractions 6NS. A fraction is in simplest form when the greatest common divisor of its numerator and denominator is. EXAMPLE Simplif. A 30 8 8 :,, 3,, 6, 8,, Find the greatest 8:,, 3, 6, 9, 8 Find the greatest 30:,, 3, 5, 6, 0, 5, 30 common divisor 8:,,, 7,, 8 common divisor of and 30. of 8 and 8. 6 30 6 5 Divide both the numerator and 8 9 Divide both the 8 the denominator b 6. numerator and the denominator b. PRACTICE Simplif.. 5. 3 3.. 3 0 5. 7 0 0 35 75 5 6. 8 7. 9 8. 38 9. 0 0. 3 9 3 9 SB8 Skills Bank

Mied Numbers and Improper Fractions 6NS.0 Mied numbers can be written as fractions greater than, and fractions greater than can be written as mied numbers. EXAMPLE A Write 3 as a mied number. B Write 6 as a fraction. 5 7 3 5 PRACTICE Divide the numerator Multipl the Add the product to b the denominator. denominator b the numerator. 53 0 3 3 5 Write the remainder as the numerator of a fraction. the whole number. 6 7 7 6 Write the sum over 7 the denominator. Write each mied number as a fraction. Write each fraction as a mied number... 9 5 7 3. 8. 5 7 9 5. 7 3 6. 9 7. 7 6 8. 3 3 8 9. 3 0. 8 9 3. 3 3 5. 9 Finding a Common Denominator 6NS. You must often rewrite two or more fractions so that the have the same denominator, or a common denominator. One wa to find a common denominator is to multipl the denominators. Or ou can use the least common denominator (LCD), which is the LCM of the denominators. EXAMPLE Rewrite 3 and so that the have a common denominator. 6 Method : Multipl the denominators: 6 3 3 6 6 8 6 6 For each fraction, multipl the denominator b a number to get the common denominator. Then multipl the numerator b the same number. Method : Find the LCD. The LCM of the denominators, and 6, is. So the LCD is. 3 3 3 3 9 6 6 PRACTICE Rewrite each pair of fractions so that the have a common denominator.. 5 6, 9. 6, 5 8 3. 3, 0 8., 3 5. 9, 5 Skills Bank SB9

Adding Fractions 5NS.3 To add fractions, first make sure the have a common denominator. Then add the numerators and keep the common denominator. EXAMPLE Add. Write our answer in simplest form. A 7 8 3 8 7 8 3 8 7 3 0 5 8 8 Add the numerators. Keep the denominator. B 5 6 3 5 Step Find the LCD. The LCD is 30. Step Rewrite the fractions using the LCD: 5 6 5 6 5 5 5 3 30 5 3 5 6 6 8 30 Step 3 Add: 5 8 30 30 3 Add the numerators. Keep the denominator. 30 PRACTICE Add. Write our answer in simplest form.. 3 5 5. 6 7 3 7 3. 3 8. 3 5 9 5. 3 5 Subtracting Fractions 5NS.3 To subtract fractions, first make sure the have a common denominator. Then subtract the numerators and keep the common denominator. EXAMPLE Subtract. Write our answer in simplest form. 7 3 A 0 0 7 0 3 7 3 0 0 0 5 Subtract the numerators. Keep the denominator. B 3 8 6 Step Find the LCD. The LCD is. Step Rewrite the fractions using the LCD: 3 8 3 8 3 3 9 6 6 9 Step 3 Subtract: 5 Subtract the numerators. Keep the denominator. PRACTICE Subtract. Write our answer in simplest form.. 9 7 5 7. 8 9 5 9 3. 3. 8 9 5 5. 7 3 0 8 SB0 Skills Bank

Multipling Fractions 5NS., 5NS.5 To multipl fractions, ou do not need a common denominator. Multipl the numerators, and then multipl the denominators. EXAMPLE Multipl 5 7. Write our answer in simplest form. 5 5 7 5 5 7 Multipl numerators and denominators. 5 0 35 7 Write in simplest form. PRACTICE Multipl. Write our answer in simplest form.. 7. 3 8 5 3. 5 3 5. 6 7 5. 3 3 8 6. 7 7. 3 5 5 7 8. 6 9 9. 5 8 7 0. 0 0 3 5 Dividing Fractions 5NS., 5NS.5 Two numbers are reciprocals if their product is. To find the reciprocal of a fraction, switch the numerator and denominator. Dividing b a fraction is the same as multipling b its reciprocal. So, to divide fractions, multipl the first fraction b the reciprocal of the second fraction. EXAMPLE Divide 5 3. Write our answer in simplest form. 0 5 3 0 5 0 Change the division to multiplication b the reciprocal. 3 5 0 Multipl numerators and denominators. 3 0 5 3 Write in simplest form. PRACTICE Divide. Write our answer in simplest form.. 3 8 5 6. 5 8 3 3. 7 3. 9 6 7 5. 3 5 5 3 6. 3 7. 6 3 8. 9 3 9. 5 6 5 9 0. 7 8 3 Skills Bank SB

Adding Decimals 5NS. When adding decimals, first align the numbers at their decimal points. You ma need to add zeros to one or more of the numbers so that the all have the same number of decimal places. Then add the same wa ou would with whole numbers. EXAMPLE Add 3.7.6. 3.700 Align the numbers at their decimal points. Place two zeros after 3.7..6 5.6 Add and bring the decimal point straight down. You can estimate the sum to check that our answer is reasonable: 5 PRACTICE Add...76 3... 6.9 3. 5.785 0.5. 3.75 Subtracting Decimals 5NS. When subtracting decimals, first align the numbers at their decimal points. You ma need to add zeros to one or more of the numbers so that the all have the same number of decimal places. Then subtract the same wa ou would with whole numbers. EXAMPLE Subtract. A.53 6.7.53 Align the numbers at their decimal points. 6.700 Place two zeros after 6.7. 35.83 Subtract and bring the decimal point straight down. B Estimate to check that our answer is reasonable: 3 7 36 5.0 0.003 5.000 Place two zeros after 5.0. 0.003 Align the numbers at their decimal points..997 Subtract and bring the decimal point straight down. PRACTICE Subtract...76 3.. 30.79 8.8 3..9.98. 0. 8.8 SB Skills Bank

Multipling Decimals 5NS. When multipling decimals, multipl as ou would with whole numbers. The sum of the number of decimal places in the factors equals the number of decimal places in the product. EXAMPLE Find each product. A 8. 6.57 B 0.376 0. 6.57 8..309 6.570 53.7600 53.66 PRACTICE 3 decimal places decimal place decimal places 0.376 0. 75 3760 0.05 3 decimal places decimal places 5 decimal places Find each product.. 0.97 0.76. 0.5 3.76 3. 7.65. 7.005 3. 5. 9.76 6.5 6. 96.5. 7. 7.7 6.5 8. 8.9.8 9. 3.65. 0. 0.00 8.. 0.03 0.0. 98.6.9 Dividing Decimals 5NS. When dividing with decimals, set up the division as ou would with whole numbers. Pa attention to the decimal places, as shown below. EXAMPLE Find each quotient. A 89.6 6 B 3. 5.6 689.6 80 96 96 0 0.85 3.0 3 0 0 0 Place decimal point. Insert zeros if necessar. PRACTICE Find each quotient...76 68. 0.5 8 3..03 98. 3.6 5..58 5 6. 0.835.7 7. 8. 0.09 8. 0. 0.8 9. 80.8 7.7 0. 36.9 0.003. 0.78 0.0. 5. 0.063 Skills Bank SB3

Order of Operations 6AF.3, 6AF. When simplifing epressions, follow the order of operations.. Simplif within parentheses.. Simplif eponents. 3. Multipl and divide from left to right.. Add and subtract from left to right. EXAMPLE Simplif each epression. A 3 ( ) 3 ( ) 3 7 Simplif within parentheses. 9 7 Simplif the eponent. B 63 Multipl. 5 3 5 3 ) ( ( 5 3) 5 3 6 5 3 The fraction bar acts as a grouping smbol. Simplif the numerator and the denominator before dividing. Simplif the power in the numerator. Subtract to simplif the numerator. 6 3 Subtract to simplif the denominator. Divide. PRACTICE Simplif each epression.. 5 5 3. 5 3 3. 35 (5 8). 0 6 5. 3 6 6. 6 8 9 7. 0 3 8. 3 0 9. 7 (3 6) 6 0. 8 3. 3(6). 8 3 5 7 3.. 37 7 5. 9 3 8 6. 0 8 7. 3 8 8. 8 9. 8 3 7 3 0. 9 (50 6). 8 6 9 SB Skills Bank

Measurement 6AF. The measurements for time min 60 s wk 7 das leap r 366 das are the same worldwide. h 60 min r mo da h r 365 das The customar sstem of Length Capacit Weight measurement is used in the in. ft 8 oz c 6 oz lb United States. 3 ft d c pt 000 lb ton 580 ft mi pt qt The metric sstem is used Length Capacit Mass elsewhere and in science mm 0.00 m ml 0.00 L mg 0.00 g worldwide. cm 0.0 m kl 000 L kg 000 g km 000 m Use the table below to convert from metric to customar measurements. Length Capacit Mass/Weight Temperature cm 0.39 in. L.057 qt g 0.0353 oz m 3.8 ft L 0.6 gal kg.05 lb m.09 d L.7 c kg 0.00 ton F 9 5 C 3 km 0.6 mi ml 0.338 fl oz metric T.0 ton Use the table below to convert from customar to metric measurements. Length Capacit Weight/Mass Temperature in..50 cm. qt 0.96 L oz 8.350 g ft 0.305 m gal 3.785 L lb 0.5 kg C 5 (F 3) 9 d 0.9 m c 0.37 L ton 907.85 kg mi.609 km fl oz 9.57 ml ton 0.907 metric ton EXAMPLE A Write,, or. B Convert 3 km to mi. C Convert 5 C to F. 35 in. d km 0.6 mi F 9 5 5 3 35 in. 3 ft d 3 ft 35 in. 36 in. 3 ft 36 in. 3 km 3 0.6 mi F 5 3 35 in. d 3 km 9.87 mi F 77 F PRACTICE Write,, or.. 3 lb 0 oz. 00 cm m 3. 6 c qt Convert.. 5 mi to km 5. weeks to hours 6. 3 fl oz to ml 7. 95 F to C 8. tons to kg Skills Bank SB5

Polgons A polgon is a closed figure with three or more sides. The name of a polgon is determined b its number of sides. If all the sides are the same length, and all the angles have the same measure, the polgon is a regular polgon. Sides and angles with the same measures are marked with the same smbol. 3MG. Number Number of Sides Name of Sides Name 3 Triangle 8 Octagon Quadrilateral 9 Nonagon 5 Pentagon 0 Decagon 6 Heagon Dodecagon 7 Heptagon n n-gon EXAMPLE Identif each polgon. A The mark on each side indicates that the sides are all the same length. The arch inside each angle indicates that the angles all have the same measure. regular heagon B pentagon PRACTICE Identif each polgon... 3. Geometric Patterns 3MG.0 Patterns involving polgons ma deal with size, color, position, or shape. EXAMPLE Predict the net term:,,,... heagon Each term has one more side than the previous term. The net term will have si sides. PRACTICE. Predict the net term.. Describe the missing term.,,,...,,,,... SB6 Skills Bank

Classif Triangles and Quadrilaterals MG3.7, MG3.8 A triangle can be classified according to its angle measurements or according to the number of congruent sides it has. Classifing b Angles Classifing b Sides Acute Three acute angles Scalene No sides congruent Right One right angle Isosceles At least sides congruent Obtuse One obtuse angle Equilateral All sides congruent EXAMPLE Classif each triangle according to its angles and sides. A B cm C cm 9 cm acute isosceles obtuse scalene acute equilateral Quadrilaterals can also be classified according to their sides and angles. Parallelogram pairs of parallel, congruent sides Rectangle right angles Rhombus congruent sides Square right angles and congruent sides Parallelograms Other Quadrilaterals Trapezoid eactl pair of parallel sides Isosceles Trapezoid congruent, nonparallel legs Kite pairs of adjacent, congruent sides EXAMPLE Tell whether the following statement is alwas, sometimes, or never true: A square is a rectangle. alwas A rectangle must have four right angles, and a square alwas has four right angles. PRACTICE Classif each triangle according to its angles and sides... 3. 35º 35º 0º in. in. in. Tell whether each statement is alwas, sometimes, or never true.. A rectangle is a square. 5. A trapezoid is a parallelogram. Name the quadrilaterals that alwas meet the given conditions. 6. All sides are congruent. 7. Two pairs of sides are congruent. Skills Bank SB7

Bar Graphs 5SDAP. A bar graph displas data using vertical or horizontal bars that do not touch. Bar graphs are often a good wa to displa and compare data that can be organized into categories. EXAMPLE Use the bar graph to answer each question. A Which language has the most native speakers? The bar for Mandarin is the longest, so Mandarin has the most native speakers. B About how man more people speak Mandarin than speak Hindi? About 500 million more people speak Mandarin than speak Hindi. You can use a double-bar graph to compare two related sets of data. Most Widel Spoken Languages English Hindi Mandarin Spanish 0 00 00 600 800,000 Number of speakers (millions) EXAMPLE The table shows the life epectancies of people in three Central American countries. Make a double-bar graph of the data. Step Choose a scale and interval for the vertical ais. Step Draw a pair of bars for each countr s data. Use different colors to show males and females. Step 3 Label the aes and give the graph a title. Step Make a ke to show what each bar represents. Age 80 60 0 Countr Male Female El Salvador 67 7 Honduras 63 66 Nicaragua 65 70 Life Epectancies in Central America 0 0 El Salvador Honduras Nicaragua Male Female PRACTICE The bar graph shows the average amount of fresh fruit consumed per person in the United States in 997. Use the graph for Eercises 3.. Which fruit was eaten the least?. About how man pounds of apples were eaten per person? 3. About how man more pounds of bananas than pounds of oranges were eaten per person? Fresh Fruit Consumption Average per person (lb) 30 5 0 5 0 5 0 Apples Bananas Grapes Oranges SB8 Skills Bank

Line Graphs 5SDAP. You can use a line graph to show how data changes over a period of time. In a line graph, line segments are used to connect data points on a coordinate grid. The result is a visual record of change. EXAMPLE Make a line graph of the data in the table. Use the graph to determine during which -month period the kitten s weight increased the most. Step Determine the scale and interval for each ais. Place units of time on the horizontal ais. Step Plot a point for each pair of values. Connect the points using line segments. Step 3 Label the aes and give the graph a title. 8 Growth Rate of a Kitten Age (mo) Weight (lb) 0 0..7 3.8 6 5. 8 6.0 0 6.7 7. Weight (lb) 6 0 0 6 8 0 Age (mo) The graph shows the steepest line segment between and months. This means the kitten s weight increased most between and months. PRACTICE. The table shows average movie theater ticket prices in the United States. Make a line graph of the data. Use the graph to determine during which 5-ear period the average ticket price increased the least. Year 965 970 975 980 985 990 995 000 005 Price ($).0.55.05.69 3.55.3.35 5.39 6.. The table shows the number of teams in the National Basketball Association (NBA). Make a line graph of the data. Use the graph to determine during which 5-ear period the number of NBA teams increased the most. Year 965 970 975 980 985 990 995 000 005 Teams 9 8 3 7 7 9 30 Skills Bank SB9

Histograms 5SDAP. A histogram is a bar graph that shows the frequenc of data within equal intervals. The bars must be of equal width and should touch, but not overlap. EXAMPLE The table shows surve results about the number of CDs students own. Make a histogram of the data. Number of CDs lll 5 llll l 9 llll l 3 llll llll 7 llll llll ll 6 lll 0 llll llll llll llll l 8 llll ll 3 llll 7 llll lll llll llll l 5 llll llll l 9 ll llll l 8 llll ll llll llll 6 llll llll l 0 llll l Step Make a frequenc table of the data. Be sure to use a scale that includes all of the data values and separate the scale into equal intervals. Use these intervals on the horizontal ais of our histogram. Number of CDs Frequenc 5 6 0 3 5 5 6 0 35 Step Choose an appropriate scale and interval for the vertical ais. The greatest value on the scale should be at least as great as the greatest frequenc. CD Surve Results 60 Step 3 Draw a bar for each interval. The height of the bar is the frequenc for that interval. Bars must touch but not overlap. Step Label the aes and give the graph a title. Frequenc 50 0 30 0 0 PRACTICE. The list below shows the ages of musicians in a local orchestra. Make a histogram of the data., 35,, 8, 9, 38, 30, 7, 5, 9, 35, 6, 7,, 3, 30. The list below shows the results of a tping test in words per minute. Make a histogram of the data. 6, 55, 68, 7, 50,, 6, 39, 5, 70, 56, 7, 7, 55, 60, 0 5 6 0 5 6 0 Number of CDs SB0 Skills Bank

Circle Graphs 5SDAP. A circle graph shows parts of a whole. The entire circle represents 00% of the data and each sector represents a percent of the total. EXAMPLE Tpe of Program Number of Students At Mazel Middle School, students were surveed about their favorite tpes of TV programs. Use the given data to make a circle graph. Step Find the total number of students surveed. 5 5 50 50 60 00 500 Step Find the percent of the total students who like each tpe of program. Step 3 Find the angle measure of each sector of the graph. There are 360 in a circle, so multipl each percent b 360. Science 5 Cooking 5 Sports 50 Sitcoms 50 Movies 60 Cartoons 00 Percent Angle of Sector 5 5 5% 00 0.05 360 8 5 5 3% 00 0.03 360 0.8 50 5 0% 00 0. 360 36 50 30% 500 0.3 360 08 60 5 % 00 0. 360 3. 00 0% 500 0. 360 Step Use a compass to draw a large circle. Use a straightedge to draw a radius. Step 5 Use a protractor to measure the angle of the first sector. Draw the angle. Step 6 Use the protractor to measure and draw each of the other angles. Step 7 Give the graph a title, and label each sector with its name and percent. Color the sectors. Cooking 3% Favorite TV Programs Science 5% Sports 0% Cartoons 0% Sitcoms 30% Movies % PRACTICE. Use the given data to make a circle graph. Favorite Pets Tpe of Pet Dog Fish Bird Cat Other Number of People 5 50 98 65 Skills Bank SB

Sampling 6SDAP. A population is a group that someone is gathering information about. A sample is part of a population. For eample, if 5 students are chosen to represent a class of 0 students, the 5 chosen students are a sample of the population of 0 students. The sample is a random sample being chosen. EXAMPLE if ever member of the population had an equal chance of Jamal telephoned people on a list of 00 names in the order in which the appeared. He surveed the first 0 people who answered their phone. Eplain whether the sample is random. Names at the beginning of the list have a greater chance of being selected than those at the end of the list, so the sample is not random. PRACTICE Eplain whether each sample is random.. Rebecca surveed ever person in a theater who was sitting in a seat along the aisle.. Inez assigned 50 people a number from to 50. Then she used a calculator to generate 0 random numbers from to 50 and surveed those with matching numbers. Bias 6SDAP. Bias is error that favors part of a population and/or does not accuratel represent the population. Bias can occur from using sampling methods that are not random or from asking confusing or leading questions. EXAMPLE Jenn went to a movie theater and asked people who eited if the agree that the theater should be torn down to build office space. Eplain wh the surve is biased. People usuall onl go to movies if the enjo them, so those eiting a movie theater would not want it torn down. People who do not use the theater did not have a chance to answer. PRACTICE Eplain wh each surve is biased.. A surveor asked, Is it not true that ou do not oppose the candidate s views?. Brendan asked everone on his track team how the thought the mone from the athletic department fund-raiser should be spent. SB Skills Bank

Compound Events 6SDAP. A compound event consists of two or more single events. EXAMPLE Mariln randoml draws of 6 cards, numbered from to 6, from a bo and then randoml selects of marbles, red (R) and blue (B), from a jar. Find the probabilit that the card will show an even number and that the marble will be red. 3 5 6 R, R, R 3, R, R 5, R 6, R B, B, B 3, B, B 5, B 6, B 3 was outcome can occur 3 P(even, red) equall likel outcomes Use a table to list all possible outcomes. Circle or highlight the outcomes with an even number and red. In the Eample, a table was used to list the possible outcomes. Another wa to list outcomes of a compound event is to use a tree diagram. Card Number Marble R B R List all possible outcomes for the si cards:,, 3,, 5, 6. 3 B R B R B Then, for each outcome of the si cards, list all possible outcomes for the marbles: red and blue for each card. 5 R 6 B R B PRACTICE. If ou spin the spinner twice, what is the probabilit that it will land on blue on the first spin and on green on the second spin?. What is the probabilit that the spinner will land on either red or ellow on the first spin and blue on the second spin? 3. What is the probabilit that the spinner will land on the same color twice in a row? Skills Bank SB3

Inductive and Deductive Reasoning 6AF.0, 7MR. Inductive reasoning involves eamining a set of data to determine a pattern and then making a conjecture about the data. In deductive reasoning, ou reach a conclusion b using logical reasoning based on given statements, properties, or premises that ou assume to be true. EXAMPLE A Use inductive reasoning to determine the 30th number of the sequence. 3, 5, 7, 9,,... Eamine the pattern to determine the relationship between each term in the sequence and its value. Term st nd 3rd th 5th Value 3 5 7 9 B 3 8 9 5 5 0 3 6 7 To obtain each value, multipl the term b and add. So the 30th term is 30 60 6. Use deductive reasoning to make a conclusion from the given premises. Premise: Makala needs at least an 89 on her eam to get a B for the quarter in math class. Premise: Makala got a B for the quarter in math class. Conclusion: Makala got at least an 89 on her eam. PRACTICE Use inductive reasoning to determine the 00th number in each pattern..,,,,,....,, 9, 6, 5,... 3., 6, 8, 0,,.... 0, 3, 6, 9,, 5,... Use deductive reasoning to make a conclusion from the given premises. 5. Premise: If it is raining, then there must be a cloud in the sk. Premise: It is raining. 6. Premise: A quadrilateral with four congruent sides and four right angles is a square. Premise: Quadrilateral ABCD has four right angles. Premise: Quadrilateral ABCD has four congruent sides. 7. Premise: Darnell is 3 ears ounger than half his father s age. Premise: Darnell s father is 0 ears old. SB Skills Bank

Selected Answers Chapter - Eercises. 5 3. 3 5. 8 7. c 9. c. 37 3. 57 5. 3 pt 7. 0 pt 9.. 0 3. 0 5. 6 7. 5 9. 38 3. 0.7 33. 36 35. 05 37. 39. 3. 3. 9 5. $0 7. B 9. es 5. A 53. 5,, 6, 7 55. 9, 8 57. 0 59. 00 6. 00. 63. 0 - Eercises. 3p 5 3. 6 d 7 5. 8 plus the product of 3 and s 7. 0 plus the quotient of and 3 9. 5n; $75; $5; $75; $5 5. n 3. 78j 5 5. 59q 7. more than the product of 6 and g 9. 5 less than the quotient of w and 8 3. 6 9 5. 3 g 7. 3 6 9. m 3 3. 5 8 3 33. 8 times the sum of m and 5 35. 7 times the quotient of 6 and w 37. ( 7) or 7. C 3. 9n; $950 5. 7. 7-3 Eercises. 3. 7, 8, 6 5. 7, 0, 3 7. 5 9. 5. 3. 5. 6,, 5 7. 30, 7, 5 9. 9. 3. 5 5. 0 7. 9. 3. 33. 35. 6,, 37. 5, 5, 35 39. 50. 3. 7 5. 6 7. 9 9. 38 5. 6 53. Antarctica, Asia, North America, Europe, South America, Africa, Australia 57. 7, 6, 5 59. A 6. 9 6. 6 6. 7t 8 - Eercises. 6 3. 5. 7 7. 6 9.. 0 3. 5. 5 7. 9. 6. 7 3. 3 5. 3 7. 9 9. 3 () 7 3. 33. 7 35. 37. 3 39. 8. 30 3. 5 5a. $,6,37,000,000 b. $,763,863,000,000 c. about $68,000,000,000 or $68 billion 9. C 5. 53. 55. 3-5 Eercises. 3. 5. 7 7. 8 9. 0. 7 3. 7 5. 0 7. 6 () 9. 3. 56 3. 6 5. 0 7. 9. 3 3. 90 ft above the starting point 33. Great Pramid to Cleopatra; about 500 ears 35. Cleopatra takes the throne and Napoleon invades Egpt. 39. 8. 3 3. -6 Eercises. 3 3. 8 5. 9 7. 9. gains $5. 3. 8 5. 3 7. 0 9. 60. 39 3. $00 5. 5, 5; 6, ; 9 3 3 3, 3; 5 3, 5 7. 9. 3. 8 33. 36 35. 37. 8 39. 6 5. D 7. j 8 9. 5. 9 53. 5-7 Eercises. 3. 5. 3 7. 39 9. 5,635 ft. 3 3. 5. 7 7. 35 9. 5. 3. 3 5. 99 7. 0 9. 7 3. 38 33. 78 35. t 600 73; 7 C 37. 0 39.. 59 7. B 9. 5. 3 53. 56 55. -8 Eercises. 7 3. 5. 60 7. 6 9. 5 people. 5 3. 7 5. 7. 9. 5. 96 3. 6 5. 5 7. 7 9. 3. 56 33. 7 35. 7 37. 07 39. 8. 5 3. 8n 3; n servings 5. 6 h; $60 7. 7 n 5; n 8 9. q (8); q 5. 7 mi 53. $95 $56 m; m $39 57. C 59. 6 6. 63. 9 65. 6-9 Eercises. 9 6 3. 5. 8 7. 5 9.. 3. 88 5. 8 DVDs 7. z 8 5 9. 3. 5 5. 7. 9 9. 3. 0 33. 55 35. 30 37. 5 h 39. Nine less than times a number is 3; 3. 3. 3 5. 0 7. 9 3 8; 99 9. 5 3m ; m 3 5. 6m,000; m 65 miles per ear 53. m ; m 3 miles 6 55. A 57. 59. 30 60. 6 6. 7 6. 3 63. 7 6. 9 Chapter Stud Guide: Review. equation. opposite 3. absolute value. 7 5. 5 6. 78 7. (k ) 8. t 5 9. 0 less than the product of 5 and b 0. 3 plus the product of 3 and s. less than the quotient of 0 and r. 6 more than the quotient of and 8 3.. 5 5. 3 6. 7. 8. 9. 0.. 3. 3.. 8 5. 8 6. 6 7. 7 8. 3 9. 5 30. 3. 3. 6 33. 5 3. 35 35. 8 36. 5 37. 5 38. 0 39. 0. z 3. t 8. k 5 3. 5. 300 lb 5. 3300 mi 6. g 8 7. k 9 8. p 80 9. w 8 50. 0 5. z 9 5. 705 mi 53. months 5. 6 55. 96 56. n 9 57. 58. n 59. 60. 3 hours Selected Answers SA

Chapter - Eercises. 0.65 3. 0.6 5. 0. 7. 0.375 9..5. 3 3. 5 5. 5 9 7. 3 9. 00. 5 3. 7 3 333 99 5. 5 8 7. 0.375 9..8 99 3..6 33..6 35..3 37. 3 5 39. 8 377. 5 3. 000 5 5. 5 33 3 7. 9. 5. 5 53. es 333 55. no 57. es 59. es 6. 3 3 8 63a. 9 ; 6 ; ; 7 9 ; 5 ; ; 5 6 5 8 ; 3 8 b. 3 3; 3; ; 3 5; ; 5 5; c. 0., repeating; 0.6, repeating; 0.5, terminating; 0.6, repeating; 0.565, terminating; 0.8, terminating; 0.65, terminating; 0.375, terminating 65. GCD ; 3 69. C 7. 9.875 73. 8; 8 75. 0 77. 79. 80 8. 6 - Eercises. 3. 5. 7. 5 9. 7 in., 7.5 in., 8 6 8 in., 8.5 in.. 3. 5. 7. 9.. 3. 5. 7. 9. 37a. apricot, sulphur, large orange sulphur, white-angled sulphur, great white b. between the apricot sulphur and the large orange sulphur. 0.6, 3, 0.75, 5 6 3. D 5. 0 7. 7 9. 0.75 5..5 53. 0.95-3 Eercises. 30.0 3..5 5. 0.56 s 7. 5 9. 5. 3. 33.67 9 5..90 7. 0.86 s 9. 7 8. 3 3. 5. 7.9375 3 3 69 7. 9. 00 in. 3. 6 33. 5 9 35. 37. 39. 0.86 quadrillion Btu 3. D 5. 7. b 9. a 5 5 5. 53. - Eercises 5. 3 3. 5 5 8 5. miles 7. 0.6 7 7 9. 0.. 3 3. 6 5. 7. 9. 7 bos. 0.35 0 3..5 5. 0.96 7 7. 0.368 9. 8 3. 5 5 9 33..8 35. 0.558 37. 5 3 5 55 38.. 3 9 8 3a. tsp b. tsp c. tsp 7. A 9. C 5. 53. 55. 5 6 57. 9-5 Eercises. 3 3. 7 5. 7. 9.. 80 5. 5.3 3..3 5. 90 7. 9. 9. 5. 8 3. 6 9 serving 5. 3 7. 3 5 5 9. 8 3. 33. 83 35. 9.7 37. 0.55 8 39. 3.6. 3. 5. 370 7. glasses 9. 3 3 in. 8 53. about 3 55. B 57. 59. 3 0 73 6. 63. 000 5-6 Eercises 9 3 7 3. 5. 7. 8. 0 0 9.. 69 3. d 5. 30 7 7. 3 9. 9. 3 3. 9 6 39 5. 7. 5 8 9. 33 0 3. 8 miles 33. 35. 9 7 37. 3 39. 5 8 in.. 5 3. 6 7 68 7 5. 3 7. 5 8 cups 9a. 6 3 8 m b. 8 mi c. 7 mi 73 9 5. meter 53. 9 00 00 meters 55. The compan did not find a common denominator when adding and. 57. 8 3 59. 6. 5 6-7 Eercises. 8.3 3. m 9. 5. s 97.6 7. 5 9 7 9. w. 8 3. 8 das 5 5. m 7 7. k 3.6 6 9. c 3.. d 5 3. 5. r 5 7 7. d 9. 58 carats 5 3. Cullinan III 33. z 3 35. j.6 37. t 7 39. d. v 30.5 3.. 5. c 0 7. 5. 9. m. 53. 60 carats 55. 3v 6 ; minutes 56. p 5 57. (m 9) 59. 0 5 6. 5-8 Eercises. 7 hours 3. 5. 5 7. a 9. 5. m 3 0 3. r 6 3 5..0 7. 7.5 9.. 5 3. 0 5. 6 8 7..3 9. 3. n 7 3; 5 5 7 35. 0,000 37. 5 in. 39. B. 5 8 3. 5.. 7. m 5.6 Chapter Stud Guide: Review. rational number. terminating decimal 3. reciprocal or multiplicative inverse. 3 5 5. 6. 5 7. 0 8. 3 9. 0..75. 0.6 999. 0.7 3.. 5. 0.9, 3, 0.5, 6. 0., 0, 9 6 0.67, 7. 0 8. 7 3 5 9. 5 9 0. 6.. 3. 3 5. 7 3 5 5. 8 6. 7. 5 8. 3 9. 3 30. 7 3. 6 8 3. 3 8 33. 9 3. 6 35. 5 36. 37. 6 38. 5 3 7 39. 8 0. 0 0. 3 7. 9 3..8 60 36. 8 5. 5 8 6. 7. 9 5 99 8. 9..6 50. 6 5. $08 5. m 0 53. 8 5. c 6 55. r 3 56. t 6 57. w 6 58. r 59. h 50 60. 5 6. d 33 6. a 67 63. c 90 6. SA Selected Answers

Chapter 3 3- Eercises. Comm. Prop. of Add. 3. 39 5. 700 7. 30 9. 68. 5 3. 396 5. Comm. Prop. of Mult. 7. 09 9. 300. 3. 33 5. 3 7. 9. Distrib. Prop. 3. Assoc. Prop. of Add. 33. Comm. Prop. of Add. 35. 0 37. 5 39. $53 3. 8; Distrib. Prop. 5. ; Assoc. Prop. of Add. 7. 9 6 6 9 (Comm. Prop. of Add.) ( 6) (9 ) (Assoc. Prop. of Add.) 50 0 90 in. 9. The sentence should read, You can use the Commutative Propert of Addition... 5. 3 6 3 6 (Distrib. Prop.) 3 (Mult.) ( ) 3 (Assoc. Prop. of Add.) 6 3 (Add) 9 53. C 55. 5 57. 59. 5 0 6. 8 3- Eercises. 5 3. f 8 5. 6p 9 7. 5 8 9. 9. 7g 5h 3. r 5. t 56 7. 0 7 9. 3. 6a 5 3. 5 3 5. 7z b 5 7. 8 9. 6d 3e 3. 0 33. 8 35. 3 8 37. (5 ); 39. no; 6r m 5m 5 5r 7, Distrib. Prop.; 6r 5r m 5m 5 7, Comm. Prop.; 6r 5r m 5m 5 7; r 7m 8. 7d 3. 6r r 5. k 3 7. 9g 53s b 9. ( ); 53. 5 6 55. 6 57. a 80 59. ; Distrib. Prop. 6. 5; Assoc. Prop. of Mult. 3-3 Eercises. d 3 3. e 6 5. h 7 7. 9. p. 6 hours 3. k 0 5. w 3 7. 5 9. h 6. m 3. 5. n 7. b 3 9. 7 3. 7 33. $.80 per hour 35. 3 and 3 37. F. C 3. n 3 5. 7. 6t 3k 5 3- Eercises. 3. 5. 0 7. 9. d 5. 50 min; $8.75 3. 5. all real numbers 7. 6 9. 6.. a 3 3. 5. n 5 7. 5 9., 3 3. 5 0 ; 7 33. 350 units 35a. 7 protons b. 39. C. 3 3. g 5. 7. 3-5 Eercises. p 60 3. m 7 5 5. 5 3 0 7. 0 3 5 9. s 5 or s 3. s 0 3. 35 5. 7 0 7. 9.. 0 0 0 3 3 3 5 5 5 3. 5 3 0 5. c or c 7 7. 5w 60 9. m 5 3 5 3. 9 33. 35. d 89,000 39. B. 5, 9, 3., 9, 7, 5 5. 7. 3 3-6 Eercises. 7 3. f 5. k 9.3 7. 6 6; 9 9. 56. 5 3. c 3 3 5..75 50; 8.5 7. z 0 9..8. k 3. { : 0} 5. {b : b 3.5} 7a. 98,00 s 0,5; s 03,3 9. The solution is. 33. B 35. 9 37. 8 39. t 8 5 3-7 Eercises. r 8 3. 0 j, or j 0 5. 0 a, or a 0 7. r 63 9. 0 sandwiches. 75, or 75 3. 77 p, or p 77 5. h 7. q 9. 6 r, or r 6. w 3 3. t 95 5. a 0 33. A 37. 7 lb, 35 lb 39. at least $3.3 per 5 week. 3 3 3. 8 3 3-8 Eercises. k 3. 8 5. 7 7. 3 9. h. d 3. at least caps 5. 7. q 9. 7. a 3 3. k 3 5. r 3 7. p 3 9. w 3. a 33. q 6 35. b.7 37. f.7 39. 7. at least 3 beads 3a. $58 b. 7 mo 7. B 9. Comm. Prop. of Mult. 5. Comm. Prop. of Add. 53. 7r 60 Chapter 3 Stud Guide: Review. inequalit. Comm. Prop. 3. terms. Comm. Prop. of Add. 5. Assoc. Prop. of Add. 6. Dist. Prop. 7. Assoc. Prop. of Add. 8. 9m 0 9. w 6 0. 3. t t 3t 3. 3. h. t 5. r 3 6. z 7. a 8. s 7 9. c 0. 6.. no solution 3 3. z 5. Let d distance; d mi 5. Let c cost; c 500 6. Let s number of students; s 5 7. 3 0 3 Selected Answers SA3

8. 6 0 6 9. 3 0 30. r 3. n 3. 0. 33. 5 3. n 7.75 0; n.5 35. m 8 36. n 3 37. t 6 38. p 3 39. b 7 0. a 8. z. h 6 3. a. 6 5. k 3 6. 8 Chapter - Eercises. 3. b 3 5. 6 7. 8 9. 096. 5 3. 70 5. 5 6 7. 3 d 9. () c 3. 56 3. 3, 5. 768 3 6 7. 73 9. 3. 36 33. 35. 35 37. 39. 6. 8 6, bacteria 3. (3d) 5. (7) 7. 78 cm 3 5. B 53. 65 55. 83 57. 55 59. 0. 6. 0.375 - Eercises. 0.0 3. 0.00000 5. 6 7. 7 9. 3 5. 3. 0. 8 5. 0.0000000 7. 9. 0,, or 0.000. 3 000 3. 8 5. 3 7. 3 9. 9 3. 8 33. 3.0 35. 3 37., 6 39. 6 3 6 6 6 6. 50 meter 5. 38,30 lb,000 7. 9. C 5. 8 80 53. 7 55. 8 57. 5 59. 3-3 Eercises. 5 5 3. m 5. 6 7. 0 9. 3 0. 6 or 6 3. 0 7 5. r 7. ( 3 ) 9. 3. 5 3. t 3 r 5. 3 7. 6 0 9. 5 0 3. 3 33. () 9 or 35. t 8 37. 39. a 7. 0 3. 7 5. cannot combine 7. 0 9. 6, or 676 5. ; 53. 55. 0 57a. 0 00 b. 0 00 6. B 63. 5 65..8 67. 69. 9 7. - Eercises. 56 7 3. 6a 5 b 5 5. 7. 3n 3 9. 3 ab3. 6c 5 3. 5a 3 5. 6 6 5 7. 3m 5 n 0 9. z. 0 3. 6a b 5 5. 5 7. q 3 9. 3 5 3. 56 8 33. 56b 8 35. 3a 5 b 50 37. m 39. 6 5 a3 b 5. 9 3. 3 r 5. 6m n 5 7. 6 3 9a. The degree of a monomial is the sum of the eponents of the variables in the monomial. b. 8 53. D 55. 0 8 57. k 59. g 6. 7 or 7-5 Eercises. 5,000 3. 08,000 5. 5.7 0 5 7. 6.98 0 6 9. 70. 6,000,000 3. no 5. 80,000 7. 00,000 9. 5,500,000,000. 700,300 3. 6.5 0 6 5. 5.87 0 6 7. 0.00067 9. 5,000,000 3. 0,000 33. 78 35. 0.000000053 37. 559,000 39. 7,3,000. 0.0009 3a..5 0 g b..5 0 6 g 5. 367,000 7. 9. 30 5. 50,000,000 53. 9.8 0 8 feet per second 55. 8.58 0 3 57. 5.9 0 6 59. 7.6 0 3 6.. 0 3 63. 6 0 0 65. 7 0 6 67. 5.85 0 3,.5 0,.3 0,. 0 6, 5.5 0 6 7. C 73. number of students 35 75. 7 77. t 3-6 Eercises. 3. 5. 6 ft 7. 3 9. 7a. 3 3. 9 5. s 3 7. 6 9. 6. 5 3. 5. 9. 0 ft 3. 8 8 33. 7 35. a b 3 37. 3 p 5 q 39. 9. 3. 8 5. ; ; 6 3 ; 8 ; 0 5 ; 6 7 9. C 5. 0 9 53. 7 5 55..97 0 0 9 57. 3. 0 0 59. 6 0 3-7 Eercises. 6 and 7 3. and 3 5. 5 and 6 7. 6.8 9..9. 6.58 3. 5.8 5. 3.8 7. 7 and 8 9. and 5. 0 and 3..36 5..09 7. 7.03 9. 9.6 3.. 33. B 35. E 37. F 39. 89.6 in.. 0 ft 3. 5, 5 3, 7.5, 9, 3 5. 5 km 7. 9a. about 60 mi/h b. about 7.8 h 5. B 53. 55. 8 57. 8 59. 36-8 Eercises. irrational, real 3. rational, real 5. rational 7. irrational 9. rational. rational 7. rational, real 9. integer, rational, real. rational 3. irrational 5. irrational 7. not real 3. whole, integer, rational, real 33. irrational, real 35. rational, real 37. rational, real 39. rational, real. integer, rational, real 3. 3 is undefined so it is not a 0 real number. 0 3 is 0 so it is a rational number. 55. irrational 57. rational 59. irrational 63. C 65. C 67. Dist. Prop. 69. 3,768 7. 65-9 Eercises. 0 m 3. cm 5. es 7. es 9. 5 ft. about. mi 3. no SA Selected Answers

5. 5 7. 3 9. 9. Yes. 6 8 0 3..6 ft 5a. 0 m b. 55.6 m 7. 08.5 m 3. C 33. 3 35. 37. 5 and 6 39. 7 and 8 Chapter Stud Guide: Review. irrational number. scientific notation 3. Pthagorean theorem; legs; hpotenuse. real numbers 5. (3) 6. k 7. (9) 8. 6 9. 65 0. 3.. 56 3. 3. 6 5. 5 6. 7. 6 8. 0, 9. 0. 000 3 6. 8. 3.. 0 5. 7 6. 9 6 7. p 8. 5 3 9. 6 30. 0 3. 8 3 3. 9 33. m 5 3. 3 7 35. 0, or 36. 9 37. 38. 0 39. (0) 0 0. 5m 0 n 0. 7 3 z. a 7 b 3. 0r 6 s 6. 9p 5. 6t 6. 3 7. 7 6 m9 n 3 8. 6t 6 9. 9p 0 q 50. 6 3 5. 0,000m 8 n 0 5. 8 0 9 53. 7.3 0 7 5. 9.6 0 6 55. 5.6 0 0 56. 60 57. 0.006 58. 90,000 59. 0.00009 60. 3. 0 5,.7 0,.3 0 5,.9 0 6. and 6. 30 and 30 63. 6 and 6 6. 7m 65. a 3 66. 6 67. 9 and 0 68. 3 and 69. and 70. 6 and 7 7. 6 and 7 7. 3 and 73. rational 7. irrational 75. rational 76. irrational 77. rational 78. not a real number 79. Possible answer: 3.5 80. 0 8. 0 8. no 83. es 8. no Chapter 5 5- Eercises. 5 3. 0 5. 5 6. 7 8. 7 7. es 3. 5 5. 7. 5 9. 3 5 3 5. 3 3. no 5. 3 6 ; 5 ; 0 3 ; 9 8 6 7. es 9. no 3. es 33. no 35. 3 9 39. C. es 3. 5. 8 5. 0.6 7.. 0 7 9.. 0 6 5- Eercises. 3 mi 3. approimatel 0 students per bus 5. approimatel 500 Calories per serving 7. 38 oz bo 9. 3.5 g/cm 3. approimatel cups per batch 3. approimatel $ per lb 5. 6 oz package 7. points per game 9. 6 beats per measure. approimatel 50 beats per minute 3. approimatel apples per pound 5. $3.75/lb; $.50/lb; lb 3 7. approimatel $0 per da 3. width: 0 in.; height: 5 in. 33. The bunch of has the lower unit price. 35. w 3 37. t 8. 39. no. no 5-3 Eercises. es 3. no 5. no 7. 5 3 in. 9. no. no 3. es 5..5 m 7. 8, 9. 8, 7. 0.5 39 3 6, 3. $ 5. 6 minutes 7. computers 9. molecules 3a. about 3: b. about 68 mm Hg 33. 5 and 56 35. 6 37. 33 39. 6-ounce can 5- Eercises. 0.69 km/s 3. 7.5 mi/h 5. 0.075 page/min 7..8 km/h 9. 80 cereal boes. 6 fish 3. 5.8 mi 5. 0.88 g 7. 8.75 tons 9. 0.3 m/s..85 gal 3. C 7. B 9. 3 3. 33. 0 35. 7 37. m 3 39. $0.75 per oz. $9 per monitor 5-5 Eercises. triangle A and triangle B 3. 6.5 cm 5..98 gal 7. similar 9. similar. es 3. 6 ft 5. 8 in. 7. 5 ft. 3.5 cm 3. 70 5. 338 quarts 5-6 Eercises. 8 d 3. 5.6 ft 5. ft 7. 90 ft 9. 85 ft. 65 ft 5. C 7. 5 9. 6. 3. 9 5-7 Eercises. 300 ft 3. in. 5. 5 mi 7. 7.5 ft 9.. 0 3. 630 ft 5. 6.5 ft 7. 8 in. 9. 95 in ; 6.6 ft 3. D 5. 5 and 6 7. 7 and 8 9. 6 and 7 3. $0.7 per apple Chapter 5 Stud Guide: Review. ratio; proportion. rate; unit rate 3. similar; scale factor. 5 5. 7 6. 3 0 7. 8. es 9. no 0. es. no. 75 disks 3. unit prices are the same. 8-pack 5. 5 6. h 6 7. w 8. 9 3 9. 7 min 0. 90,000 m/h. 500 ft/min. 583 3 m/min 3. 0.8 mi/min ( 8 mi/h)..5 in. 5. 3.5 in. 6. 8 ft 7. 6. ft 8. 3.75 miles 9. 3 in. 30. 6 mi 3. 57.5 mi 3. 53 mi Chapter 6 6- Eercises. 3. 87.5% 5. 7. 9. 0.3, 33 3 %, 36%, 3 8. 33 3 % 39 3. 5. 5% 7. 9. 00. 0.0,, %, 70% 3. 0%, 5 30%, 0%, 0% 5. 0%, 30%, 5%, 5% 33. B 35. 37. 39. z 5 Selected Answers SA5

6- Eercises. 50 3. 30 5. 3 7. 6. 00 3. 6 5. 3 7. 9. B 3. B 5. C 7. 50 9. 0 3. 800 33. 30 35. 00 37. 300 cars 39. 75,000. hours 3a. no b. es c. per mi ; 000 per mi 7. B 9. B 5. 9 53. 6 55. 5 57. 8 59. 3 6. 0.5 63. 0.55 50 6-3 Eercises. 9.5% 3. 75% 5. 3% 7..6 mi 9. 00%. % 3. 9 % 6 5. 5.0 ft above sea level 7.. 9. 399. 500 3a. 0 b. 0 c. 0 9..0% 3. Lena: $.87, Ana: $.36, Joseph: $.50, George: $.7 35. B 37. 000 g/ kg 39. mi/580 ft. 6 oz/ lb 3. 00 5. 0 6- Eercises. 60 3. 66.7 5.. oz 7. 35 9. 333.3. 00 cards 3a. 50 b. 5 c. 6.5 5a. 30 b. 0 c. 5 7. 657,000 9. 6.7%. 98,000 3. C 5. 5 and 6 7. 7 and 8 9. and 3. 0 and 33. and 5 35. 0.65 37. 0.7 39. 0.75..3 3. 3.5 3. $8,00 5. Deborah should choose the salar option that pas $00 plus % of sales. 7a. $6,08 b. $,77 c. 7.8% d. 9.8% 9. $695. 3. 5. 50% decrease 6-7 Eercises. $3.38; $938.38 3. $30. 5. about $97.89 7. 7 ears 9. 5.5%. $9.50, $09.50 3. $6.5, $696.5 5. $9.6, $66.6 7. 5 ears. How long did Alice keep her mone in the savings account? 5. B 7. gal/ qt 9. 95 Chapter 6 Stud Guide: Review. percent. percent of change 3. commission. 0.375 5. 3.75% 6. 8 7..5% 8. 7 0 9. 0.7 0. 30. 6. 3.3 3. 8. $7.50 5. $6.00 6. 33% 7. 00 ft 8. 7930 mi 9. 5 lb 7 oz 0. 7,750%. 3.%. $ 3. $6,830. $3.55 5. $000 6. $37.88 7. $00 8. 7% 9. 0.5 r 30. $000 at 3.75% for 3 ears; $7.50 3. about $57. Chapter 7 7, 9.. (, ) 3. (5, ) 5. (5, 6) 7. (8, ) 6 (, ) (5, 5) (3, 6) O 9. triangle; Quadrants I and II 3. III 33. (, 7) 35. a. (68, 6 ) b. (80, 6 ) c. (9, 3 ) 39. B. about $ per hour 3. about 6 students per teacher 5. 0., 7, 5%, 6 7- Eercises 5. es 7. no 3. no 5. no 7. es 9. a. es b. input: {0, 0, 0, 60, 80, 00}; output: {0, 50, 300, 50, 600, 750}. a. $0.0 b. an nonnegative number of hours ( 0) c. 550 hours 5. All real numbers 7. D 9. 7 3. 6 33. 00 35. $3 O 6 (, 3) 6-5 Eercises. 8% increase 3. 00% increase 5. $9773.60 7. % increase 9. 8.6%. 33% decrease 3. 39% decrease 5. % decrease 7. $500 9. 0. 50 3a. $78 b. $7 c. $39 d. 80% 5.,900% 7. decrease; 3% 9. C 3. 5% 33. $7.9; $3.76 35. 50% 37. 3.75 7- Eercises. II 3. III 5, 7. (, ) (3, ) O 7-3 Eercises. 6 (, ) O 3. a. 750 (, 5) (0, 3) 6-6 Eercises. $57 3..6% 5. $603.50 7. 3.% 9. $5.3. $38.07 9. (6, 3). (, 0) 3. I 5. IV SA6 Selected Answers

b. 5. Amount of water (gal) 5,000,000 3,000,000,000 0 3 5 6 7 Time (hr). Simon calculated the -coordinates incorrectl. 3. 3.3 5..3. 7- Eercises 6 O b. 3 s. a. $860, $90, $5000, $500, $5060 b. 7 3. B 5. It has no -intercepts. 7. 7 9. 7.5 ft 3..75 ft 33.,. 7-5 Eercises. O 7. O 6 6 (, 7) 3. O 3. 8 O 8 (, ) 9. $550; $975; $00; $85; $50. 70 O (0, 3) 5. 7. 9 8 7 6 5 3 5. linear 7. 0 8 6 0 8 6 O 6 8 0 6 8 3. Distance (mi) Distance (ft) 50 30 0 0 0 6 8 0 Time (h) Time (s) 5. a. 5 ppm b. about 38 ppm 9. It is not linear. 9. 5, 6, 5. 0, 0, 8 3. 37, 7, 3 5. Graph C 7. Graph B 9. a. h 0 3 5 3 0 5 0 5 0 5 0 O 0.5. 5.5 3 t 9.. 0 O 6 8 O Selected Answers SA7

3. quadratic 5. quadratic 7. O 9. O 7-6 Eercises. constant 3. 5. 6 7. variable 3 9. 0. 3. constant 5. variable 7. 9 9. a. $0./r; $0.3/r; $0.9/r b. 998 to 00 3. D 5.. 5 7. 6.9 9. 0 3. 0 7-7 Eercises. 3. 5. 0 7. The slope of the line is 5. 9.. 3 3. 6 7 5. 7. The slope of the line 5 is. 9. 350. The 5 roof is flat. 5. z 7. 3 w 9. miles 3. 0 7-8 Eercises... O 3. The sign determines whether the curve rises or falls from left to right. 5. a. = +3 3 O b. ; 3;, c. 5 9. B 3. 38% increase 33. % increase 35. O 6 3 = + = 3 3 =. Graph A 3. Graph B 9. Graph A 0. Graph B 3. B 9 5. 9 7. 5 9. 5. 3 3. inches 6 7-9 Eercises. es 3. no direct variation 5. ; about 968 kg 7. es 6 9. no. A direct variation is a linear relationship in which the -intercept is alwas 0. 3. 5. 7. 9. 3 8 3. Each watermelon would need to be eactl the same weight. 5. 8 7. $38.75; $3.75 Chapter 7 Stud Guide: Review. direct variation. function 3. linear function. J(, ), IV 5. K(, 3), II 6. L(, 0), -ais 7. M(, ), III 8. Possible answer: 0 3 3 0 7 9. Possible answer: 0 3 0 8 8 0. es 3.. 5. O (, ) (0, 3) (, 5) 6 O (, 8) 6 8 O (0, 6) (, ) 8 SA8 Selected Answers

6.. 3. O O 7. 9 8 7 6 5 3 3. quadratic. linear 5. constant 6. constant 7. 3 8. 9. 30. Distance (mi) 8 6 33. O 8. 3. 5; $.50 Time 8- Eercises 9. 0.. O O Chapter 8 8- Eercises. XY 3. XY, YZ, ZX 5. AEB or DEB 7. AEC 9. AEB and BED, AEC and CED. plane N or plane JKL 3. KJ, KL, KM, LK, MK 5. VWZ, YWX 7. VWZ, YWX 9. false. false 3. false 5. false 7. 30, 60 9. YV, VX, XY, YZ 33. A 35. m 5 37. 7 39..8 ft 8- Eercises 3. none of these 5. skew 7. BC, FG, and EH. plane ABF, plane FBC, plane DAE, and plane DCG 3. es 7. B 9. 36m 6 3. 7 3 33. AEC 35. BEC, CED 37. AEC, CED 8-3 Eercises. 05 3. 6 5. 8 7. 6 9. 70. 0 3., 5, and 8 7. 9 9. 80 9. The measures of the remaining angles are 90.. q 77 3. s 0 5. c 56 7. 60, 30, 90 9. r 86. t 5 3. m 7 5. 7, 35, 8 7. 5 9. w 60. 6 3. C 5. 30, 00, z 50 7. 05 9. 8 and 9 3. 7 and 8 33. AB CD 8-5 Eercises. AN CD 3. Parallelogram, rhombus, rectangle, square 5. C(, ) 7. CD AB 9. Parallelogram, rhombus, rectangle, square. C(, ) 3. 3 5. 0 7.. true 3. false 5. true 7. The slope of CD is also undefined because parallel lines have the same slope. 9. D 3. B 37. 3 39. 0. 0 8-6 Eercises. triangle ABC triangle FED 3. q 5 5. s 7 7. quadrilateral PQRS quadrilateral ZYXW 9. n 7. 9, 7, z 8. 3. r, s 0, t 8 5. 6 9. C. 3 3. P(, ) Selected Answers SA9

8-7 Eercises. rotation 3. Aʹ Cʹ Bʹ O 5. L(, 3) M(, 6), N(7, 3), O(3, ) 7. N M M L O N 9. translation. J H J H F G O F G 7. C B D A C O B D A 9. (3, ). (m, n) 3. (5, ) 9. A(0, ), B(0, ), C(5, ) 3. constant 33. 7 in. 8-8 Eercises. 3. 5. Chapter 8 Stud Guide: Review. parallel lines; perpendicular lines. rectangle; square; rhombus; square 3. KM. LKM 5. LKM and JKM 6. PQ and SV 7. plane SVR plane RVT 8. plane PQR plane STV 9. 66 0.. 66. 66 3.. m 6 5. 3 cm 6. trapezoid 7. 8. Z Y N L O O K M W X 3. A(, 3), B(5, ), C(7, 5), D(3, 7) 8 D C A B O B 8 A C 8 D 5. C B C B D A D A O 7. 9.. es 5. heagon 7. D 9. 3. 0 9..8 0 3. O 9. 9 0. t.. q 7. B 3. B A C A O A C B B C C A O SA0 Selected Answers

. C 5. Possible answer: 6. Possible answer: Chapter 9 9- Eercises. 8 cm 3.. ft 5. 8 units 7. units 9. cm. 6 m 3. units 5. units 7. 33 ft; 5 ft 9. 8 ft; 0.5 ft. $3375 3.,000 mi 7. B 9. 3. a 37 33. rational 35. rational 37. not a real number 9- Eercises. 9 units 3. 3 units 5. units 7. 5 units 9. 5 units. units 3. 0 units 5. units 7. 3. m 9. 33 cm. 37 m 3. 60 units 5. 5 units B C A A O B 7. 9. ft 9. When the dimensions are multiplied b, the area will be times as great and the perimeter will be times as great. 3. 53.8 cm 33. 66.6 ft 35. 9.8 ft 37. 87.6 ft ; 60. ft 39. C. 3.7 mi 3. units 9-3 Eercises. OQ, OR, OS, OT 3. RT, RS, ST, TQ 5. CA, CB, CD, CE, CF 7. GB, BF, DE, FE, AE 9. 0 cm. 00.8 3. 5 5. 33. 9. 0. 90 3. 8 5. 35 9- Eercises. 6π cm; 8.8 cm 3. 6.8π ft ; 5.8 ft 5. A π units ;.6 units ; C π units;.6 units 7. 8π in.; 56.5 in. 9. 56π cm ; 803.8 cm. A 6π units ; 50. units ; C 8π units; 5. units 3. C 0.7 m; A 9. m 5. C 56.5 in.; A 5.3 in. 7. 6. cm 9. 6 cm..7 m 3. 38.5 m 5. C 30π ft 9. ft; A 5π ft 706.5 ft 7.a. 9.6 in. b. 8.3 in. c. three regular pancakes 3. C 33. m 35. 8 7 37. 7 units 9-5 Eercises. 8 m 3. 09.5 cm 5. 59.6 in 7. 88. ft 9. 5 cm. 3. in 3. 63,800 mi 7. 80 in 9. C. 5 3. 0π in.; 3. in. 5. 8.π cm; 5.7 cm 9-6 Eercises 3. no 7. Approimate the area of the glacier with a trapezoid (b, b 3, h ) that has area 5 and a triangle (b 3, h ) that has area 3. 9. D. rational 3. rational Chapter 9 Stud Guide: Review. perimeter, area. chord 3. about 7 9 in, in.. 98 m, 80 m 5. ft; 55 8 ft 6. 0 d; d 7. 9 cm,. cm 8. 6 in, 6.3 in. 9. 36 ft 0. HF, FI, FG. GI. HI, GI, GJ, JI 3. A π 5. in ; C π 75. in. A 7.6π 55. cm ; C 8.π 6. cm 5. A 9π 8.3 m ; C 6π 8.8 m 6. A 0.36π. ft ; C.π 3.8 ft 7. 57 m 8. 0.57 ft 9. 73.5 cm 0. units. 5 units. units 3. 0 units Chapter 0 0- Eercises. pentagon; triangles; pentagonal pramid 3. triangles; rectangles; triangular prism 5. polhedron; heagonal pramid 7. triangle; triangles; triangular pramid 9. heagon; triangles; heagonal pramid. not a polhedron; clinder 3. square prism 5. triangular pramid 9. rectangular pramid. clinder 3. A 5. 3 0 7. 5 9. 00 oz for $6.99 36 0- Eercises. 63. cm 3 3. 56 m 3 5. 500 ft 3 7. 00 in 3 9. 35 m 3. 60 cm 3 3. a. 800 in 3 5. a..6 0 7 in 3 b. about 8.8 ft 9. 80 in 3. D 3. (5, 9) 5. in.; in 0-3 Eercises. 0 cm 3 3. 99.7 ft 3 5. 9. cm 3 7. 6,55,000 ft 3 9. 35.0 m 3. 66. ft 3 3. 59.5 units 3 5. 6 in 7. ft 9. 736 cm 3 Selected Answers SA

. 600 in 3 3. 30,056 ft 3 5. 8 7. B 9. 5 3. 9 33. 56.5π ft ; 76 ft 0- Eercises. 8 cm 3. 5 cm 5. 6.8 m 7. 0.9 in 9. 79.3 cm. 9 cm 3. 38 cm 5. 60 mm 7. 79.3 cm 9. 77.3 d. 90π 608.8 mm 3. m 5. $3.56 7. C 3. 3 33..5 35..77 37. 0 units 0-5 Eercises. 05 m 3. m 5. 70.5 ft 7. 5.6 mm 9. no. 0.8 km 3. 79,,850π mi 5. a. 8; 77 b. Menkaure; 9,68 ft c. Khufu; 9,636,7 ft 3 9. B. 56 3. 7 5. 0 ft 3 0-6 Eercises. 36π cm 3 ; 3.0 cm 3 3. 6.6π m 3 ; 0.7 m 3 5. π in ;.6 in 7. 56π cm ; 803.8 cm 9. The volume of the sphere and the cube are about equal ( 68 in 3 ).. 6.9π cm 3 ; 775.3 cm 3 3..3π in 3 ;. in 3 5. 07.π m ; 65. m 7. 00π cm ; 56 cm 9. 366.7π in 3 ; 9.76 in 3. V 5.π 6.55 d 3 ; S 6.π 5.9 d 5. 767.5 cm 3 7. 6.33 in 3 9. 3.0 3. 8 33. 5 35. 36 m 0-7 Eercises. : 3. 6: 5. 8. cm 3 7. : 9. 8:. 33,750 in 3 3. cm; cube 5. 9 cm; 79 cubes 7. 7 cm; 33 cubes 9.,000,000 cm 3 a. 508.8 in 3 b. about 0.9 gal 3. No; the surface area increases b times; the volume increases b 8 times. 7. D 9. 8 3. w 33. 3 mm 35. 50. in Chapter 0 Stud Guide: Review. clinder. surface area 3. cone. clinder 5. rectangular pramid 6. 36 cm 3 7. mm 3 8. 5. mm 3 9..9 ft 3 0. 60 in 3. 0 ft 3. 7 cm 3 3. 3 m 3. 680 mm 5. 9 in 6. 50.7 in 7. 80.6 cm 8. 3 cm 9. 80.9 in 0. 88π 90.3 in 3. 7776π,6.6 m 3. 3: 3. 9:. 7: Chapter - Eercises. 5 3. Democrats 6 6 8 7 6 8 5. 3 7. ; 3 9. B. 6 3. 7 9 9. line plot. 3. 0 0 5. 7 units - Eercises. 0; 0; 5 and 0; 30 3. Mean: 35.5; median: 350 5. 83.3; 88; 88; 8 7..3;.;. and 6.;. 9. mean 6.; median 6.5. 5 3. 9; 8;. D 3. Stems Leaves -3 Eercises. 5; 70 3. 5 6 3 5 6 Republicans 6 7 8 3 3 3 5 8 7 0 Ke: means 6 means 6 9 6 33.5 59 5. The medians are equal, but data set B has a much greater range. 7. 5.5; 6.5 9. 50 5 68 80 85. Data set Y has a greater median. Data set Y has a greater range. 3. 68; 85 5. 35; 57.5 7. 9.. 7. B 9. and 3. 0 and 0 33..8; 5; 5 35. 6.9; 63; 8 and 75 - Eercises. Population (millions) 3. positive correlation 5. 35 30 5 0 5 0 5 0 5 0 5 0 5 30 35 Price ($000) Miles peer gallon 67 75 85 93 99 0 3.5 5 3 9 6 5 7 0 0 8 6 0 0 0,000 30,000 50,000 Area (mi ) 7. positive correlation 9. 73 F. positive correlation 3. negative correlation 7. A 9. 78.5 cm. 9 to -5 Eercises Hurricanes Tropical storms 7 6. 0.6, or 60%; 0., or 0% 3. 0.709, or 70.9% 5. 0.9, or 9% SA Selected Answers

7. 0.885 9. 0.78. sample space: blue, green, red, ellow; outcome shown: ellow 3. sample space:,, 3,, 5, 6; outcome shown: 5. 0.55. 5 3. 0. 5. 0.000000 7. 5 9. 0-6 Eercises. 0.3, or 3% 3. 0.36; 0.3 5. 0.39, or 3.9% 7. 0.398; 0.39 9. 0.5. 0.05 3. 0.35 5. 0.3 9. 5.. 3. 3 8 5. 8-7 Eercises. 3. 5. 7. red 9. 0. 3 3. 5. 7. 30 9. 8 8. 3. 8 5. 9. 5 6 3. es 33. no -8 Eercises 0. dependent 3. 3 5. 53 7. independent 9.. 5 3. 5. 7 3 0.035. D 3. ; 5. 0 Chapter Stud Guide: Review. median; mode. probablilt 3. line of best fit; scatter plot; correlation. 5. 30; 3.5; 33 and 3; 66 6. 3; 6; none; 5 7. 8. 9. 0 3 5 55 60 65 70 75 50 55 60 65 70 75 80 85 90 80 8 8 86 88 90 9 9 0. no correlation. positive correlation. 0.85, or 85%; 0.5, or 5% 3. 0.5, or 5%. 5. 5 6. 3 96 5 Chapter - Eercises. es 3. no 5. binomial 7. not a polnomial 9. 8. 0 3. es 5. no 7. es 9. monomial. trinomial 3. not a polnomial 5. 7. 9. 3. 8 in 3 33. monomial; 3 35. binomial; 37. trinomial; 5 39. not a polnomial. trinomial; 3 3. not a polnomial 5. 9 53. 3.5 0 5 55. 7 57. 9 - Eercises. 3b and b, 5b and b 3. 7 5 5. 3 7. 7a a 9. t and 5t, t and 5t. 9p 7p 3. 9 3 5. 6 3 7. s s 3 9. 3 5. 9m 0m 3. 7mn 5. 0 000d 7. 8 8 in 9. C 3. 5.% 33. 5 5 5 O -3 Eercises. 5 3 3 6 3. r s 9rs 5. 5ab 3ab a b 8 7. 8 3w in. 9. 7g g. 3h 6 h h 3. 3t t 5. w w 7. 7w w w 9. 6.9r 3 r 5r 5 7. C 9. 6 or 0 3. 0 5 33. 8 ft 35. ft - Eercises. 3. 3 8 5 5. 8 3 5 6 7. b 3 5b b 9. 8m n 3mn mn. 5 0 8 3. 3 9 in 3 ; 30 in 3 5. 3v 5v 7. 9. 9b b 9. 5a 8 3. 3 5. 6p 3 5p p t 0pt 7. b ab 9. 6 5 3. 6 in 37. 0 9; 09 39. 63m 5. 8r 0 s 0 3. z 3 5z -5 Eercises. 5s 3 t 5 3. 35h 6 j 0 5. 35p r 5 7. 6hm 8h 9. 3 3 5 30. A b h b h 3. g 3 h 8 5. s 5 t 7. 7.5h 5 j 0 9. 5z 3 z. 6c d 3 c d 3 3. s t 3 5s 3 t 3 6s t 5. b 6 7. 6a 3 b 6 9. 3m 5 5m 3 3. 5 7 5 33. 3f g f 3 g f g 5 35. 0m p 8 m 3 p 7 m p 5 37. V πr 3 πr 3 ; 63π 3. 5c 3 d 0c d 5. m 3n 7. 59 in -6 Eercises. 5 0 3. m 7m 5 5. m 9m 7. 00 ft 9. b 9. 9 30 5 3. v v 5 5. 3 3 30 7. b bc 5c 9. r rs 5s. 60 5 d 3. b 6b 9 5. 9 7. a a 9 9. b 7b 60 Selected Answers SA3

3. t 3t 36 33. 3b 5b 8 35. m mn 3n 37. r 5 39. 5r rs 8s. PV bp av ab c 5. B 7. 5. 9. 8.7 5. m m 53. 6 Chapter Stud Guide: Review. polnomial; degree. FOIL; binomials 3. binomial; trinomial. trinomial 5. not a polnomial 6. not a polnomial 7. monomial 8. not a polnomial 9. binomial 0. 8.. 3 3. 5. 6 5. 7t 3t 6. gh 9g h 7. 0mn m 8. 8a 0b 9. 36st 3t 0. 6 5. 5 7. h 8h 7 3.. 3n 5. 6 8 6. w w 7. 6 8. ab ab a b 9. p 3 q p q pq 30. s t s t 3 3st 3 3. a b 3 30a 3 b 3 36a 3 b a b 3. m 3 6m 3 m 33. 0g 3 h 3 5gh 5 0gh 30h 3. j 5 k 3 3 j k j 6 k 5 35. 8 7 5 6 3 7 3 6 36. p 8p 37. b 0b 38. 3r r 39. 3a ab 0b 0. m m 9. 9t 36. 6b bt 8t 3. 3 0. SA Selected Answers

Glossar/Glosario KEYWORD: MT8CA Glossar ENGLISH SPANISH EXAMPLES absolute value The distance of a number from zero on a number line; shown b. (p. 5) valor absoluto Distancia a la que está un número de 0 en una recta numérica. El símbolo del valor absoluto es. 5 5 5 5 acute angle An angle that measures less than 90. (p. 379) ángulo agudo Ángulo que mide menos de 90. acute triangle A triangle with all angles measuring less than 90. (p. 39) triángulo acutángulo Triángulo en el que todos los ángulos miden menos de 90. Addition Propert of Equalit The propert that states that if ou add the same number to both sides of an equation, the new equation will have the same solution. (p. 33) Addition Propert of Opposites The propert that states that the sum of a number and its opposite equals zero. (p. 8) additive inverse The opposite of a number. (p. 8) Propiedad de igualdad de la suma Propiedad que establece que puedes sumar el mismo número a ambos lados de una ecuación la nueva ecuación tendrá la misma solución. Propiedad de la suma de los opuestos Propiedad que establece que la suma de un número su opuesto es cero. inverso aditivo El opuesto de un número. 6 8 6 6 () 0 The additive inverse of 5 is 5. adjacent angles Angles in the same plane that are side b side and have a common verte and a common side. (p. 388) ángulos adacentes Ángulos en el mismo plano que comparten un vértice un lado. a b algebraic epression An epression that contains at least one variable. (p. 6) algebraic inequalit An inequalit that contains at least one variable. (p. 36) alternate eterior angles A pair of angles on the outer sides of two lines cut b a transversal that are on opposite sides of the transversal. (p. 389) epresión algebraica Epresión que contiene al menos una variable. desigualdad algebraica Desigualdad que contiene al menos una variable. ángulos alternos eternos Par de ángulos en los lados eternos de dos líneas intersecadas por una transversal, que están en lados opuestos de la transversal. 8 (m b) 3 0 5a b 3 c d a b a and d are alternate eterior angles. Glossar/Glosario G

ENGLISH SPANISH EXAMPLES alternate interior angles A pair of angles on the inner sides of two lines cut b a transversal that are on opposite sides of the transversal. (p. 389) ángulos alternos internos Par de ángulos en los lados internos de dos líneas intersecadas por una transversal, que están en lados opuestos de la transversal. t v r and v are alternate interior angles. r s altitude (of a triangle) A perpendicular segment from a verte to the line containing the opposite side. (p. 393) altura (de un triángulo) Segmento perpendicular que se etiende desde un vértice hasta la recta que forma el lado opuesto. angle A figure formed b two ras with a common endpoint called the verte. (p. 379) ángulo Figura formada por dos raos con un etremo común llamado vértice. angle bisector A line, segment, or ra that divides an angle into two congruent angles. (p. 38) bisectriz de un ángulo Línea, segmento o rao que divide un ángulo en dos ángulos congruentes. M N P O arc An unbroken part of a circle. (p. 6) arco Parte continua de un círculo. area The number of nonoverlapping unit squares needed to cover a given surface. (p. 35) área El número de unidades cuadradas que se necesitan para cubrir una superficie dada. The area is 0 square units. Associative Propert of Addition The propert that states that for all real numbers a, b, and c, the sum is alwas the same, regardless of their grouping. (p. 6) Associative Propert of Multiplication The propert that states that for all real numbers a, b, and c, their product is alwas the same, regardless of their grouping. (p. 6) average The sum of a set of data divided b the number of items in the data set; also called mean. (p. 537) Propiedad asociativa de la suma Propiedad que establece que para todos los números reales a, b c, la suma siempre es la misma sin importar cómo se agrupen. Propiedad asociativa de la multiplicación Propiedad que establece que para todos los números reales a, b c, el producto siempre es el mismo, sin importar cómo se agrupen. promedio La suma de los elementos de un conjunto de datos dividida entre el número de elementos del conjunto. También se llama media. a b c (a b) c a (b c) a b c (a b) c a (b c) Data set:, 6, 7, 8, 0 Average: 6 7 8 0 5 3 5 7 5 G Glossar/Glosario

ENGLISH SPANISH EXAMPLES back-to-back stem-and-leaf plot A stem-and-leaf plot that compares two sets of data b displaing one set of data to the left of the stem and the other to the right. (p. 533) bar graph A graph that uses vertical or horizontal bars to displa data. (p. SB7) diagrama doble de tallo hojas Diagrama de tallo hojas que compara dos conjuntos de datos presentando uno de ellos a la izquierda del tallo el otro a la derecha. gráfica de barras Gráfica en la que se usan barras verticales u horizontales para presentar datos. Data set A: 9,,, 6, 3, 7 Data set B: 6, 8, 0, 3, 5, 6, Set A Set B 9 0 6 8 6 0 3 5 6 7 3 Ke: means 3 means 3 Time (s) Sunlight s Travel Time to Planets 5000 800 000 3000 600 000 000 500 760 Earth Mars Jupiter Planet Saturn base (in numeration) When a number is raised to a power, the number that is used as a factor is the base. (p. 66) base Cuando un número es elevado a una potencia, el número que se usa como factor es la base. 3 5 3 3 3 3 3; 3 is the base. base (of a polgon) A side of a polgon, or the length of that side. (p. 35) base (de un polígono) Lado de un polígono; cara de una figura tridimensional según la cual se mide o se clasifica la figura. base (of a three-dimensional figure) A face of a threedimensional figure b which the figure is measured or classified. (p. 80) base (de una figura tridimensional) Cara de una figura tridimensional a partir de la cual se mide o se clasifica la figura. Bases of a clinder Bases of a prism Base of a cone Base of a pramid base (of a trapezoid) One of the two parallel sides of a trapezoid. (p. 0) base (de un trapecio) Uno de los dos lados paralelos del trapecio. binomial A polnomial with two terms. (p. 590) binomio Polinomio con dos términos. a 3 m 3 n 6mn Glossar/Glosario G3

ENGLISH SPANISH EXAMPLES bisect To divide into two trazar una bisectriz Dividir en dos congruent parts. (p. 38) partes congruentes. JK bisects LJM bo-and-whisker plot A graph that displas the highest and lowest quarters of data as whiskers, the middle two quarters of the data as a bo, and the median. (p. 53) gráfica de mediana rango Gráfica que muestra los valores máimo mínimo, los cuartiles superior e inferior, así como la mediana de los datos. Lower quartile Minimum Upper quartile Median Maimum 0 6 8 0 capacit The amount a container can hold when filled. (p. 5) Celsius A metric scale for measuring temperature in which 0 C is the freezing point of water and 00 C is the boiling point of water; also called centigrade. (p. SB5) center (of a circle) The point inside a circle that is the same distance from all the points on the circle. (p. 6) capacidad Cantidad que cabe en un recipiente cuando se llena. Celsius Escala métrica para medir la temperatura, en la que 0 C es el punto de congelación del agua 00 C es el punto de ebullición. También se llama centígrado. centro (de un círculo) Punto interior de un círculo que se encuentra a la misma distancia de todos los puntos de la circunferencia. A large milk container has a capacit of gallon. center of rotation The point about which a figure is rotated. (p. 0) centro de una rotación Punto alrededor del cual se hace girar una figura. 90 90 Center 90 90 central angle An angle formed b two radii with its verte at the center of a circle. (p. 7) ángulo central de un círculo Ángulo formado por dos radios cuo vértice se encuentra en el centro de un círculo. certain (probabilit) Sure to happen; an event that is certain has a probabilit of. (p. 556) seguro (probabilidad) Que con seguridad sucederá. Representa una probabilidad de. When rolling a number cube, it is certain that ou will roll a number less than 7. chord A segment with its endpoints on a circle. (p. 6) cuerda Segmento de recta cuos etremos forman parte de un círculo. G Glossar/Glosario

ENGLISH SPANISH EXAMPLES circle The set of all points in a plane that are the same distance from a given point called the center. (p. 6) círculo Conjunto de todos los puntos en un plano que se encuentran a la misma distancia de un punto dado llamado centro. circle graph A graph that uses sectors of a circle to compare parts to the whole and parts to other parts. (p. SB) gráfica circular Gráfica que usa secciones de un círculo para comparar partes con el todo con otras partes. Residents of Mesa, AZ 65+ 5 6 5 9% 3% 7% 30% Under 8 % 8 circumference The distance around a circle. (p. 50) circunferencia Distancia alrededor de un círculo. Circumference clockwise A circular movement to the right in the direction shown. (p. ) en el sentido de las manecillas del reloj Movimiento circular en la dirección que se indica. coefficient The number that is multiplied b a variable in an algebraic epression. (p. 0) commission A fee paid to a person for making a sale. (p. 98) commission rate The fee paid to a person who makes a sale epressed as a percent of the selling price. (p. 98) common denominator A denominator that is the same in two or more fractions. (p. 70) common factor A number that is a factor of two or more numbers. (p. SB6) common multiple A number that is a multiple of each of two or more numbers. (p. SB6) Commutative Propert of Addition The propert that states that two or more numbers can be added in an order without changing the sum. (p. 6) coeficiente Número que se multiplica por una variable en una epresión algebraica. comisión Pago que recibe una persona por realizar una venta. tasa de comisión Pago que recibe una persona por hacer una venta, epresado como un porcentaje del precio de venta. común denominador Denominador que es común a dos o más fracciones. factor común Número que es factor de dos o más números. común múltiplo Número que es múltiplo de dos o más números. Propiedad conmutativa de la suma Propiedad que establece que sumar dos o más números en cualquier orden no altera la suma. 5 is the coefficient in 5b. A commission rate of 5% and a sale of $0,000 results in a commission of $500. The common denominator of 5 8 and is 8. 8 8 is a common factor of 6 and 0. 5 is a common multiple of 3 and 5. 8 0 0 8; a b b a Glossar/Glosario G5

ENGLISH SPANISH EXAMPLES 6 6; a b b a Commutative Propert of Multiplication The propert that states that two or more numbers can be multiplied in an order without changing the product. (p. 6) Propiedad conmutativa de la multiplicación Propiedad que establece que multiplicar dos o más números en cualquier orden no altera el producto. compatible numbers Numbers that are close to the given numbers that make estimation or mental calculation easier. (p. 78) números compatibles Números que están cerca de los números dados hacen más fácil la estimación o el cálculo mental. To estimate 7957 5009, use the compatible numbers 8000 and 5000: 8000 5000 3,000. complementar angles Two angles whose measures add to 90. (p. 379) ángulos complementarios Dos ángulos cuas medidas suman 90. 37 A 53 B The complement of a 53 angle is a 37 angle. composite figure A figure made up of simple geometric shapes. (p. 36) figura compuesta Figura formada por figuras geométricas simples. cm 3 cm cm cm 5 cm 5 cm cm composite number A whole number greater than that has more than two positive factors. (p. SB5) compound event An event made up of two or more simple events. (p. 569) compound inequalit A combination of more than one inequalit. (p. 37) compound interest Interest earned or paid on principal and previousl earned or paid interest. (p. 30) cone A three-dimensional figure with a circular base ling in one plane plus a verte not ling on that plane. The remaining surface of the cone is formed b joining the verte to points on the circle b line segments. (p. 8) número compuesto Número maor que que tiene más de dos factores que son números cabales. suceso compuesto Suceso formado por dos o más sucesos simples. desigualdad compuesta Combinación de dos o más desigualdades. interés compuesto Interés que se gana o se paga sobre el capital los intereses previamente ganados o pagados. cono Figura tridimensional con una base circular que está en un plano más un vértice que no está en ese plano. El resto de la superficie del cono se forma uniendo el vértice con puntos del círculo por medio de segmentos de recta., 6, 8, and 9 are composite numbers. Rolling a 3 on a number cube and spinning a on a spinner is a compound event. or 0; 0 If $00 is put into an account with an interest rate of 5% compounded monthl, then after ears, the account will have 00 0.05 $0.9. G6 Glossar/Glosario

ENGLISH SPANISH EXAMPLES Q R congruent Having the same size and shape. (p. 06) congruentes Que tienen la misma forma el mismo tamaño. P S PQ RS congruent angles Angles that have the same measure. (p. 38) ángulos congruentes Ángulos que tienen la misma medida. A C E B D F ABC DEF congruent segments Segments that have the same length. (p. 38) segmentos congruentes Segmentos que tienen la misma longitud. P Q R S PQ SR constant A value that does not change. (p. 0) constant of variation The constant k in direct and inverse variation equations. (p. 357) conversion factor A fraction whose numerator and denominator represent the same quantit but use different units; the fraction is equal to because the numerator and denominator are equal. (p. 37) coordinate One of the numbers of an ordered pair that locate a point on a coordinate graph. (p. 3) constante Valor que no cambia. constante de variación La constante k en ecuaciones de variación directa e inversa. factor de conversión Fracción cuo numerador denominador representan la misma cantidad pero con unidades distintas; la fracción es igual a porque el numerador el denominador son iguales. coordenada Uno de los números de un par ordenado que ubica un punto en una gráfica de coordenadas. 3, 0, π 5 constant of variation hours da and da hours B O The coordinates of B are (, 3) coordinate plane (coordinate grid) A plane formed b the intersection of a horizontal number line called the -ais and a vertical number line called the -ais. (p. 3) plano cartesiano (cuadrícula de coordenadas) Plano formado por la intersección de una recta numérica horizontal llamada eje otra vertical llamada eje. O -ais -ais Glossar/Glosario G7

ENGLISH SPANISH EXAMPLES correlation The description of the relationship between two data sets. (p. 58) correlación Descripción de la relación entre dos conjuntos de datos. correspondence The relationship between two or more objects that are matched. (p. 06) correspondencia La relación entre dos o más objetos que coinciden. A and D are corresponding angles. A B C AB and DE are corresponding sides. E D F corresponding angles (for lines) For two lines intersected b a transversal, a pair of angles that lie on the same side of the transversal and on the same sides of the other two lines. (p. 389) corresponding angles (in polgons) Matching angles of two or more polgons. (p. ) ángulos correspondientes (en líneas) Dadas dos líneas cortadas por una transversal, el par de ángulos ubicados en el mismo lado de la transversal en los mismos lados de las otras dos líneas. ángulos correspondientes (en polígonos) Ángulos que están en la misma posición relativa en dos o más polígonos. m n o p q r s t m and q are corresponding angles. A and D are corresponding angles. corresponding sides Matching sides of two or more polgons. (p. ) lados correspondientes Lados que se ubican en la misma posición relativa en dos o más polígonos. AB and DE are corresponding sides. counterclockwise A circular movement to the left in the direction shown. (p. ) en sentido contrario a las manecillas del reloj Movimiento circular en la dirección que se indica. cross products In the statement a b c d, bc and ad are the cross products. (p. 3) productos cruzados En el enunciado a b c d, bc ad son productos cruzados. 3 6 For the proportion 3 6, the cross products are 6 and 3. G8 Glossar/Glosario

ENGLISH SPANISH EXAMPLES cube (geometric figure) A rectangular prism with si congruent square faces. (p. 77) cubo (figura geométrica) Prisma rectangular con seis caras cuadradas congruentes. cube (in numeration) A number raised to the third power. (p. 68) cubic function A polnomial function of degree 3. (p. 338) cubo (en numeración) Número elevado a la tercera potencia. función cúbica Función polinomial de grado 3. 3 8 8 is the cube of. = 3 customar sstem of measurement The measurement sstem often used in the United States. (p. SB5) clinder A three-dimensional figure with two parallel congruent circular bases. The third surface of the clinder consists of all parallel circles of the same radius whose centers lie on the segment joining the centers of the bases. (p. 8) sistema usual de medidas El sistema de medidas que se usa comúnmente en Estados Unidos. cilindro Figura tridimensional con dos bases circulares paralelas congruentes. La tercera superficie del cilindro consiste en todos los círculos paralelos del mismo radio cuo centro está en el segmento que une los centros de las bases. inches, feet, miles, ounces, pounds, tons, cups, quarts, gallons decagon A polgon with ten sides. (p. SB6) decágono Polígono de diez lados. deductive reasoning The process of using logic to draw conclusions. (p. SB) degree The unit of measure for angles or temperature. (p. 379) degree of a polnomial The highest power of the variable in a polnomial. (p. 59) denominator The bottom number of a fraction that tells how man equal parts are in the whole. (p. 66) Densit Propert The propert that states that between an two real numbers, there is alwas another real number. (p. 99) razonamiento deuctivo Proceso en el que se utiliza la lógica para sacar conclusions. grado Unidad de medida para ángulos temperaturas. grado de un polinomio La potencia más alta de la variable en un polinomio. denominador Número que está abajo en una fracción que indica en cuántas partes iguales se divide el entero. Propiedad de densidad Propiedad según la cual entre dos números reales cualesquiera siempre ha otro número real. The polnomial 5 6 7 has degree 5. In the fraction, 5 is the 5 denominator. Glossar/Glosario G9

ENGLISH SPANISH EXAMPLES dependent events Events for sucesos dependientes Dos A bag contains 3 red marbles and which the outcome of one event sucesos son dependientes si el blue marbles. Drawing a red marble and then drawing a blue affects the probabilit of the resultado de uno afecta la marble without replacing the first other. (p. 569) probabilidad del otro. marble is an eample of dependent events. diagonal A line segment that connects two non-adjacent vertices of a polgon. (p. 03) diagonal Segmento de recta que une dos vértices no adacentes de un polígono. E A B D C Diagonal diameter A line segment that passes through the center of a circle and has endpoints on the circle, or the length of that segment. (p. 6) diámetro Segmento de recta que pasa por el centro de un círculo tiene sus etremos en la circunferencia, o bien la longitud de ese segmento. difference The result when one number is subtracted from another. (p. 0) dimensions (geometr) The length, width, or height of a figure. (p. 80) diferencia El resultado de restar un número de otro. dimensiones (geometría) Longitud, ancho o altura de una figura. In 6 5, is the difference. direct variation A relationship between two variables in which the data increase or decrease together at a constant rate. (p. 357) variación directa Relación entre dos variables en la que los datos aumentan o disminuen juntos a una tasa constante. discount The amount b which the original price is reduced. (p. 95) descuento Cantidad que se resta del precio original de un artículo. disjoint events Two events are disjoint if the cannot occur in the same trial of an eperiment. (p. 566) Distributive Propert The propert that states if ou multipl a sum b a number, ou will get the same result if ou multipl each addend b that number and then add the products. (p. 7) dividend The number to be divided in a division problem. (p. SB7) divisible Can be divided b a number without leaving a remainder. (p. SB) sucesos desunidos Dos sucesos son desunidos si no pueden ocurrir en la misma prueba de un eperimento. Propiedad distributiva Propiedad que establece que, si multiplicas una suma por un número, obtienes el mismo resultado que si multiplicas cada sumando por ese número luego sumas los productos. dividendo Número que se divide en un problema de división. divisible Que se puede dividir entre un número sin dejar residuo. When rolling a number cube, rolling a 3 and rolling an even number are disjoint events. 5 5(0 ) (5 0) (5 ) In 8, 8 is the dividend. 8 is divisible b 3. G0 Glossar/Glosario

ENGLISH SPANISH EXAMPLES Division Propert of Equalit The propert that states that if ou divide both sides of an equation b the same nonzero number, the new equation will have the same solution. (p. 37) Propiedad de igualdad de la división Propiedad que establece que puedes dividir ambos lados de una ecuación entre el mismo número distinto de cero, la nueva ecuación tendrá la misma solución. 3 divisor The number ou are dividing b in a division problem. (p. SB7) domain The set of all possible input values of a function. (p. 36) double-bar graph A bar graph that compares two related sets of data. (p. SB7) divisor El número entre el que se divide en un problema de división. dominio Conjunto de todos los posibles valores de entrada de una función. gráfica de doble barra Gráfica de barras que compara dos conjuntos de datos relacionados. In 8, is the divisor. The domain of the function is all real numbers. Number of students Students at Hill Middle School 00 80 60 0 0 0 Grade 6 Grade 7 Grade 8 Bos Girls edge The line segment along which two faces of a polhedron intersect. (p. 80) arista Segmento de recta donde se intersecan dos caras de un poliedro. Edge endpoint A point at the end of a line segment or ra. (p. 378) etremo Un punto ubicado al final de un segmento de recta o rao. equall likel Outcomes that have the same probabilit. (p. 56) equation A mathematical sentence that shows that two epressions are equivalent. (p. 3) equilateral triangle A triangle with three congruent sides. (p. 393) igualmente probables Resultados que tienen la misma probabilidad de ocurrir. ecuación Enunciado matemático que indica que dos epresiones son equivalentes. triángulo equilátero Triángulo con tres lados congruentes. When tossing a coin, the outcomes heads and tails are equall likel. 7 6 0 3 equivalent epressions Equivalent epressions have the same value for all values of the variables. (p. 0) epresión equivalente Las epresiones equivalentes tienen el mismo valor para todos los valores de las variables. 5 and 9 are equivalent epressions. Glossar/Glosario G

ENGLISH SPANISH EXAMPLES equivalent ratios Ratios that name the same comparison. (p. ) razones equivalentes Razones que representan la misma comparación. and are equivalent ratios. estimate (n) An answer that is close to the eact answer and is found b rounding or other methods. (v) To find such an answer. (p. 78) evaluate To find the value of a numerical or algebraic epression. (p. 6) even number A whole number that is divisible b two. (p. SB) event An outcome or set of outcomes of an eperiment or situation. (p. 556) eperiment (probabilit) In probabilit, an activit based on chance (such as tossing a coin). (p. 556) eperimental probabilit The ratio of the number of times an event occurs to the total number of trials, or times that the activit is performed. (p. 560) eponent The number that indicates how man times the base is used as a factor. (p. 66) eponential form A number is in eponential form when it is written with a base and an eponent. (p. 66) epression A mathematical phrase that contains operations, numbers, and/or variables. (p. 6) estimación (s) Una solución aproimada a la respuesta eacta que se halla mediante el redondeo u otros métodos. estimar (v) Hallar una solución aproimada a la respuesta eacta. evaluar Hallar el valor de una epresión numérica o algebraica. número par Número cabal divisible entre. suceso Un resultado o una serie de resultados de un eperimento o una situación. eperimento (probabilidad) En probabilidad, cualquier actividad basada en la posibilidad, como lanzar una moneda. probabilidad eperimental Razón del número de veces que ocurre un suceso al número total de pruebas o al número de veces que se realiza el eperimento. eponente Número que indica cuántas veces se usa la base como factor. forma eponencial Se dice que un número está en forma eponencial cuando se escribe con una base un eponente. epresión Enunciado matemático que contiene operaciones, números /o variables. 500 is an estimate for the sum 98 87 0. Evaluate 7 for 3. 7 (3) 7 6 7 3,, 6 When rolling a number cube, the event an odd number consists of the outcomes, 3, and 5. Tossing a coin 0 times and noting the number of heads. Kendra attempted 7 free throws and made 6 of them. Her eperimental probabilit of making a free throw is number made number attempted 3 8; 3 is the eponent. 6 6 7 0.59. is the eponential form for. face A flat surface of a polhedron. (p. 80) cara Superficie plana de un poliedro. Face G Glossar/Glosario

ENGLISH SPANISH EXAMPLES factor A number that is multiplied b another number to get a product. (p. SB) factor Número que se multiplica por otro para hallar un producto. 7 is a factor of since 7 3. Fahrenheit A temperature scale in which 3 F is the freezing point of water and F is the boiling point of water. (p. SB5) fair When all outcomes of an eperiment are equall likel, the eperiment is said to be fair. (p. 56) first quartile The median of the lower half of a set of data; also called lower quartile. (p. 5) FOIL An acronm for the terms used when multipling two binomials: the First, Inner, Outer, and Last terms. (p. 68) formula A rule showing relationships among quantities. (p. 3) fraction A number in the form a b, where b 0. (p. 66) frequenc table A table that lists items together according to the number of times, or frequenc, that the items occur. (p. SB9) Fahrenheit Escala de temperatura en la que 3 F es el punto de congelación del agua F es el punto de ebullición. justo Se dice de un eperimento donde todos los resultados posibles son igualmente probables. primer cuartil La mediana de la mitad inferior de un conjunto de datos. También se llama cuartil inferior. FOIL Sigla en inglés de los términos que se usan al multiplicar dos binomios: los primeros, los eternos, los internos los últimos (First, Outer, Inner, Last). fórmula Regla que muestra relaciones entre cantidades. fracción Número escrito en la forma a, b donde b 0. tabla de frecuencia Una tabla en la que se organizan los datos de acuerdo con el número de veces que aparece cada valor (o la frecuencia). When tossing a coin, heads and tails are equall likel, so it is a fair eperiment. Lower quartile Minimum F L ( )( 3) 3 6 I 6 O A w is the formula for the area of a rectangle. 3 Data set:,,,, 3,, 5, 5, 5, 6, 6 Frequenc table: Data Upper quartile Median Maimum 0 6 8 0 Frequenc 3 5 3 6 function An input-output relationship that has eactl one output for each input. (p. 36) función Relación de entrada-salida en la que a cada valor de entrada corresponde eactamente un valor de salida. 6 5 0 Glossar/Glosario G3

ENGLISH SPANISH EXAMPLES graph of an equation A graph of the set of ordered pairs that are solutions of the equation. (p. 3) gráfica de una ecuación Gráfica del conjunto de pares ordenados que son soluciones de la ecuación. O great circle A circle on a sphere such that the plane containing the circle passes through the center of the sphere. (p. 508) círculo máimo Círculo de una esfera tal que el plano que contiene el círculo pasa por el centro de la esfera. Great circle greatest common divisor (GCD) The largest whole number that divides evenl into two or more given numbers. (p. SB6) máimo común divisor (MCD) El maor de los factores comunes compartidos por dos o más números dados. The GCD of 7 and 5 is 9. height In a triangle or quadrilateral, the perpendicular distance from the base to the opposite verte or side. (p. 35) In a trapezoid, the perpendicular distance between the bases. (p. 0) In a prism or clinder, the perpendicular distance between the bases. (p. 3) In a pramid or cone, the perpendicular distance from the base to the opposite verte. (p. 0) altura En un triángulo o cuadrilátero, la distancia perpendicular desde la base de la figura al vértice o lado opuesto. En un trapecio, la distancia perpendicular entre las bases. En un prisma o cilindro, la distancia perpendicular entre las bases. En una pirámide o cono, la distancia perpendicular desde la base al vértice opuesto. b h b h Height hemisphere A half of a sphere. (p. 508) hemisferio La mitad de una esfera. heptagon A seven-sided polgon. (p. SB6) heptágono Polígono de siete lados. heagon A si-sided polgon. (p. SB6) heágono Polígono de seis lados. G Glossar/Glosario

ENGLISH SPANISH EXAMPLES histogram A bar graph that shows the frequenc of data within equal intervals. (p. SB9) hpotenuse In a right triangle, the side opposite the right angle. (p. 03) histograma Gráfica de barras que muestra la frecuencia de los datos en intervalos iguales. hipotenusa En un triángulo rectángulo, el lado opuesto al ángulo recto. Frequenc Starting Salaries 0 30 0 0 0 0 9 30 39 0 9 50 59 Salar range (thousand $) hpotenuse Identit Propert of Multiplication The propert that states that the product of and an number is that number. (p. 37) Identit Propert of Addition The propert that states the sum of zero and an number is that number. (p. 3) Propiedad de identidad del uno Propiedad que establece que el producto de cualquier número es ese número. Propiedad de identidad del cero Propiedad que establece que la suma de cero cualquier número es ese número. 3 3 0 3 0 3 image A figure resulting from a transformation. (p. 0) imagen Figura que resulta de una transformación. B B A C A C impossible (probabilit) Can never happen; an event that is impossible has a probabilit of 0. (p. 556) improper fraction A fraction in which the numerator is greater than or equal to the denominator. (p. SB9) independent events Events for which the outcome of one event does not affect the probabilit of the other. (p. 569) indirect measurement The technique of using similar figures and proportions to find a measure. (p. 8) imposible (en probabilidad) Que no puede ocurrir. Suceso cua probabilidad de ocurrir es 0. fracción impropia Fracción cuo numerador es maor que o igual al denominador. sucesos independientes Dos sucesos son independientes si el resultado de uno no afecta la probabilidad del otro. medición indirecta La técnica de usar figuras semejantes proporciones para hallar una medida. When rolling a standard number cube, rolling a 7 is an impossible event. 7 5, 3 3 A bag contains 3 red marbles and blue marbles. Drawing a red marble, replacing it, and then drawing a blue marble is an eample of independent events. Glossar/Glosario G5

ENGLISH SPANISH EXAMPLES inductive reasoning The process of conjecturing that a general rule or statement is true because specific cases are true. (p. SB) razonamiento inductivo Proceso de razonamiento por el que se determina que una regal o enunciado son verdaderos porque ciertos casos específicos son verdaderos. inequalit A mathematical statement that compares two epressions b using one of the following smbols:,,,, or. (p. 36) input The value substituted into an epression or function. (p. 36) integers The set of whole numbers and their opposites. (p. ) interest The amount of mone charged for borrowing or using mone. (p. 303) desigualdad Enunciado matemático que compara dos epresiones por medio de uno de los siguientes símbolos:,,,, ó. valor de entrada Valor que se usa para sustituir una variable en una epresión o función. enteros Conjunto de todos los números cabales sus opuestos. interés Cantidad de dinero que se cobra por el préstamo o uso del dinero. 5 8 5 For the function 6, the input produces an output of.... 3,,, 0,,, 3,... interior angles Angles on the inner sides of two lines cut b a transversal. (p. 389) ángulos internos Ángulos en los lados internos de dos líneas intersecadas por una transversal. t v r s r, s, t, and v are interior angles. intersecting lines Lines that cross at eactl one point. (p. 388) interval The space between marked values on a number line or the scale of a graph. (p. SB8) inverse operations Operations that undo each other: addition and subtraction, or multiplication and division. (p. 3) irrational number A real number that cannot be epressed as a ratio of two integers. (p. 98) líneas secantes Líneas que se cruzan en un solo punto. intervalo El espacio entre los valores marcados en una recta numérica o en la escala de una gráfica. operaciones inversas Operaciones que se cancelan mutuamente: suma resta, o multiplicación división. número irracional Número real que no se puede epresar como una razón de dos enteros. Adding 3 and subtracting 3 are inverse operations: 5 3 8; 8 3 5 Multipling b 3 and dividing b 3 are inverse operations: 3 6; 6 3, π m n isolate the variable To get a variable alone on one side of an equation or inequalit in order to solve the equation or inequalit. (p. 3) despejar la variable Dejar sola la variable en un lado de una ecuación o desigualdad para resolverla. 7 7 7 5 3 3 3 G6 Glossar/Glosario

ENGLISH SPANISH EXAMPLES isosceles triangle A triangle with at least two congruent sides. (p. 393) triángulo isósceles Triángulo que tiene al menos dos lados congruentes. lateral area The sum of the areas of the lateral faces of a prism or pramid, or the area of the lateral surface of a clinder or cone. (p. 98) área lateral Suma de las áreas de las caras laterales de un prisma o pirámide, o área de la superficie lateral de un cilindro o cono. Lateral area (8)() (6)() 336 cm lateral face In a prism or a pramid, a face that is not a base. (p. 98) cara lateral En un prisma o pirámide, una cara que no es la base. Bases Lateral face Right prism lateral surface In a clinder, the curved surface connecting the circular bases; in a cone, the curved surface that is not a base. (p. 99) superficie lateral En un cilindro, superficie curva que une las bases circulares; en un cono, la superficie curva que no es la base. Lateral surface Right clinder least common denominator (LCD) The least common multiple of two or more denominators. (p. 70) mínimo común denominador (mcd) El mínimo común múltiplo de dos o más denominadores. The LCD of 3 and 5 is. 6 least common multiple (LCM) The least number, other than zero, that is a multiple of two or more given numbers. (p. SB6) mínimo común múltiplo (mcm) El menor de los números cabales, distinto de cero, que es múltiplo de dos o más números dados. The LCM of 6 and 0 is 30. legs In a right triangle, the sides that include the right angle; in an isosceles triangle, the pair of congruent sides. (p. 03) catetos En un triángulo rectángulo, los lados adacentes al ángulo recto. En un triángulo isósceles, el par de lados congruentes. leg leg like terms Two or more terms that have the same variable raised to the same power. (p. 0) line A straight path that etends without end in opposite directions. (p. 378) términos semejantes Dos o más términos que contienen la misma variable elevada a la misma potencia. línea Traectoria recta que se etiende de manera indefinida en direcciones opuestas. In the epression 3a 5b a, 3a and a are like terms. Glossar/Glosario G7

ENGLISH SPANISH EXAMPLES line graph A graph that uses line segments to show how data changes. (p. SB8) gráfica lineal Gráfica que muestra cómo cambian los datos mediante segmentos de recta. Score Marlon s Video Game Scores 00 800 00 0 3 5 6 Game number line of best fit A straight line that comes closest to the points on a scatter plot. (p. 59) línea de mejor ajuste La línea recta que más se aproima a los puntos de un diagrama de dispersión. 60 0 80 0 0 0 80 060 line of reflection A line that a figure is flipped across to create a mirror image of the original figure. (p. 0) ínea de refleión Línea sobre la cual se invierte una figura para crear una imagen reflejada de la figura original. Q R S T S T R Q line plot A number line with marks or dots that show frequenc. (p. 53) diagrama de acumulación Recta numérica con marcas o puntos que indican la frecuencia. X X X X X X X X X 0 3 Number of pets line segment A part of a line between two endpoints. (p. 378) segmento de recta Parte de una línea con dos etremos. G H GH linear equation An equation whose solutions form a straight line on a coordinate plane. (p. 330) ecuación lineal Ecuación cuas soluciones forman una línea recta en un plano cartesiano. linear function A function whose graph is a straight line. (p. 330) función lineal Función cua gráfica es una línea recta. O lower quartile The median of the lower half of a set of data; also called first quartile. (p. 5) cuartil inferior La mediana de la mitad inferior de un conjunto de datos; también se llama primer cuartil. Lower quartile Minimum Upper quartile Median Maimum 0 6 8 0 G8 Glossar/Glosario

ENGLISH SPANISH EXAMPLES markup The amount b which a wholesale cost is increased. (p. 95) maimum The greatest value in a data set. (p. 53) mean The sum of a set of data divided b the number of items in the data set; also called average. (p. 537) measure of central tendenc A measure used to describe the middle of a data set. (p. 538) median The middle number, or the mean (average) of the two middle numbers, in an ordered set of data. (p. 537) metric sstem of measurement A decimal sstem of weights and measures that is used universall in science and commonl throughout the world. (p. SB5) midpoint The point that divides a line segment into two congruent line segments. (p. 393) minimum The least value in a data set. (p. 53) mied number A number made up of a whole number that is not zero and a fraction. (p. SB9) mode The number or numbers that occur most frequentl in a set of data; when all numbers occur with the same frequenc, we sa there is no mode. (p. 537) monomial A number or a product of numbers and variables with eponents that are whole numbers. (p. 78) margen de beneficio Cantidad que se agrega a un costo maorista. máimo El valor maor de un conjunto de datos. media La suma de todos los elementos de un conjunto de datos dividida entre el número de elementos del conjunto. También se llama promedio. medida de tendencia dominante Medida que describe la parte media de un conjunto de datos. mediana El número intermedio o la media (el promedio) de los dos números intermedios en un conjunto ordenado de datos. sistema métrico de medición Sistema decimal de pesos medidas empleado universalmente en las ciencias de uso común en todo el mundo. punto medio El punto que divide un segmento de recta en dos segmentos de recta congruentes. mínimo El valor meno de un conjunto datos. número mito Número compuesto por un número cabal distinto de cero una fracción. moda Número o números más frecuentes en un conjunto de datos; si todos los números aparecen con la misma frecuencia, no ha moda. monomio Un número o un producto de números variables con eponentes que son números cabales. Data set:, 6, 7, 8, 0 Maimum: 0 Data set:, 6, 7, 8, 0 Mean: 6 7 8 0 3 5 5 5 7 mean or median Data set:, 6, 7, 8, 0 Median: 7 centimeters, meters, kilometers, gram, kilograms, milliliters, liters B is the midpoint of AC. Data set:, 6, 7, 8, 0 Minimum: 8 Data set: 3, 5, 8, 8, 0 Mode: 8 3 Glossar/Glosario G9

ENGLISH SPANISH EXAMPLES multiple The product of an number and a non-zero whole number is a multiple of that number. (p. SB) múltiplo El producto de cualquier número un número cabal distinto de cero es un múltiplo de ese número. 30, 0, and 90 are all multiplies of 0. Multiplication Propert of Equalit The propert that states that if ou multipl both sides of an equation b the same number, the new equation will have the same solution. (p. 38) multiplicative inverse One of two numbers whose product is ; also called reciprocal. (p. 8) mutuall eclusive Two events are mutuall eclusive if the cannot occur in the same trial of an eperiment. (p. 566) Propiedad de igualdad de la multiplicación Propiedad que establece que puedes multiplicar ambos lados de una ecuación por el mismo número la nueva ecuación tendrá la misma solución. inverso multiplicativo Uno de dos números cuo producto es ; también llamado recíproco. mutuamente ecluentes Dos sucesos son mutuamente ecluentes cuando no pueden ocurrir en la misma prueba de un eperimento. 3 7 (3) 3 (3)(7) The multiplicative inverse of 3 is 3. When rolling a number cube, rolling a 3 and rolling an even number are mutuall eclusive events. negative correlation Two data sets have a negative correlation if one set of data values increases while the other decreases. (p. 59) correlación negativa Dos conjuntos de datos tienen correlación negativa si los valores de un conjunto aumentan a medida que los valores del otro conjunto disminuen. negative integer An integer less than zero. (p. ) entero negativo Entero menor que cero. is a negative integer. 3 0 3 net An arrangement of twodimensional figures that can be folded to form a polhedron. (p. 96) plantilla Arreglo de figuras bidimensionales que se doblan para formar un poliedro. 6 m 0 m 0 m 6 m no correlation Two data sets have no correlation when there is no relationship between their data values. (p. 59) sin correlación Caso en que los valores de dos conjuntos no muestran ninguna relación. numerator The top number of a fraction that tells how man parts of a whole are being considered. (p. 66) numerador El número de arriba de una fracción; indica cuántas partes de un entero se consideran. 5 numerator numerical epression An epression that contains onl numbers and operations. (p. 6) epresión numérica Epresión que inclue sólo números operaciones. ( 3) G0 Glossar/Glosario

ENGLISH SPANISH EXAMPLES obtuse angle An angle whose measure is greater than 90 but less than 80. (p. 379) obtuse triangle A triangle containing one obtuse angle. (p. 39) octagon An eight-sided polgon. (p. SB6) ánlgulo obtuso Ángulo que mide más de 90 menos de 80. triángulo obtusángulo Triángulo que tiene un ángulo obtuso. octágono Polígono de ocho lados. odd number A whole number that is not divisible b two. (p. SB) opposites Two numbers that are an equal distance from zero on a number line; also called additive inverse. (p. ) order of operations A rule for evaluating epressions: First perform the operations in parentheses, then compute powers and roots, then perform all multiplication and division from left to right, and then perform all addition and subtraction from left to right. (p. SB) número impar Número cabal que no es divisible entre. opuestos Dos números que están a la misma distancia de cero en una recta numérica. También se llaman inversos aditivos. orden de las operaciones Regla para evaluar epresiones: primero se hacen las operaciones entre paréntesis, luego se hallan las potencias raíces, después todas las multiplicaciones divisiones de izquierda a derecha, por último, todas las sumas restas de izquierda a derecha., 3, 5 5 and 5 are opposites. 6 5 3 8 Simplif the power. 6 8 Divide. 6 Add. 0 5 units 5 units 0 3 5 6 ordered pair A pair of numbers that can be used to locate a point on a coordinate plane. (p. 3) par ordenado Par de números que sirven para ubicar un punto en un plano cartesiano. B O The coordinates of B are (, 3). origin The point where the -ais and -ais intersect on the coordinate plane; (0, 0). (p. 3) origen Punto de intersección entre el eje el eje en un plano cartesiano: (0, 0). O origin outcome (probabilit) A possible result of a probabilit eperiment. (p. 556) resultado (en probabilidad) Posible resultado de un eperimento de probabilidad. When rolling a number cube, the possible outcomes are,, 3,, 5, and 6. Glossar/Glosario G

ENGLISH SPANISH EXAMPLES outlier A value much greater or much less than the others in a data set. (p. 538) valor etremo Un valor mucho maor o menor que los demás valores de un conjunto de datos. Most of data Mean Outlier output The value that results from the substitution of a given input into an epression or function. (p. 36) valor de salida Valor que resulta después de sustituir una variable por un valor de entrada determinado en una epresión o función. For the function 6, the input produces an output of. parabola The graph of a quadratic function. (p. 33) parábola Gráfica de una función cuadrática. parallel lines Lines in a plane that do not intersect. (p. 38) líneas paralelas Líneas que se encuentran en el mismo plano pero que nunca se intersecan. r s parallel planes Planes that do not intersect. (p. 385) planos paralelos Planos que no se cruzan. Plane AEF and plane CGH are parallel planes. parallelogram A quadrilateral with two pairs of parallel sides. (p. 399) paralelogramo Cuadrilátero con dos pares de lados paralelos. pentagon A five-sided polgon. (p. SB6) pentágono Polígono de cinco lados. percent A ratio comparing a number to 00. (p. 7) percent of change The amount stated as a percent that a number increases or decreases. (p. 9) percent of decrease A percent change describing a decrease in a quantit. (p. 9) porcentaje Razón que compara un número con el número 00. porcentaje de cambio Cantidad en que un número aumenta o disminue, epresada como un porcentaje. porcentaje de disminución Porcentaje de cambio en que una cantidad disminue. 5 5% 00 An item that costs $8 is marked down to $6. The amount of the decrease is $, and the percent of decrease is 0.5 5%. 8 G Glossar/Glosario

ENGLISH SPANISH EXAMPLES percent of increase A percent change describing an increase in a quantit. (p. 9) porcentaje de incremento Porcentaje de cambio en que una cantidad aumenta. The price of an item increases from $8 to $. The amount of the increase is $ and the percent of increase is 0.5 50% 8 perfect square A square of a whole number. (p. 90) cuadrado perfecto El cuadrado de un número cabal. 5 5, so 5 is a perfect square. perimeter The sum of the lengths of the sides of a polgon. (p. 3) perímetro La suma de las longitudes de los lados de un polígono. 8 ft 6ft perimeter 8 6 8 6 8 ft perpendicular bisector A line that intersects a segment at its midpoint and is perpendicular to the segment. (p. 38) mediatriz Línea que cruza un segmento en su punto medio es perpendicular al segmento. perpendicular lines Lines that intersect to form right angles. (p. 38) líneas perpendiculares Líneas que al intersecarse forman ángulos rectos. n m perpendicular planes Planes that intersect at 90 angles. (p. 385) planos perpendiculares Planos que se cruzan en ángulos de 90. pi (π) The ratio of the circumference of a circle to the length of its diameter; π 3. or 7. (p. 50) pi (π ) Razón de la circunferencia de un círculo a la longitud de su diámetro; π 3. ó 7. plane A flat surface that etends forever. (p. 378) plano Superficie plana que se etiende de manera indefinida en todas direcciones. R A B C point An eact location in space. (p. 378) polgon A closed plane figure formed b three or more line segments that intersect onl at their endpoints (vertices). (p. 399) punto Ubicación eacta en el espacio. polígono Figura plana cerrada, formada por tres o más segmentos de recta que se intersecan sólo en sus etremos (vértices). P polhedron A three-dimensional figure in which all the surfaces or faces are polgons. (p. 80) polnomial One monomial or the sum or difference of monomials. (p. 590) population The entire group of objects or individuals considered for a surve. (p. SB) poliedro Figura tridimensional cuas superficies o caras tiene forma de polígonos. polinomio Un monomio o la suma o la diferencia de monomios. población Grupo completo de objetos o individuos que se desea estudiar. 3 7 In a surve about stud habits of middle school students, the population is all middle school students. Glossar/Glosario G3

ENGLISH SPANISH EXAMPLES positive correlation Two data sets have a positive correlation when their data values increase or decrease together. (p. 59) correlación positiva Dos conjuntos de datos tienen una correlación positiva cuando los valores de ambos conjuntos aumentan o disminuen al mismo tiempo. positive integer An integer greater than zero. (p. ) power A number produced b raising a base to an eponent. (p. 66) entero positivo Entero maor que cero. potencia Número que resulta al elevar una base a un eponente. is a positive integer. 3 8, so to the 3rd power is 8. prime factorization A number written as the product of its prime factors. (p. SB5) prime number A whole number greater than that has eactl two factors, itself and. (p. SB5) principal The initial amount of mone borrowed or saved. (p. 30) principal square root The nonnegative square root of a number. (p. 90) factorización prima Un número escrito como el producto de sus factores primos. número primo Número cabal maor que que sólo es divisible entre él mismo. capital Cantidad inicial de dinero depositada o recibida en préstamo. raíz cuadrada principal Raíz cuadrada no negativa de un número. 0 5, 3 3 5 is prime because its onl factors are 5 and. 5 5; the principal square root of 5 is 5. prism A three-dimensional figure with two congruent parallel polgonal bases. The remaining edges join corresponding vertices of the bases so that the remaining faces are rectangles. (p. 80) probabilit A number from 0 to (or 0% to 00%) that describes how likel an event is to occur. (p. 556) prisma Figura tridimensional con dos bases poligonales congruentes paralelas. El resto de las aristas se unen a los vértices correspondientes de las bases de manera que el resto de las caras sean rectángulos. probabilidad Un número entre 0 (ó 0% 00%) que describe qué tan probable es un suceso. A bag contains 3 red marbles and blue marbles. The probabilit of randoml choosing a red marble is 3 7. product The result when two or more numbers are multiplied. (p. 6) producto Resultado de multiplicar dos o más números. The product of and 8 is 3. profit The difference between total income and total epenses. (p. 99) ganancia Diferencia entre el total de ingresos de gastos. If total income is $,00, and total epenses are $,00, the profit is $,00 $,00 $300. proportion An equation that states that two ratios are equivalent. (p. 3) proporción Ecuación que establece que dos razones son equivalentes. 3 6 protractor A tool for measuring angles. (p. 78) transportador Instrumento para medir ángulos. G Glossar/Glosario

ENGLISH SPANISH EXAMPLES pramid A three-dimensional figure with a polgonal base ling in one plane plus one additional verte not ling on that plane. The remaining edges of the pramid join the additional verte to the vertices of the base. (p. 80) pirámide Figura tridimensional con una base poligonal en un plano más un vértice adicional que no está en ese plano. El resto de las aristas de la pirámide unen el vértice adicional con los vértices de la base. Pthagorean Theorem In a right triangle, the square of the length of the hpotenuse is equal to the sum of the squares of the lengths of the legs. (p. 03) Teorema de Pitágoras En un triángulo rectángulo, la suma de los cuadrados de los catetos es igual al cuadrado de la hipotenusa. 3 cm cm 5 3 5 69 5 cm quadrant The - and -aes divide the coordinate plane into four regions. Each region is called a quadrant. (p. 3) cuadrante El eje el eje dividen el plano cartesiano en cuatro regiones. Cada región recibe el nombre de cuadrante. Quadrant II O Quadrant I Quadrant III Quadrant IV quadratic function A function of the form a b c, where a 0. (p. 33) función cuadrática Función del tipo a b c, donde a 0. 6 8 quadrilateral A four-sided polgon. (p. 399) cuadrilátero Polígono de cuatro lados. quarterl Four times a ear. (p. 305) trimestral Cuatro veces al año. quartile Three values, one of which is the median, that divide a data set into fourths. (p. 5) quotient The result when one number is divided b another. (p. SB7) cuartil Cada uno de tres valores, uno de los cuales es la mediana, que dividen en cuartos un conjunto de datos. cociente Resultado de dividir un número entre otro. Lower quartile Minimum Upper quartile Median Maimum 0 6 8 0 In 8, is the quotient. radical smbol The smbol used to represent the nonnegative square root of a number. (p. 9) símbolo de radical El símbolo con que se representa la raíz cuadrada no negativa de un número. 36 6 Glossar/Glosario G5

ENGLISH SPANISH EXAMPLES radius A line segment with one endpoint at the center of the circle and the other endpoint on the circle, or the length of that segment. (p. 6) radio Segmento de recta con un etremo en el centro de un círculo el otro en la circunferencia, o bien la longitud de ese segmento. Radius random sample A sample in which each individual or object in the entire population has an equal chance of being selected. (p. SB) range (in statistics) The difference between the greatest and least values in a data set. (p. 537) range (of a function) The set of all possible output values of a function. (p. 36) rate A ratio that compares two quantities measured in different units. (p. 8) rate of change A ratio that compares the amount of change in a dependent variable to the amount of change in an independent variable. (p. 3) rate of interest The percent charged or earned on an amount of mone; see simple interest. (p. 30) ratio A comparison of two numbers or quantities. (p. ) rational number A number that can be written in the form a b, where a and b are integers and b 0. (p. 66) ra A part of a line that starts at one endpoint and etends forever. (p. 378) muestra aleatoria Muestra en la que cada individuo u objeto de la población tiene la misma posibilidad de ser elegido. rango (en estadística) Diferencia entre los valores máimo mínimo de un conjunto de datos. rango (en una función) El conjunto de todos los valores de salida posibles de una función. tasa Una razón que compara dos cantidades medidas en diferentes unidades. tasa de cambio Razón que compara la cantidad de cambio de la variable dependiente con la cantidad de cambio de la variable independiente. tasa de interés Porcentaje que se cobra por una cantidad de dinero prestada o que se gana por una cantidad de dinero ahorrada; ver interés simple. razón Comparación de dos números o cantidades. número racional Número que se puede epresar como a, b donde a b son números enteros b 0. rao Parte de una línea que comienza en un etremo se etiende de manera indefinida. Mr. Henson chose a random sample of the class b writing each student s name on a slip of paper, miing up the slips, and drawing five slips without looking. Data set: 3, 5, 7, 7, Range: 3 9 The range of is 0. The speed limit is 55 miles per hour or 55 mi/h. The cost of mailing a letter increased from cents in 985 to 5 cents in 988. During this period, the rate of change was change in cost 5 c hange in ears 9 3 88 985 3 cent per ear. to 5, :5, 5 6 can be epressed as 6. 0.5 can be epressed as. D real number A rational or irrational number. (p. 98) número real Número racional o irracional. 7 -.5 Rational Numbers () Integers () -3 Whole Numbers () Natural Numbers () Real Numbers 3 0. 3 0 - - 0 5 9 Irrational Numbers 7 π - e G6 Glossar/Glosario

ENGLISH SPANISH EXAMPLES reciprocal One of two numbers whose product is ; also called multiplicative inverse. (p. 8) recíproco Uno de dos números cuo producto es igual a. También se llama inverso multiplicativo. The reciprocal of 3 is 3. rectangle A parallelogram with four right angles. (p. 399) rectángulo Paralelogramo con cuatro ángulos rectos. rectangular prism A threedimensional figure that has three pairs of opposite parallel congruent faces that are rectangles. (p. 80) prisma rectangular Figura tridimensional que tiene tres pares de caras opuestas, paralelas congruentes que son rectángulos. reflection A transformation of a figure that flips the figure across a line. (p. 0) refleión Transformación que ocurre cuando se invierte una figura sobre una línea. B B A C C A regular polgon A polgon in which all angles are congruent and all sides are congruent. (p. SB6) polígono regular Polígono en el que todos los ángulos todos los lados son congruentes. regular pramid A pramid whose base is a regular polgon and whose lateral faces are all congruent. (p. 50) pirámide regular Pirámide que tiene un polígono regular como base caras laterales congruentes. regular tessellation A repeating pattern of congruent regular polgons that completel covers a plane with no gaps or overlaps. (p. 6) teselado regular Patrón que se repite formado por polígonos regulares congruentes que cubren completamente un plano sin dejar espacios sin superponerse. repeating decimal A rational number in decimal form in which a group of one or more digits (where all digits are not zero) repeat infinitel. (pp. 66, 9) rhombus A parallelogram with all sides congruent. (p. 399) decimal periódico Número racional en forma decimal en el que un grupo de uno o más dígitos (donde todos los dígitos son distintos de cero) se repiten infinitamente. rombo Paralelogramo en el que todos los lados son congruentes. 0.757575... 0.75 right angle An angle that measures 90. (p. 379) ángulo recto Ángulo que mide eactamente 90. Glossar/Glosario G7

ENGLISH SPANISH EXAMPLES right cone A cone in which a perpendicular line drawn from the base to the tip (verte) passes through the center of the base. (p. 50) cono recto Cono en el que una línea perpendicular trazada de la base a la punta (vértice) pasa por el centro de la base. Ais Right cone right triangle A triangle containing a right angle. (p. 39) triángulo rectángulo Triángulo que tiene un ángulo recto. rise The vertical change when the slope of a line is epressed as the ratio r ise r u, n or rise over run. (p. 35) distancia vertical El cambio vertical cuando la pendiente de una línea se epresa como la razón distancia vertical distancia horizontal, o "distancia vertical sobre distancia horizontal". For the points (3, ) and (6, 5), the rise is 5 () 6. rotation A transformation in which a figure is turned around a point. (p. 0) rotación Transformación que ocurre cuando una figura gira alrededor de un punto. F E G D G F D E run The horizontal change when the slope of a line is epressed as the ratio r ise r u, n or rise over run. (p. 35) distancia horizontal El cambio horizontal cuando la pendiente de una línea se epresa como la razón distancia vertical distancia horizontal, o "distancia vertical sobre distancia horizontal". For the points (3, ) and (6, 5), the run is 6 3 3. sales ta A percent of the cost of an item, which is charged b governments to raise mone. (p. 98) sample A part of the population. (p. SB) impuesto sobre la venta Porcentaje del costo de un artículo que los gobiernos cobran para recaudar fondos. muestra Una parte de la población. In a surve about the stud habits of middle school students, a sample is a group of 00 randoml chosen middle school students. sample space All possible outcomes of an eperiment. (p. 556) scale The ratio between two sets of measurements. (p. 5) espacio muestral Conjunto de todos los resultados posibles de un eperimento. escala La razón entre dos conjuntos de medidas. When rolling a number cube, the sample space is,, 3,, 5, 6. cm : 5 mi G8 Glossar/Glosario

ENGLISH SPANISH EXAMPLES scale drawing A drawing that uses a scale to make an object smaller than (a reduction) or larger than (an enlargement) the real object. (p. 5) dibujo a escala Dibujo en el que se usa una escala para que un objeto se vea menor (reducción) o maor (agrandamiento) que el objeto real al que representa. E A D B C H G A blueprint is an eample of a scale drawing. F scale factor The ratio used to enlarge or reduce similar figures. (p. 53) factor de escala Razón empleada para agrandar o reducir figuras semejantes. scale model A proportional model of a three-dimensional object. (p. 5) modelo a escala Modelo proporcional de un objeto tridimensional. scalene triangle A triangle with no congruent sides. (p. 393) triángulo escaleno Triángulo que no tiene lados congruentes. scatter plot A graph with points plotted to show a possible relationship between two sets of data. (p. 58) diagrama de dispersión Gráfica de puntos que muestra una posible relación entre dos conjuntos de datos. 8 6 0 6 8 scientific notation A method of writing ver large or ver small numbers b using powers of 0. (p. 8) second quartile The median of a set of data. (p. 76) notación científica Método que se usa para escribir números mu grandes o mu pequeños mediante potencias de 0. segundo cuartil Mediana de un conjunto de datos.,560,000,000,000.56 0 3 Data set:, 6, 7, 8, 0 Second quartile: 7 sector A region enclosed b two radii and the arc joining their endpoints. (p. 7) sector Región encerrada por dos radios el arco que une sus etremos. segment A part of a line between two endpoints. (p. 378) segmento Parte de una línea entre dos etremos. G H GH side One of the segments that form a polgon. (p. 399) lado Uno de los segmentos que forman un polígono. similar Figures with the same shape but not necessaril the same size are similar. (p. ) semejantes Figuras que tienen la misma forma, pero no necesariamente el mismo tamaño. Glossar/Glosario G9

ENGLISH SPANISH EXAMPLES simple interest A fied percent of the principal. It is found using the formula I Prt, where P represents the principal, r the rate of interest, and t the time. (p. 30) interés simple Un porcentaje fijo del capital. Se calcula con la fórmula I Cit, donde C representa el capital, i, la tasa de interés t, el tiempo. $00 is put into an account with a simple interest rate of 5%. After ears, the account will have earned I 00 0.05 $0. simplest form A fraction is in simplest form when the numerator and denominator have no common factors other than. (p. SB8) simplif To write a fraction or epression in simplest form. (p. SB8) mínima epresión Una fracción está en su mínima epresión cuando el numerador el denominador no tienen más factor común que. simplificar Escribir una fracción o epresión numérica en su mínima epresión. Fraction: 8 Simplest form: 3 skew lines Lines that lie in different planes that are neither parallel nor intersecting. (p. 38) líneas oblicuas Líneas que se encuentran en planos distintos, pore so no se intersecan ni son paralelas. E A F B slant height The distance from the base of a cone to its verte, measured along the lateral surface. (p. 50) altura inclinada Distancia de la base de un cono a su vértice, medida a lo largo de la superficie lateral. C Slant height D G H AE and CD are skew lines. slope A measure of the steepness of a line on a graph; the rise divided b the run. (p. 35) pendiente Medida de la inclinación de una línea en una gráfica. Razón de la distancia vertical a la distancia horizontal. Slope r ise 3 run (, ) (, ) O solution of an equation A value or values that make an equation true. (p. 3) solution of an inequalit A value or values that make an inequalit true. (p. 0) solution set The set of values that make a statement true. (p. 36) solución de una ecuación Valor o valores que hacen verdadera una ecuación. solución de una desigualdad Valor o valores que hacen verdadera una desigualdad. conjunto solución Conjunto de valores que hacen verdadero un enunciado. Equation: 6 Solution: Inequalit: 3 0 Solution: 7 Inequalit: 3 5 Solution set: 3 0 3 5 6 solve To find an answer or a solution. (p. 3) resolver Hallar una respuesta o solución. G30 Glossar/Glosario

ENGLISH SPANISH EXAMPLES sphere A three-dimensional figure with all points the same distance from the center. (p. 508) esfera Figura tridimensional en la que todos los puntos están a la misma distancia del centro. square A rectangle with four congruent sides. (p. 399) cuadrado Rectángulo con cuatro lados congruentes. square (numeration) A number raised to the second power. (p. 9) square root One of the two equal factors of a number. (p. 90) stem-and-leaf plot A graph used to organize and displa data so that the frequencies can be compared. (p. 533) straight angle An angle that measures 80. (p. 379) substitute To replace a variable with a number or another epression in an algebraic epression. (p. 6) Subtraction Propert of Equalit The propert that states that if ou subtract the same number from both sides of an equation, the new equation will have the same solution. (p. 33) sum The result when two or more numbers are added. (p. 8) supplementar angles Two angles whose measures have a sum of 80. (p. 379) surface area The sum of the areas of the faces, or surfaces, of a three-dimensional figure. (p. 98) cuadrado (en numeración) Número elevado a la segunda potencia. raíz cuadrada Uno de los dos factores iguales de un número. diagrama de tallo hojas Gráfica que muestra ordena los datos, que sirve para comparar las frecuencias. ángulo llano Ángulo que mide eactamente 80. sustituir Reemplazar una variable por un número u otra epresión en una epresión algebraica. Propiedad de igualdad de la resta Propiedad que establece que puedes restar el mismo número de ambos lados de una ecuación la nueva ecuación tendrá la misma solución. suma Resultado de sumar dos o más números. ángulos suplementarios Dos ángulos cuas medidas suman 80. área total Suma de las áreas de las caras, o superficies, de una figura tridimensional. In 5, the number 5 is squared. 6, or 6, so and are square roots of 6. Stem Leaves 3 5 3 7 9 0 5 7 7 7 8 3 Substituting 3 for m in the epression 5m gives 5(3) 5 3. 6 8 6 6 Ke: 3 means 3. The sum of 6 7 is. 30 50 cm 8 cm 6 cm Surface area (8)() (8)(6) ()(6) 3 cm Glossar/Glosario G3

ENGLISH SPANISH EXAMPLES sstem of equations A set of two or more equations that contain two or more variables. (p. 3) sistema de ecuaciones Conjunto de dos o más ecuaciones que contienen dos o más variables. 3 term (in an epression) The parts of an epression that are added or subtracted. (p. 0) terminating decimal A decimal number that ends or terminates. (p. 66) tessellation A repeating pattern of plane figures that completel cover a plane with no gaps or overlaps. (p. 6) término (en una epresión) Las partes de una epresión que se suman o se restan. decimal finito Decimal con un número determinado de posiciones decimales. teselado Patrón repetido de figuras planas que cubren totalmente un plano sin superponerse ni dejar huecos. 6.75 3 6 8 Term Term Term theoretical probabilit The ratio of the number of equall likel outcomes in an event to the total number of possible outcomes. (p. 56) third quartile The median of the upper half of a set of data; also called upper quartile. (p. 5) probabilidad teórica Razón del número de resultados igualmente probables en un suceso al número total de resultados posibles. tercer cuartil La mediana de la mitad superior de un conjunto de datos. También se llama cuartil superior. When rolling a number cube, the theoretical probabilit of rolling a is 6. Lower quartile Minimum Upper quartile Median Maimum 0 6 8 0 transformation A change in the size or position of a figure. (p. 0) transformación Cambio en el tamaño o la posición de una figura. B B A ABC C A A B C C translation A movement (slide) of a figure along a straight line. (p. 0) traslación Desplazamiento de una figura a lo largo de una línea recta. J M J M K L K L transversal A line that intersects two or more lines. (p. 389) transversal Línea que cruza dos o más líneas. 5 6 3 7 8 Transversal trapezoid A quadrilateral with eactl one pair of parallel sides. (p. 399) trapecio Cuadrilátero con un par de lados paralelos. A B C D G3 Glossar/Glosario

ENGLISH SPANISH EXAMPLES tree diagram A branching diagram that shows all possible combinations or outcomes of an event. (p. SB3) diagrama de árbol Diagrama ramificado que muestra todas las posibles combinaciones o resultados de un suceso. H 3 5 6 T 3 5 6 trial In probabilit, a single repetition or observation of an eperiment. (p. 556) triangle A three-sided polgon (p. 39) prueba En probabilidad, una sola repetición u observación de un eperimento. triángulo Polígono de tres lados. When rolling a number cube, each roll is one trial. Triangle Sum Theorem The theorem that states that the measures of the angles in a triangle add up to 80. (p. 39) triangular prism A threedimensional figure with two congruent parallel triangular bases and whose other faces are rectangles. (p. 85) trinomial A polnomial with three terms. (p. 590) Teorema de la suma del triángulo Teorema que establece que las medidas de los ángulos de un triángulo suman 80. prisma triangular Figura tridimensional con dos bases triangulares congruentes paralelas cuas otras caras son rectángulos. trinomio Polinomio con tres términos. 3 5 unit analsis The process of changing one unit of measure to another. (p. 37) unit conversion factor A fraction used in unit conversion in which the numerator and denominator represent the same amount but are in different units. (p. 37) unit price A unit rate used to compare prices. (p. 9) unit rate A rate in which the second quantit in the comparison is one unit. (p. 8) upper quartile The median of the upper half of a set of data; also called third quartile. (p. 5) conversión de unidades Proceso que consiste en cambiar una unidad de medida por otra. factor de conversión de unidades Fracción que se usa para la conversión de unidades, donde el numerador el denominador representan la misma cantidad pero están en unidades distintas. precio unitario Tasa unitaria que sirve para comparar precios. tasa unitaria Una tasa en la que la segunda cantidad de la comparación es la unidad. cuartil superior La mediana de la mitad superior de un conjunto de datos; también se llama tercer cuartil. 60 min h or h 60 min Cereal costs $0.3 per ounce. 0 cm per minute Lower quartile Minimum Upper quartile Median Maimum 0 6 8 0 Glossar/Glosario G33

ENGLISH SPANISH EXAMPLES variable A smbol used to represent a quantit that can change. (p. 6) verte (of an angle) The common endpoint of the sides of the angle. (p. 379) variable Símbolo que representa una cantidad que puede cambiar. vértice de un ángulo Etremo común de los lados del ángulo. In the epression 3, is the variable. A is the verte of CAB. verte (of a polgon) The intersection of two sides of the polgon. (p. 399) vértice (de un polígono) La intersección de dos lados del polígono. verte (of a polhedron) A point at which three or more edges of a polhedron intersect. (p. 80) vértice (de un poliedro) Un punto en el que se intersecan tres o más aristas de un poliedro. A, B, C, D, and E are vertices of the polgon. vertical angles A pair of opposite congruent angles formed b intersecting lines. (p. 388) ángulos opuestos por el vértice Par de ángulos opuestos congruentes formados por líneas secantes. 3 and 3 are vertical angles. vertical line test A test used to determine whether a relation is a function. If an vertical line crosses the graph of a relation more than once, the relation is not a function. (p. 37) prueba de linea vertical Prueba utilizada para determinar si una relación es una función. Si una línea vertical corta la gráfica de una relación más de una vez, la relación no es una función. 5-5 5-5 volume The number of cubic units needed to fill a given space. (p. 85) volumen Número de unidades cúbicas que se necesitan para llenar un espacio. ft 3 ft ft Volume 3 ft 3 -ais The horizontal ais on a coordinate plane. (p. 3) eje El eje horizontal del plano cartesiano. -ais O G3 Glossar/Glosario

ENGLISH SPANISH EXAMPLES -coordinate The first number in an ordered pair; it tells the distance to move right or left from the origin (0, 0). (p. 3) coordenada El primer número de un par ordenado; indica la distancia que debes moverte hacia la izquierda o la derecha desde el 5 is the -coordinate in (5, 3). origen, (0, 0). -ais The vertical ais on a coordinate plane. (p. 3) eje El eje vertical del plano cartesiano. -ais O -coordinate The second number in an ordered pair; it tells the distance to move up or down from the origin (0, 0). (p. 3) coordenada El segundo número de un par ordenado; indica la distancia que debes avanzar hacia arriba o hacia abajo desde el origen, (0, 0). 3 is the -coordinate in (5, 3). zero pair A number and its opposite, which add to 0. (p. ) par nulo Un número su opuesto, cua suma es 0. 8 and 8 Glossar/Glosario G35

Inde Absolute value, 5 Abstract art, 599 Academic Vocabular,, 6,, 66,, 7, 30, 376, 3, 76, 58, 588 Acute angles, 379 Acute triangles, 39, SB7 Addition Associative Propert of, 6 7 of decimals, 7, SB of fractions, 75, SB0 with unlike denominators, 87 89, SB0 of integers, 8 9 of mied numbers, 87 89 of polnomials, 603 60 modeling, 60 of rational numbers, 7 75 properties, 3, 33, 6 solving equations b, 3 3 solving inequalities b, 0 Addition Propert of Equalit, 33 Additive inverse, 8 Adjacent angles, 388 Alaska, 8 Algebra The development of algebra skills and concepts is a central focus of this course and is found throughout this book. absolute value, 5 combining like terms, 0,, 596 597 equations, 3 addition, 3 33 checking solutions of, 3, 33, 37 38 decimal, solving, 9, 98 division, 37 38 linear, 330, 33 multi-step, see Multi-step equations multiplication, 37 38 solutions of, 3 subtraction, 3 33 sstems of, 3 two-step, see Two-step equations epressions, 6 7, 0, 0 algebraic, 6 7 numerical, 6 7 variables and, 6 7 functions, 36 cubic, 338 339 graphing, 36 37, 33 335, 338 339 linear, see Linear functions quadratic, 33 335 tables and, 36 inequalities, see Inequalities linear functions, 330 33 multi-step equations, 5 properties Addition, of Equalit, 33 Associative, 6 of circles, 6 7 Commutative, 6 Distributive, 7 Division, of Equalit, 37 Identit, 3, 37 Multiplication, of Equalit, 38 Subtraction, of Equalit, 33 proportions, and indirect measurement, 8 9 in scale drawings, models, and maps, 5 53, 57 58 solving, 3 3 solving equations b adding or subtracting, 3 3 modeling, b multipling or dividing, 37, 38 two-step, 3 5, 98 99 with variables on both sides, 9 3 solving inequalities b adding or subtracting, 0 b multipling or dividing, 5 two-step, 8 9 tiles,, 8, 59 595, 60, 607, 66 67 translating between words and math, 63 translating words into math, 0 variables, 6 7 on both sides, solving equations with, 8 3 dependent, 3 independent, 3 isolating, 3 solving for, 3 Algebra tiles,, 8, 59 595, 60, 607, 66 67 Algebraic epressions, 6, 0 evaluating, 6 7 simplifing, 0 writing, 0 Algebraic inequalities, 36 Alternate eterior angles, 389 Alternate interior angles, 389 American Samoa, 396 Analsis dimensional, 37 39 unit, 37 Anamorphic images, 98 Angles, 379 acute, 379 adjacent, 388 alternate eterior, 389 alternate interior, 389 bisector, 38 central, of a circle, 7 classifing, 379 complementar, 379 congruent, 06 corresponding, 389 in polgons, 03 obtuse, 379 of quadrilaterals, 03 of triangles, 39 393 points and lines and planes and, 378 380 relationships of, 388 389 right, 379 straight, 379 supplementar, 379 vertical, 388 Animals, 8 Answer choices, eliminating, 56 57 Answering contet based test items, 58 583 Ant lions, 505 Applications Animals, 8 Architecture, 3, 95, 5, 55, 35, 93 Art, 9, 7, 500, 5, 60 Astronom, 35, 39, 78, 87, 335 Banking, 8 Business, 8, 39, 3, 3, 3, 39, 3, 78, 6, 8, 337, 53, 597, 606, 609, 6 Chemistr, 7 Computer, 93 Construction, 35, 60 Consumer Economics, 80, 300 Consumer Math, 5, 6, 00, 8,, 559 Cooking, 6 Economics,, 5 Energ, 77 Entertainment, 9, 50, 6, 3, 53 Environment, 5, 333 Finance, 9, 6, 8 Food, 0, 53 Games, 95, 573 Geograph, 8, 5, 77, 85 Geometr,, 7, 69, 8, 83, 606 Health, 9, 8, 50, 65 Histor, 87, 08, 09 Hobbies, 6,, 83, 95, 7, 336 Home Economics, 39 Language Arts, 3, 87 Life Science, 73, 0, 7, 7, 75, 87, 0,, 53, 8, 89, 90, 95, 36, 89, 505, 5, 568, 598 Literature, 97 Manufacturing, 80, 35 Measurement, 69, 90 Meteorolog, 73 Mone, 307 Multi-Step, 39, 80, 90, 9, 97, 99, 09, 3, 77, 87, 97,, 50 Music, 0, 9, 87 Nutrition, 39, 96, Patterns, 7, 86 Recreation, 0, 79, 88, 6, 96, 8, 55 Safet, 35, 56 School, 7, 80, 9, 573 Science, 7, 7, 8, 9, 36, 9, 96, 7, 33, 87, 99, 6, 8, 8, 88, 97, 336, 507, 55 I Inde

Social Studies, 5, 35, 7, 86, 6, 88, 8, 86, 396, 38, 89, 9, 507, 55 Sports,, 7, 38, 68, 7, 7, 76, 3, 7, 5, 9, 0, 8, 38, 336, 53, 50, 5 Transportation, 0,, 593 Travel, 5, 6 Weather, 9, 35 Approimating square roots, 97 Arc, of a circle, 6 Architecture, 3, 95, 5, 55, 35, 93 Are You Read?, 3, 6, 3, 65,, 7, 375, 3, 75, 57, 587 Area, 35 of circles, 5 of irregular figures, 58 59 lateral, 98 of parallelograms, 35 36 of rectangles, 35 36 of squares, 9 surface, 98 of cones, 50 505 of clinders, 96 99 of prisms, 96 99 of pramids, 50 505 of spheres, 509 of trapezoids, 0 of triangles, 0 Arguments, writing convincing, 3 Art, 9, 7, 500, 5, 60 Ashurbanipal, King, 6 Aspect ratio, 3 Assessment Chapter Test, 55, 09, 59, 7, 65, 35, 369, 7, 69, 53, 58, 69 Cumulative Assessment, 58 59, 0, 6 63, 8 9, 68 69, 36 37, 37 373, 8 9, 7 73, 5 55, 58 585, 630 63 Mastering the Standards, 58 59, 0, 6 63, 8 9, 68 69, 36 37, 37 373, 8 9, 7 73, 5 55, 58 585, 630 63 Read to Go On?, 30, 8, 9, 0, 3, 5, 90, 0,, 58, 9, 308, 3, 0, 0,, 6, 9, 56, 55, 57, 600, 6 Strategies for Success An Tpe: Using a Graphic, 70 7 Etended Response: Write Etended Responses, 370 37 Gridded Response: Write Gridded Responses, 60 6 Multiple Choice Answering Contet-Based Test Items, 58 583 Eliminate Answer Choices, 56 57 Short Response: Write Short Responses, 66 67 Stud Guide: Review, 5 5, 06 08, 56 58, 6, 6 6, 3 3, 366 368, 6, 66 68, 50 5, 578 580, 66 68 Associative Propert of Addition, 6 7 of Multiplication, 6 7 Astronom, 35, 39, 78, 87, 335 Aes, 3 Back-to-back stem-and-leaf plot, 533 53 Bacteria, 7, Balance of trade, Balance scale, 3 Banking, 8 Bar graphs, 53, SB8 histograms, SB0 Base, 80 8 of polhedrons, 80 Bases, 68 Benchmarks, 78 Berkele, 9 Best fit, lines of, 59 Biased samples, SB Binar fission, 7 Binomials, 590 multiplication of, 66 67, 68 69 special products of, 69 Bisecting figures, 38 Bisectors constructing, 38 383 perpendicular, 38 Blood pressure, 36 Board foot, 597 Boeing 77, 3 Book, using our, for success, 5 Bo-and-whisker plots, 5 5, creating, 53, 57 British thermal units (Btu), 77 Buffon, Comte de, 576 Business, 8, 39, 3, 3, 3, 39, 3, 78, 6, 8, 337, 53, 597, 606, 609, 6 Calculator approimating square roots on a, 97 graphing, see Graphing calculator California locations Berkele, 9 Carlsbad, 55 Joe Matos Cheese Factor, 0 Legoland, 55 Mammoth Lakes, 37 Menlo Park, 6 Montere Ba Aquarium, 0 Rincon Park, 0 San Diego, 70 San Francisco, 0 Santa Monica International Chess Park, 95 Santa Rosa, 0 Stanford Linear Accelerator Center, 6 Yosemite National Park, 5 California Link, 9, 77, 3, 95, 0, 55 Capacit, 5 customar units of, SB5 metric units of, SB5 Carlsbad, CA, 55 Caution! 0, 6, 69, 00, 36 Celsius temperature scale, 03, 33 Center of a circle, 6 of rotation, 0 Central angles, 7 Central tendenc, measures of, 538 Certain event, 556 Challenge Challenge eercises are found in ever lesson. Some eamples: 9, 3, 7,, 5 Change percents of, 9 rates of, 3 35, see also Rates of change Chapter Project Online,, 60,, 6, 0, 70, 38, 37, 7, 56, 586 Chapter Test, 55, 09, 59, 7, 65, 35, 369, 7, 69, 53, 58, 69, see also Assessment Chemistr, 7 Chess, 95 Choose a Strateg, 9, 9, 86, 33, 7,, 87, 97, 337, 396, 50, 55, 606, 6 Chord, of a circle, 6 Circle(s), 6 7, 50 5 arcs of, 6 area of, 5 central angles, 7 chords of, 6 circumference, 50 diameter, 6, 50 graphs, 7, SB great, 508 properties of, 6 7 radius, 6, 50 Circle graphs, 7, SB interpreting, 7 making, SB reading, 7 Circumference, 50 5 Classifing angles, 379 polgons, 399, SB6 SB7 polnomials, 590 59 quadrilaterals, 399 real numbers, 00 0 three-dimensional figures, 8 triangles, 39 393, SB7 Closed circle, 37 Coefficients, 0 Inde I3

Combining like terms, 0 Combining transformations, 5 Commission, 98 Commission rate, 98 Common denominator, 70, 87 Common multiple, SB6 least (LCM), SB6 Communicating Math appl, 87 choose, 9 compare, 9, 7, 37, 9, 69, 89, 335, 36, 505, 509, 5, 56, 60, 609, 63 compare and contrast, 8 decide, 93 demonstrate, 85 describe, 9, 3, 3, 7, 99, 7,,, 9, 86, 93, 5, 3, 53, 80, 33, 335, 359,, 7,, 87, 9, 53, 539, 550, 566, 59 determine, 79, 86, 97, 80 discuss, 97 draw, 7 eplain, 7, 5, 9, 3, 3, 67, 7, 75, 8, 89, 95, 99, 7, 3, 37,, 5, 69, 77, 8, 86, 93, 0, 07, 5, 3, 39, 9, 53, 75, 89, 33, 33, 35, 389, 39, 00, 07, 7, 7, 8, 500, 505, 509, 53, 539, 5, 59, 60, 609 epress,, 73, 36 give,, 67, 3, 5, 5, 9, 39, 56 give an eample, 7, 75, 79, 89, 5, 75, 35, 539, 566, 57, 597, 69 identif, 37 list, 7, 5, 77 model, 87, 9 name, 85, 33 show, 69, 75, 85 suppose, 7, 33 tell, 7, 8, 89,, 5, 73, 8, 0, 3, 389, 07, 57, 597 Think and Discuss Think and Discuss is found in ever lesson. Some eamples: 7,, 5, 9, 3 use, 0 Write About It Write About It eercises are found in ever lesson. Some eamples: 9, 3, 7,, 5 Commutative Propert of Addition, 6 7 of Multiplication, 6 7 Comparing customar units and metric units, SB5 data sets, 5 numbers in scientific notation, 86 rational numbers, 70 7 ratios, 5, 3 volumes and surface areas, 509 Comparing and ordering whole numbers, SB3 Compass, 38 383 Compatible numbers, 7, 78 Complementar angles, 379 Composite figures area of, 36 perimeter of, 36 volume of, 87 Composite numbers, SB5 Compound events, 569 57 Compound inequalities, 37 Compound interest, 30, 30 computing, 30 305 eploring, 30 Computer graphics, 398 Computer spreadsheets, 530 53 Computer, 93 Computing compound interest, 30, 30 305 Concept Connection, 9, 03, 53,, 59, 309, 363,, 63, 57, 575, 63 Concept maps, 33 Conclusions, see Reasoning Concorde, 3 Cones, 8, 90 nets of, 503 right, 50 surface area of, 50 505 volume of, 90 9 Congruence, 06 07 Congruent angles, constructing, 38 383 Congruent figures, 38 Congruent triangles, 06 Constant of variation, 357 Constant rate of change, 3 35 Constants, 0 Constructing bisectors and congruent angles, 38 383 graphs, using spreadsheets for, 530 53 nets, 96 97, 503 scale drawings and scale models, 56 57 Construction, 35, 60 Consumer application, 559 Consumer Economics, 80, 300 Consumer Math, 5, 6, 00, 8,, 559 Contet-based test items, answering, 58 583 Converse of the Pthagorean Theorem, 06 07 Conversion factors, 37, SB5 units of measure, 37 39 Conversions, metric, SB5 Converting, customar units to metric units, SB5 metric units to customar units, SB5 Convincing arguments, writing, 3 Cooking, 6 Coordinate geometr, 398 00 Coordinate plane, 3 33 graphing on a, 330, 33, 338 Coordinates, 3 33 Cornell sstem of note taking, 67 Correlation, 59 550 Correlation tpes, 59 Correspondence, 06 Corresponding angles, 389 Corresponding sides, 06 07 Countdown to Master, CA CA7 Creating bo-and-whisker plots, 57 graphs, using spreadsheets for, 530 53 histograms, SB0 scatter plots, 553 tessellations, 6 7 Cross products, 3 Cubic functions, 338 339 Cubic units, 85 Cullinan diamond, 96 Cumulative Assessment, 58 59, 0, 6 63, 8 9, 68 69, 36 37, 37 373, 8 9, 7 73, 5 55, 58 585, 630 63, see also Assessment Cupid s Span, 0 Customar sstem of measurement, 37 39, SB5 converting between metric and, SB5 Clinders, 8, 85 nets of 97 surface area of, 98 500 eploring, 96 97 volume of, 85 87 da Vinci, Leonardo, 506 Data, see also Displaing and organizing data bar graphs, 53, SB8 bo-and-whisker plots, 53 5 circle graphs, 77, SB collecting, 53 displaing, 7, 530 53, 53 5, SB8 SB double-bar graphs, SB8 histograms, SB0 line graphs, SB9 line plots, 53 organizing, 53 53 stem-and-leaf plots, 533 back-to-back, 533 53 Decagon, SB6 Decimals addition of, 7, 75, 9 comparing, 7 converting between percents and fractions and, 7 75 division of, 83 equivalent fractions and, 67 I Inde

fractions and, 66 multiplication of, 79, 9 b powers of ten, SB7 ordering, 7 repeating, 6 65, 66 67 rounding, SB solving equations with, 9 subtraction of, 7, 75, 9 terminating, 6 65, 66 67 writing as percents, 7 75 Decrease, percent of, 9 95 Deductive reasoning, SB Degrees of polnomials, 59 Denominator(s), 66 like, adding and subtracting with, 75 unlike, adding and subtracting with, 87 88 Densit, 8 Densit Propert of real numbers, 0 Dependent events, 569 57 finding probabilit of, 570 57 Dependent variable, 3 Devils Postpile National Monument, 37 Diagonals, 69 Diagram tree, SB3 Diameter, 6, 50 Diastolic blood pressure, 36 Dimensional analsis, 37 39 Dimensions changing, eploring effects of, 86, 505, 5 53 Direct variation, 357 359 Discounts, 95 Disjoint events, 566 Displaing and organizing data, 7, 530 53, 53 5, SB8 SB bar graphs, 53, SB8 bo-and-whisker plots, 53 5 circle graphs, 7, SB double-bar graphs, SB8 histograms, SB0 line graphs, SB9 line plot, 53 stem-and-leaf plots, 533 back-to-back, 533 53 Distracter, 56 Distributive Propert, 7,, 597 Divisibilit rules, SB Division of decimals, 83, SB3 and mied numbers, 8 b powers of ten, SB7 of fractions, 8 8 of integers, 6 7 long, SB7 of monomials, 80 8 of numbers in scientific notation, 89 of powers, 76 77 b powers of ten, SB7 of rational numbers, 8 8, SB, SB3 solving equations b, 37 39 solving inequalities b, 5 of whole numbers, SB7 Division Propert of Equalit, 37 DNA model, 53 Double-bar graphs, SB8 Draw three-dimensional figures, 77 Drawings, scale, 5 53 Duckweed plants, 87 Earth, 86, 87, 508 Earthquakes, 563 Economics,, 5, 30 Edge, of a three-dimensional figure, 80 Edison, Thomas, 39 Effective notes, taking, 67 Eggs, 5 Eliminating answer choices, 56 57 Energ, 77 Enlargement, 53 Entertainment, 9, 50, 6, 3, 53 Environment, 5, 333 Equalit Addition Propert of, 3 Division Propert of, 37 Multiplication Propert of, 38 Subtraction Propert of, 33 Equall likel outcomes, 56 Equations, 3 graphs of, 330 33, 33 335, 338 339 linear, see Linear equations multi-step, see Multi-step equations with no solutions, 30 one-step, see One-step equations solutions of, 3 solving, see Solving equations sstems of, see Sstems of equations and tables and graphs, 36, 330, 33, 33, 335, 338, 339 two-step, see Two-step equations with variables on both sides, modeling, 8 Equilateral triangles, 393, SB7 Equivalent epressions, 0 Equivalent fractions decimals and, 7 Equivalent ratios, 5, 3 Escher, M. C., 9 Estimate, 78 Estimating square roots, 96 97 with percents, 78 80 Estimation,, 86, 90, 7, 79, 9, 3, 8, 93, 5 Evaluating algebraic epressions, 6 7 epressions using the order of operations, 69 epressions with rational numbers, 75, 83, 89 negative eponents, 7 73 Events, 556 disjoint, 566 independent, see Independent events mutuall eclusive, 566 Eam, preparing for our final, 589 Eperiment, 556 Eperimental probabilit, 560 56 Eploring compound interest, 30 effects of changing dimensions, 86, 505, 5 53 Pthagorean Theorem, 0 rational numbers, 6 65 three-dimensional figures, 78 79 volume of prisms, 8 Eponential form, 68 Eponents, 68 69 integer, 7 73 negative, 7 73 properties of, 76 77 Epressions algebraic, 6 7, 0 simplifing, 0 writing, 0 equivalent, 0 evaluating, with rational numbers, 75, 83, 89 numerical, 6 7 variables and, 6 7 Etended Response, 9, 75, 3, 97, 370 37, 39, 55, 536, 56, 6 Write Etended Responses, 370 37 Etra Practice, EP EP5 Face lateral, 98 of a three-dimensional figure, 80 Factor(s), SB common, SB6 conversion, 37 scale, 53 Factorization, prime, SB5 Fahrenheit scale, 33 Fahrenheit temperature converting between Celsius and, 03, 33 scale, 03 Fair objects, 56 Ferris wheel, 30, 53 Figures bisecting, 38 built of cubes, 98 composite, 36, 87 congruent, 38 geometric, 37 55 irregular, area of, 58 59 similar, see Similar figures three-dimensional, Inde I5

see Three-dimensional figures two-dimensional, see Two-dimensional figures Final Eam, stud for a, 589 Finance, 9, 6, 8 Finding numbers when percents are known, 88 89 percents, 83 85 probabilit of dependent events, 570 57 probabilit of independent events, 569 570 surface area of prisms and clinders, 98 500 surface area of pramids, 50 surface area of similar solids, 53 unit prices to compare costs, 9 volume of prisms and clinders, 85 87 volume of pramids and cones, 90 9 volume of similar solids, 53 Fireworks, 59 Flip, see Reflection Fluid ounce, SB5 Focus on Problem Solving Look Back, 93, 60 Make a Plan, 35, 93, 95, 555 Solve, 3, 9, 3, 33 Understand the Problem, 05 FOIL mnemonic, 68 Food, 0, 53 Foot, SB5 Formulas, learning and using, 77, see also inside back cover Fraction(s) addition of, 75 with unlike denominators, 87 89 decimals and percents and, 7 75 division of and mied numbers, 8 8 equivalent, see Equivalent fractions improper, SB9 multiplication of, and mied numbers, 78 79 relating, to decimals and percents, 7 75 simplest form, SB8 solving equations with, 9 95, 5 subtraction of, 75 with unlike denominators, 87 89 unit, 0 writing as mied numbers, SB9 writing as terminating and repeating decimals, 66 Fraction form, dividing rational numbers in, 8 Frequenc tables, SB0 Fulcrum, 3 Functions, 36 339 cubic, 338 339 linear, 330 33 quadratic, 33 335 tables and, 36, 330, 33, 33, 335, 338, 339 graphs and, 330, 33, 33, 335, 338, 339 Gallon, SB5 Game Time Points, 5 Buffon s Needle, 576 Circles and Squares, 6 Coloring Tessellations, Cop-Cat, 60 Craz Cubes, 50 Egg Fractions, 0 Egptian Fractions, 0 Equation Bingo, Magic Cubes, 58 Magic Squares, Math Magic, 50 Percent Puzzlers, 30 Percent Tiles, 30 Planes in Space, 58 Polgon Rumm, Rolling for Tiles, 6 Shape Up, 6 Short Cuts, 6 Squared Awa, 36 Tic-Frac-Toe, 60 Trans-Plants, 5 What s Your Function?, 36 Game Time Etra, 0, 5,, 60, 30, 36,, 6, 58, 576, 6 Games, 95, 573 Gas mileage, 593 GCD (greatest common divisor), SB6 Geograph, 8, 5, 77, 85 Geometric patterns, SB6 Geometr angles, 379 380, 388 389, 39 39, 06 07 area, 35 36, 0, 5 building blocks of, 378 380 circles, 6 7, 50 5 area of, 5 circumference of, 50 circumference, 50 cones, 8 volume of, 90 9 surface area of, 50 505 constructing bisectors and congruent angles, 38 383 congruent figures, 06 07 coordinate, 398 00 clinders, 8 volume of, 85 87 surface area of, 96 97, 98 99 lines, 378 380 parallel, 38 385, 388 389 perpendicular, 38 385, 388 of reflection, 0 skew, 38 transversal, 388 389 nets, 96 97, 503 parallel line relationships, 389 parallelograms, 399 area of, 35 perimeter of, 3 planes, 378 polgons, 399 finding angle measures in, 03 regular, SB6 polhedrons, 80 prisms, 8, 85 87 volumes of, 8, 85 87 surface area of, 96 97, 98 99 pramids, 80, 90 9 volume of, 90 9 surface area of, 50 505 quadrilaterals, 399, 03, SB6, SB7 ras, 378 rectangles, 3 36 area of, 35 36 perimeter of, 3 36 rhombuses, 399, SB7 rhombuses, 399, SB7 scale drawings and scale models, 5 53, 56 57, 59 similar figures, 5 surface area and volume, 5 53 sphere, 508 509 squares, 399, SB7 surface area, 98 500, 503, 50 505, 509 tessellations, 6 7 three-dimensional figures, 7 55 introduction to, 80 8 modeling, 56 57 trapezoids area of, 0 perimeter of, 39 triangles, 39 39, SB6 SB7 area of, 0 perimeter of, 39 two-dimensional figures, 30 73 volume, 8 87, 90 9 Giant Ocean Tank, 89 Giant shark, 88, 89 Gigabte, 79 Global temperature, 73 go.hrw.com, see Online Resources Googol, 79 Gram, SB5 Graph(s) bar, 53, SB8 circle, 7, SB, see also Circle graphs constructing, using spreadsheets for, 530 53 creating, using technolog for, 530 double-bar, SB8 of equations, 330 33, 33 335, 338 339 interpreting, 353 35 line, 330 33, SB9 tables and, 36, 330, 33, 338 I6 Inde

Graphing on a coordinate plane, 3 33 inequalities, 37, 0,, 8 9 integers on a number line, linear equations, 330 linear functions, 330 33 points,, 3 33 Technolog Labs, see Technolog Lab transformations, 0, 5 Graphing calculator creating bo-and-whisker plots, 57 creating scatter plots, 553 multipling and dividing numbers in scientific notation, 89 Great circle, 508 Great Lakes, 3 Great Pramid of Giza, 9 Greatest common divisor (GCD), SB6 Gridded Response, 9,, 5, 36, 0, 69, 77, 86, 0, 3, 7, 7, 60 6, 7, 09, 36,, 7, 87, 9, 30, 337, 35, 36, 38, 0, 09, 3, 9, 53, 7, 50, 507, 5, 559, 568, 573, 593, 606, 6 Write Gridded Responses, 60 6 Hands-On Lab Angles in Polgons, 03 Combine Transformations, 5 Construct Bisectors and Congruent Angles, 38 383 Construct Scale Drawings and Scale Models, 56 57 Eplore Compound Interest, 30 Eplore Rational Numbers, 6 65 Eplore the Pthagorean Theorem, 0 Eplore Three-Dimensional Figures, 78 79 Eplore Volume of Prisms, 8 Find Surface Areas of Prisms and Clinders, 96 97 Find Volumes of Prisms and Clinders, 8 Identif and Construct Altitudes, 397 Make a Scale Model, 57 58 Model Equations with Variables on Both Sides, 8 Model Polnomial Addition, 60 Model Polnomial Subtraction, 607 Model Polnomials, 59 595 Model Two-Step Equations, Multipl Binomials, 66 67 Nets of Cones, 503 Nets of Prisms and Clinders, 96 Hawaiian alphabet, 87 Health, 9, 8, 50, 65 Heart rate maimum, 65 target, 65 Height of parallelograms, 35 36 slant, 50 using indirect measurement to find, 8 9 using scales and scale drawings to find, 5 53 Helpful Hint,, 8, 3, 3, 38,, 67, 7, 0, 9, 30, 37, 0, 80, 93, 05, 07, 3, 85, 06, 0, 35, 80, 508, 68 Hemispheres, 508 Heptagons, SB6 Heagons, 03, SB6 Hill, A. V., 6 Histograms, SB0 Histor, 87, 08, 09, 83 Hobbies, 6,, 83, 95, 7, 336 Home Economics, 39 Homework Help Online Homework Help Online is available for ever lesson. Refer to the go.hrw.com bo at the beginning of each eercise set. Some eamples: 8,, 6, 0, Hot Tip!, 57, 59,, 6, 63, 9, 67, 69, 37, 37, 7, 55, 583, 585, 63 Hurricanes, 35, 55 Hpotenuse, 05 Ice Hotel, 7 Identifing irrational numbers, 00 0 proportions, 3 33 right triangles, 06 07 Identit Propert of Addition, 3 Identit Propert of Multiplication, 37 Image(s), 0 anamorphic, 98 Impossible event, 556 Improper fractions, SB9 Inch, SB5 Increase, percent of, 9 Independent events, 569 57 finding probabilit of, 569 570 Independent variable, 3 Indirect measurement, 8 9 Inductive reasoning, SB Industrial supplies, Inequalities, 36 37 algebraic, 36 compound, 37 graphing, 37, 0, solving, b adding or subtracting, 0 b multipling or dividing, 5 translating word phrases into, 36 two-step, solving, 8 9 writing, 36, compound, 37 Input, 36 Integer eponents, 7 73 Integers, absolute value, 5 addition of, 8 9 comparing, division of, 6 7 multiplication of, 6 7 and order of operations, 7 ordering, 5 subtraction of, 3 Interest, 303 compound, see Compound interest rate of, 303 simple, 303 30 Interpreting circle graphs, 7 graphics, 59 graphs, 353 35 Interstate highwa sstem, 7 Inverse operations, 3 Inverse Propert of Multiplication, 8 Inverse additive, 8 multiplicative, 8 Investment time, 303 Ions, 36 Irrational numbers, 00 Irregular figures, area of, 58 59 Isolating the variable, 3 Isosceles triangles, 393, SB7 It s in the Bag! A Worthwhile Wallet, 6 Canister Carr-All, 05 Graphing Tri-Fold, 365 It s a Wrap, 3 Note-Taking Taking Shape, 5 Origami Percents, 3 Perfectl Packaged Perimeters, 65 Picture Envelopes, 55 Polnomial Petals, 65 Probabilit Post-Up, 577 Project CD Geometr, 3 The Tube Journal, 59 Journal, math, keeping a, 3 Jupiter, 86 Kasparov, Garr, 95 Kente cloth, Kilobte, 79 Kilogram, SB5 Kiloliter, SB5 Kilometer, SB5 Kilowatt-hour, 39 Kite(s), SB7 Krill, 75 Kwan, Michelle, 0 Inde I7

Lab Resources Online,, 6, 8, 89, 0, 38, 78, 8, 96, 503, 530, 57, 553, 59, 60, 607, 66 Landscaping, 55 Language Arts, 3, 87 Lateral area, 98 Lateral faces, 98 Lateral surface, 99 LCD (least common denominator), 70 LCM (least common multiple), 70 Leaf, 533 Least common denominator (LCD), 70, 87 88 Least common multiple (LCM), 70, SB6 Lee, Harper, 97 Leg, of a triangle, 05 LEGOLAND, 55 Length customar units of, SB5 metric units of, SB5 Lessons, reading, for understanding, 5 Life Science, 73, 0, 7, 7, 75, 87, 0,, 53, 89, 90, 95, 36, 89, 505, 5, 568, 598, 6 Lift, 3 Light bulb filament, 39 Light sticks, 8 Like denominators, adding and subtracting with, 7 75 Like terms, 0, 596 solving equations with, 5 Lincoln, Abraham, 88 Line graphs, SB9 Line plots, 53 Line segments, 378 Line(s), 378 of best fit, 59 graphing, 330 33 parallel, 38 385 perpendicular, 38 385 points and planes and angles and, 378 380 of reflection, 0 segments, 378 skew, 38 385 slope of a, 39 35 transversals to, 389 Linear equations, 330 graphing, 330 33 Linear functions, 330 graphing, 330 33 Link Animals, 8 Architecture, 55, 93 Art, 7, 9, 599 Business, 606 Economics,, 30 Energ, 77 Entertainment, 9 Environment, 333 Games, 95 Health, 36 Histor, 09, 83 Home Economics, 39 Language Arts, 3 Life Science, 0, 7, 75, 87, 89, 36, 89, 505, 5, 568, 6 Literature, 97 Meteorolog, 73 Mone, 307 Recreation, 88, 55 Science, 7, 9, 9, 33, 75, 8 Social Studies, 5, 7, 9,, 59 Sports, 7, 5 Weather, 35 Liquid mirror, 335 Liter, SB5 Literature, 97 Long division, 83, SB7 Louvre Pramid, 5, 93 Lower quartile, 5 53 Luor Hotel, 35 Magic squares, Making circle graphs, SB conjectures, SB scale models, 57 58 Mammoth Lakes, CA, 37 Manufacturing, 80, 35 Map, concept, 33 Mars, 87 Mass, metric units of, SB6 Mastering the Standards, 58 59, 0, 6 63, 8 9, 68 69, 36 37, 37 373, 8 9, 7 73, 5 55, 58 585, 630 63, see also Assessment Math translating between words and, 63 translating words into, 0 Math epressions translating, into word phrases, translating word phrases into, 0 Math journals, keeping, 3 Matrushka dolls, 86 Maimum, 53 Mean, 537 538 Measurement, 69, 90 conversion tables, SB5 customar sstem of, 37 39 indirect, 8 9 metric sstem of, 37 39, SB5 Measures of central tendenc and range, 537 538 Median, 537 538 Menkaure Pramid, 09 Merced River, Mercur (planet), 35, 86 Metamorphoses, 9 Meteorites, 535 Meteorolog, 73 Meter, SB5 Methane, 333 Metric conversions, 37, SB5 Metric sstem of measurement, SB5 converting between customar and, SB5 Midpoint, 393 Mile, SB5 Milligram, SB5 Milliliter, SB5 Millimeter, SB5 Minimum, 53 Mirror, liquid, 335 Mied numbers, addition of, 87 88 dividing fractions and, 8 8 equivalent fractions and, SB9 multipling fractions and, 78 79 subtraction of, 87 Mode, 537 Modeling equations with variables on both sides, 8 polnomial addition, 60 polnomial subtraction, 607 polnomials, 59 595 two-step equations, Models scale, 5 53, 59, see also Scale models Mona Lisa, 7 Mone, 38, 307 Monomials, 80 division of, 80 8 multiplication of, 80 multiplication of polnomials b, 6 63 raising, to powers, 8 square roots of, 93 Montere Ba Aquarium, 0 Mountain bikes, 5 Multiple, least common (LCM), 70, SB6 Multiple Choice Multiple Choice test items are found in ever lesson. Some eamples: 9, 3, 7,, 5 Answering Contet-Based Test Items, 58 583 Eliminate Answer Choices, 56 57 Multiplication Associative Propert of, 6 7 of binomials, 66 67, 68 69 of decimals, 79, 9 of fractions and mied numbers, 78 79 of integers, 6 7 of monomials, 80 of numbers in scientific notation, 89 I8 Inde

of polnomials, b monomials, 6 63 of powers, 76 b powers of ten, 8, SB7 properties, 38 of rational numbers, 78 79 solving equations b, 37 39 solving inequalities b, 5 Multiplication Propert of Equalit, 38 Multiplicative inverse, 8 Multi-Step, 39, 80, 90, 9, 97, 99, 09, 3, 87, 96, 38, 0, 50 Multi-Step Application, 39, 69 Multi-step equations solving, 5, 8 3 Muscle contractions, 6 Music, 0, 9, 87 Mutuall eclusive events, 566 Negative correlation, 59 Negative eponents, 7 73 Negative slope, 39 Neptune, 87 Nets of cones, 503 of prisms and clinders, 96 97 Newborns, 7 Newtons (N), 3 n-gons, SB6 Niagara Falls, 9 Nickels, 75 Nielsen Television Ratings, 83 No correlation, 59 Nonagons, SB6 Notation scientific, see Scientific notation set-builder, Note-Taking Strategies, see Reading and Writing Math Notes, taking effective, 67 Number line, 8 Numbers compatible, 78 composite, SB5 division of, in scientific notation, 89 finding, when percents are known, 88 89 irrational, 00 mied, SB9, see also Mied numbers multiplication of, in scientific notation, 89 percents of, 83 8 prime, SB5 rational, 60, 00 0, see also Rational numbers real, 00 0 Numerator, 66 Numerical epressions, 6 7 Nutrition, 39, 96,, 356 Obtuse angles, 379 Obtuse triangles, 39, SB7 Ocean trenches, 9 Octagons, SB6 Of Mice and Men (Steinbeck), 3 One-step equations solving, with decimals, 9 solving, with fractions, 9 95 solving, with integers, 3 3, 37 38 solving, with rational numbers, 9 95 Online Resources Chapter Project Online,, 60,, 6, 0, 70, 38, 37, 7, 56, 586 Game Time Etra, 0, 5,, 60, 30, 36,, 6, 58, 576, 6 Homework Help Online Homework Help Online is available for ever lesson. Refer to the go.hrw.com bo at the beginning of each eercise set. Some eamples: 8,, 6, 0, Lab Resources Online,, 6, 8, 89, 0, 38, 78, 8, 96, 530, 57, 553, 59, 60, 607, 66 Parent Resources Online Parent Resources Online is available for ever lesson. Refer to the go.hrw.com bo at the beginning of each eercise set. Some eamples: 8,, 6, 0, Standards Practice Online, 58, 0, 6, 8, 68, 36, 37, 8, 7, 5, 58, 630 Web Etra!, 5, 0, 95, 09, 36, 55, 9, 9, 3, 83, 563, 599, 606 Open circle, 37 Operations inverse, 3 order of, 6, 3, 7 Opposites, Order of operations, 6, SB using, 69, 73 Ordered pairs, 3 Ordering measurements, customar and metric, 37 rational numbers, 7 Organizing data, 53 53, SB8 Origami, 3 Origin, 3 Ounce, fluid, SB5 Outcomes, 556 equall likel, 56 Outlier, 538 539 Output, 36 Pacific Wheel, 30, 53 Pairs, ordered, 3 Pandas, 6 Parabola, 33 Parallel lines, 388 389 properties of transversals to, 389 and skew lines, 38 385 Parallelograms, 399, SB7 area of, 35 36 perimeter of, 3 36 Parent Resources Online Parent Resources Online are available for ever lesson. Refer to the go.hrw.com bo at the beginning of each eercise set. Some eamples: 8,, 6, 0, Parentheses, 6 Parthenon, 83 Patterns, 7, 86 in integer eponents, looking for, 7 73 Pediment, 5 Pei, I. M., 93 Peirsol, Aaron, 7 PEMDAS mnemonic, 6 Pentagons, 03, SB6 Percent problems, solving, 83 85, 88 89 Percent(s) applications of, 98 99 of change, 9 of decrease, 9 95 defined, 7 estimating with, 78 80 finding, 83 85 using an equation, 83, 8 using a proportion, 83, 85 fractions and decimals and, 7 75 of increase, 9 95 known, finding numbers for, 88 89 of numbers, 83 8 Perfect squares, 9 Perimeter, 96, 3 of parallelograms, 3 36 of rectangles, 3 36 of trapezoids, 39 of triangles, 39 Periscopes, 39 Perpendicular bisectors, 38 Perpendicular lines, 38 385, 388 389 Person-da, 39 Person-hour, 38 Phsics, 59 Pi (), 03, 50 Pint, SB5 Piels, 93 Place value, SB Planes, 378 points and lines and angles and, 378 380 Pluto, 87 Points, 378 on the coordinate plane, 3 33 graphing,, 3 33 Inde I9

lines and planes and angles and, 378 380 plotting, 33 Polgons, 399 angles in, 39 393, 03 classifing, 399, SB6 7 regular, SB6 Polhedrons, 80 8 Polnomials classifing, 590 59 addition of, 603 60 modeling, 60 defined, 590 59 degrees of, 59 modeling, 59 595 multiplication of, b monomials, 6 63 simplifing, 596 597 subtraction of, 608 609 modeling, 607 Population(s), SB samples and, SB Positive correlation, 59 Positive slope, 39 Pound, SB5 Powers, 68 division of, 76 77 multiplication of, 76 of products, 8 raising monomials to, 8 raising powers to, 77 and roots, 9 simplifing, 68 69 of ten, 8 zero, 73 Preparing for our final eam, 589 Price, unit, 9 Prime factorization, SB5 Prime numbers, SB5 Principal, 303 Principal square root, 9 Prisms, 80, 85 lateral faces, 98 naming, 80 nets of, 96 rectangular, 85, see also Rectangular prism surface area of, 98 500 triangular, 85 volume of, 85 87 eploring, 8 Probabilit defined, 556 558 of dependent events, finding, 570 57 of disjoint events, 566 eperimental, 560 56 of independent events, finding, 569 570 theoretical, 56 566 Problem Solving Problem solving is a central focus of this course and is found throughout this book. Problem Solving Application, 3, 8, 98 99, 5, 06, 38, 9, 63 Problems, reading, for understanding, 73 Production costs, 586 Profit, 98 99 Properties Addition, of Equalit, 33 Associative, 603 of Addition, 6 7 of Multiplication, 6 7 Commutative of Addition, 6 7 of Multiplication, 6 7 Densit, of real numbers, 0 Distributive, 7 Division, of Equalit, 37 Identit of Addition, 3 of Multiplication, 37 Inverse of Multiplication, 8 Multiplication, of Equalit, 38 of circles, 6 7, 50 5 of eponents, 76 77 Subtraction, of Equalit, 33 Proportions, 3 3 identifing, 3 and indirect measurement, 8 and percent, 83 ratios and, 3 similar figures and, solving, 33 3 using, to find scales, 5 writing, 33 3 Protractors, 38 383 Punnett squares, 568 Pramid of Khafre, 09 Pramids, 80, 90 naming, 80 regular, 50 stone, 83 surface area of, 50 505 volume of, 90 9 Pthagorean Theorem, 05 07 and area, 39 converse of the, 06 07 eploring the, 0 Quadrants, 3 Quadratic functions, 33 335 Quadrilaterals angles of, 03, SB6 classifing, 399 Quart, SB5 Quartiles, 5 53 Radical smbol, 9 Radius, 6, 50 Raising monomials to powers, 8 powers to powers, 77 Random samples, SB Range, 537 Rate of change, 3 35 slope and, 3 35 Rate of interest, 303 Rates, 8 9 commission, 98 of interest, 303 unit, 8 9, see also Unit rates Rational numbers, 60, 00 0 addition of, 7 75 comparing, 70 7 decimal epansion of, 6 65 defined, 66 division of, 8 8 eploring, 6 65 multiplication of, 78 79 ordering, 7 solving equations with, 9 95, 98 99 subtraction of, 7 75 Ratios, 5 comparing, 5, 3 equivalent, 5, 3 and proportions, 3 writing, in simplest form, Ras, 378 Reading circle graphs, 77 graphics, 59 lessons for understanding, 5 numbers in scientific notation, 85 problems for understanding, 73 Reading and Writing Math, 5, 63, 5, 67, 3, 73, 3, 377, 33, 77, 59, 589 Reading Math, 8, 37, 68, 77, 5, 7, 39, 379,, 0, 6, 86, 53 Reading Strategies, see also Reading and Writing Math Interpret Graphics, 59 Read a Lesson for Understanding, 5 Read Problems for Understanding, 73 Use Your Book for Success, 5 Read to Go On?, 30, 8, 9, 0, 3, 5, 90, 0,, 58, 9, 308, 3, 36, 0, 0,, 6, 9, 56, 55, 57, 600, 6, see also Assessment Real numbers, 00 0 Densit Propert of, 0 Reasoning Reasoning is a central focus of this course and is found throughout this book. Some eamples: 3, 6, 7, 9, 39, 0, 5, 69, 7, 7, 76, 83, 90, 95, 98, 9,, 7,, 3, 50, 7, 7, 83, 95, 99, 08, 6, SB deductive, SB inductive, SB proportional, 0 69 Reciprocals, 8 Recreation, 0, 79, 88, 6, 96, 8, 55 I0 Inde

Rectangles, 399, SB7 area of, 35 36 perimeter of, 3 36 Rectangular prism, 85 volume of, 85 87 eploring, 8 Rectangular pramid, 90 Reccling, 5 Reduction, 53 Reflection(s), 0 line of, 0 translations and rotations and, 0 Regular polgons, SB6 Regular pramids, 50 Regular tessellations, 6 Relating decimals, fractions, and percents, 7 75 Relationships, angle, 388 389 Remember!, 6,, 67, 70, 75, 9,, 5,, 8, 9, 8, 75, 35, 50, 80 Repeating decimals defined, 66 eploring, 6 65 period of, 65 writing, as fractions, 67 Representations of data, see also Displaing and organizing data multiple, using, 377 Reptiles, 36 Reptiles, (M.C. Escher), 9 Reticulated pthon, 89 Rhombuses, SB7 Right angles, 379 Right cones, 50 Right triangles, 39, SB7 finding angles in, 39 finding lengths of sides in, 05 06 identifing, 06 07 Rincon Park, 0 Rise, 35 36 Roots square, 9 93 square, estimating, 96 97 Rotation(s), 0 center of, 0, translations and reflections and, 0 Rounding decimals, SB whole numbers, SB Rules, divisibilit, SB Run, 35 36 Safet, 35, 56 Sales ta, 98 99 Sample(s), SB biased, SB populations and, SB random, SB surves and, SB Sample spaces, 556 San Diego, 70 San Francisco, CA, 0 Santa Rosa, CA, 0 Scale, 5 Scale drawings, 5 constructing, 56 Scale factors, 53 Scale models, 5 53, 59 constructing, 56 57 Scalene triangles, 393, SB7 Scaling three-dimensional figures, 5 53 Scatter plots, 58 550 creating, 553 School, 7, 80, 9, 3 Science, 7, 7, 8, 9, 36, 9, 96, 7, 33, 87, 99, 6, 8, 8, 89, 97, 336, 507 Scientific notation, 8 86 comparing numbers in, 86 division of numbers in, 89 multiplication of numbers in, 89 reading numbers in, 85 writing numbers in, 8 85 Sections, 63 Sector, 7 Segments, line, 378 Selected Answers, SA SA Semiregular tessellations, 8 Set-builder notation, Short Response, 3, 9, 97, 5, 79, 88, 95, 7, 5, 55, 66 67, 333, 356, 396,, 9, 38, 70, 7, 563, 599, 65 Write Short Responses, 66 67 Sides, corresponding, 06 07 Silos, 88 Similar figures, finding missing measures in, 5 and indirect measurement, 8 9 and scale drawings and models, 5 53 proportions and, three-dimensional surface area of, 53 volume of, 53 using, 8 9 Similar polgons, 5 Simple interest, 303 30 Simplest form, 67 writing ratios in, Simplifing algebraic epressions, 0 negative eponents, 7 73 polnomials, 596 597 powers, 68 69, 7 73 Skew lines, 38 Skills Bank, SB SB Slant height, 50 Slide, see Translations Slope, 35 36, 398 of a line, 39 35 rates of change and, 3 35 Snakes, 0 Snowboard half-pipe, 50 Social Studies, 5, 35, 7, 7, 86, 6, 88, 8, 86, 9, 396, 38, 89, 9, 507 Solid figures, see Three-dimensional figures Solution set, 36 Solutions, 3 of equations, 3 Solving equations, see Solving equations inequalities, see Solving inequalities multi-step equations, 5, 9 3 percent problems, 83 85, 88 89 proportions, 3 3 two-step equations, 3 5, 98 99 Solving equations b addition, 3 3 with decimals, 9, 98 99 b division, 37 38 with fractions, 9 95, 99 linear, 330 33 b multiplication, 37 38 multi-step, 5, 9 3 with rational numbers, 9 95, 98 99 b subtraction, 3 3 two-step, 3 5, 98 99 using addition and subtraction properties, 3 3 using multiplication and division properties, 37 38 with variables on both sides, 9 3 Solving inequalities, b adding or subtracting, 0 b multipling or dividing, 5 two-step, 8 9 Special products, 69 Speed, 8 9, 3, 38, 39 Spheres, 508 509 surface area of, 509 volume of, 508 Spiral Standards Review Spiral Standards Review questions are found in ever lesson. Some eamples: 9, 3, 7,, 5 Sports,, 7, 38, 68, 7, 7, 76, 3, 7, 5, 9, 0, 8, 38, 336, 53, 5 Spreadsheets using, to construct graphs, 530 53 Square roots approimating, to the nearest hundredth, 97 using a calculator, 97 estimating, 96 97 of monomials, 93 principal, 9 squares and, 9 93 Square units, 85 Square(s), 9, 399, SB7 area of, 35 Inde I

magic, perfect, 9 square roots and, 9 93 Standard form, 85 Standards Practice Online, 58, 0, 6, 8, 68, 36, 37, 8, 7, 5, 58, 630 Stanford Linear Accelerator Center, 6 Statisticians, 70 Steinbeck, John, 3 Stem, 533 Stem-and-leaf plots, 533 back-to-back, 533 53 Step Pramid of King Zoser, 507 Straight angles, 379 Strategies for Success, see also Assessment An Tpe: Using a Graphic, 70 7 Etended Response: Write Etended Responses, 370 37 Gridded Response: Write Gridded Responses, 60 6 Multiple Choice Answering Contet-Based Test Items, 58 583 Eliminate Answer Choices, 56 57 Short Responses, 66 67 Stud for a Final Eam, 589 Stud Guide: Review, 5 5, 06 08, 56 58, 6, 6 6, 3 3, 366 368, 6, 66 68, 50 5, 578 580, 66 68, see also Assessment Stud Strategies, see also Reading and Writing Math Concept Map, 33 Stud for a Final Eam, 589 Take Effective Notes, 67 Subscripts, 0 Substitute, 6 Subtraction of decimals, 7 of fractions, 75 with unlike denominators, 87 89 of integers, 3 of mied numbers, 87 89 of polnomials, 608 609 modeling, 607 of rational numbers, 7 75 solving equations b, 3 3 solving inequalities b, 0 Subtraction Propert of Equalit, 33 Supplementar angles, 379 Surface area, 98 of cones, 50 505 eploring, 503 of clinders, 98 500 eploring, 96 97 of figures built of cubes, 98 of prisms, 98 500 eploring, 96 97 of pramids, 50 505 of similar three-dimensional figures, 5 53 of spheres, 509 Surface, lateral, 99 Surves, samples and, SB Sstems of equations, 3 solving, 3 writing, 3 Sstolic blood pressure, 36 Tables frequenc, SB0 functions and, 36, 37, 330, 33, 33, 335, 338, 339 graphs and, 330, 33, 33, 335, 338, 339 Taiwan, 88 Taking effective notes, 67 Target heart rate, 65 Ta, sales, 98 Ta brackets, 30 Technolog Lab Make a Bo-and-Whisker Plot, 57 Make a Scatter Plot, 553 Multipl and Divide Numbers in Scientific Notation, 89 Use a Spreadsheet to Make Graphs, 530 53 Television Ratings, Nielsen, 83 Temperature conversions, 03 global, 73 scales, 03, 33 Terabte, 79 Terminating decimals defined, 66 eploring, 6 65 writing, as fractions, 67 Terms, 0 like, 0 not like, 596 Tessellations, 6 7 regular, 6 semiregular, 8 Test, cumulative, studing for a, 589 Test items, contet-based, answering, 58 583 The Grapes of Wrath (Steinbeck), 3 Theorem, Pthagorean, see Pthagorean Theorem Theoretical probabilit, 56 566 Think and Discuss Think and Discuss is found in ever lesson. Some eamples: 7,, 5, 9, 3 Three-dimensional figures classifing, 8 drawing, 77 eploring, 78 79 introduction to, 80 8 scaling, 5 53 surface area of, 96, 509 volume of, 8 87, 508 Tides, 8 Tiles, algebra,, 8, 59 595, 60, 607, 66 67 Time, investment, 303 Timeline, 5 Tips, 79 To Kill a Mockingbird (Lee), 97 Ton, SB5 Torus, 58 Tos, 606 Transamerica Pramid, 9 Transformations, 0 combining, 5 graphing, 0 Translating math epressions into word phrases, sentences into two-step equations, 3 word phrases into inequalities, 36 word phrases into math epressions, 0 between words and math, 63 Translations, 0 rotations and reflections and, 0 Transportation, 0,, 593 Transversals, 389 to parallel lines, properties of, 389 Trapezoids, 399, SB7 area of, 0 isosceles, SB7 perimeter of, 39 Travel, 5, 6 Tree diagrams, SB3 Trenches, ocean, 9 Trial, 556 Triangle Sum Theorem, 39 Triangles, 39 39, SB6 SB7 acute, 39, SB7 angles in, 39 39 area of, 0 classifing, 39 393 congruent, 06 equilateral, 393, SB7 isosceles, 393, SB7 obtuse, 39, SB7 perimeter of, 39 right, 39, SB7, see also Right triangles scalene, 393, SB7 similar, 5 Triangular prism, 85 Triangular pramid, 90 Trinomials, 590 Trump Tower, 57 Turns, see Rotation(s) Twins, 06 Two-dimensional figures, 30 73 Two-step equations modeling, solving, 3 5 I Inde

solving, with rational numbers, 98 99 Two-step inequalities, solving, 8 9 Umbra, 507 Undefined slope, 350 Understanding reading lessons for, 5 reading problems for, 73 Unisphere, 83 Unit(s) conversion factors, 37 customar, SB5 metric, SB5 Unit analsis, 37 Unit conversion factor, 37 Unit fractions, 0 Unit price, 9 Unit rates, 8 9 estimating, 9 rates and, 8 9 United States census, 9 Unlike denominators addition of fractions with, 87 89 subtraction of fractions with, 87 89 Unpacking the Standards,, 6,, 66,, 7, 30, 376, 3, 76, 58, 588 Upper quartile, 5 53 Use our book for success, 5 Use our own words, 377 Using formulas, 77 graphics, 70 7 nets to build prisms and clinders, 96 97 similar figures, 8 9 slopes, 350 spreadsheets to construct graphs, 530 53 technolog to make graphs, 530 53 our book for success, 5 our own words, 377 Value, absolute, 5 Variable(s) on both sides modeling equations with, 8 solving equations with, 9 3 epressions and, 6 7 Variable rate of change, 3 Variation, direct, 357 359 Venn diagrams, 00 Venus, 87 Verte of an angle, 379 of a cone, 8 of a polgon, 399 00 of a polhedron, 80 of a three-dimensional figure, 80 Vertical angles, 388 Vertical line test, 37 Volume, 85 of cones, 90 9 of clinders, 85 87 of prisms, 85 87 eploring, 8 of pramids, 90 9 of similar three-dimensional figures, 5 53 of spheres, 508 Weather, 9, 35 Web Etra!, 5, 0, 95, 09, 36, 55, 9, 9, 3, 83, 93, 563, 599, 606, Weight, customar units of, SB5 Whales, 75 What s the Error?, 3,, 36, 69, 73, 8, 97, 9, 3, 7, 39, 7, 79, 83, 95, 03, 7, 3,, 77, 35, 35, 39, 53, 89, 93, 56, 559, 593 What s the Question?, 307, 39, 333, 0, 5, 65 Wheel, 6 Whole numbers comparing and ordering, SB3 dividing, SB7 long division, SB7 rounding, SB Word phrases translating, into inequalities, 36 translating, into math epressions, 0 translating math epressions into, Words into math, translating, 36 and math, translating between, 63 use our own, 377 Write a Problem, 0, 77, 3, 5, 88, 08, 7, 5, 8, 36, 09, 507, 573, 606 Write About It Write About It eercises are found in ever lesson. Some eamples: 9, 3, 7,, 5 Writing convincing arguments, 3 etended responses, 370 37 gridded responses, 60 6 inequalities, 36, compound, 37 numbers in scientific notation, 8 85 numbers in standard form, 85 proportions, 3 short responses, 66 67 Writing Math, 66, 9, 388 Writing Strategies, see also Reading and Writing Math Draw Three-Dimensional Figures, 77 Keep a Math Journal, 3 Translate Between Words and Math, 63 Use Your Own Words, 377 Write a Convincing Argument, 3 -ais, 3 -coordinate, 3 Yard, SB5 -ais, 3 -coordinate, 3 Yosemite National Park, 88,, 5 Zero power, 73 Zero slope, 39 Inde I3

Credits Staff Credits Bruce Albrecht, Margaret Chalmers, Tica Chitrarachis, Lorraine Cooper, Marc Cooper, Jennifer Cracraft, Martize Cross, Nina Degollado, Julie Dervin, Michelle Dike, Ldia Dot, Sam Dudgeon, Kelli R. Flanagan, Stephanie Friedman, Jeff Galvez, Pam Garner, Diannia Green, Jennifer Gribble, Liz Huckestein, Jevara Jackson, Simon Ke, Jane A. Kirschman, Kadonna Knape, Cath Kuhles, Jill M. Lawson, Liann Lech, Virginia Messler, Susan Musse, Kim Nguen, Nathan O Neal, Manda Reid, Michael Rinella, Annette Saunders, Ka Selke, Robn Setzen, Patricia Sinnott, Victoria Smith, Dawn Marie Spinozza, Jeannie Talor, Karen Vigil, Kira J. Watkins, Sherri Whitmarsh, David W. Wnn Photo Credits Frontmatter: viii Gar Crabbe/Enlightened Images; i Ed Young/CORBIS; Dr. Eric Chalker/Inde Stock Imager, Inc.; i Peter Ginter/Bilderberg; ii Jenn Thomas/HRW; iii Ron Vesel/MLB Photos via Gett Images; iv John Kell/Gett Images; v VEER/Christopher Talbot Frank/Gett Images; vi Richard Cummins/CORBIS; vii Robert Landau/CORBIS; viii Court Mast/Marling Mast/Gett Images; i Armando Arorizo/epa/Corbis Chapter One: -3 (bkgd), Gar Crabbe/Enlightened Images; 9 (l), The Granger Collection, New York; 9 (r), The Kobal Collection; 0 Robert Landau/CORBIS; Don Couch/HRW; 7 Lane Kenned/CORBIS; 8 Victoria Smith/HRW; Peter Van Steen; 5 (tc), Araldo de Luca/CORBIS; 5 (tl), Steve Vidler/SuperStock; 5 (br), The Art Archive/Napoleonic Museum Rome/Dagli Orti; 5 (tr), Bettmann/ CORBIS; 6 Dennis MacDonald/PhotoEdit Inc.; 9 (l), Peter David/Gett Images; 3 Sam Dudgeon/HRW; 9 (t), istockphoto; 9 (b), Sam Dudgeon/HRW; 50 Randall Hman/HRW; 5 Sam Dudgeon/HRW Chapter Two: 60-6 (bkgd), Ed Young/CORBIS; 70 Gett Images; 73 NASA; 77 Lester Lefkowitz/CORBIS; 78 Sam Dudgeon/HRW; 8 John Giustina/Bruce Coleman, Inc.; 86 Mark Tomalt/Masterfile; 88 Librar of Congress; 9 (t), Lester Lefkowitz/CORBIS; 9 (b), Sam Dudgeon/HRW; 93 (b), Dean Conger/CORBIS; 98 Eric Gaillard/Reuters/CORBIS; 0 (t), Torsten Blackwood/AFP/Gett Images; 0 (b), Karl H. Switak/Photo Researchers, Inc.; 03 AP Photo/Eau Claire Leader- Telegram/Steve Kinderman; 0 (b), Jenn Thomas/HRW; 05 (b), Sam Dudgeon/HRW Chapter Three: -3 (bkgd), Dr. Eric Chalker/Inde Stock Imager, Inc.; 7 Budd Mas/CORBIS; 9 (l), GK & Vikki Hart/Gett Images; 9 (r), Artiga Photo/CORBIS; 33 Andrew Sred/Science Photo Librar/Photo Researchers, Inc.; 35 (b), Sam Dudgeon/HRW; 3 (l), Bettmann/CORBIS; 9 Sam Dudgeon/HRW; 5 (b), Jenn Thomas/HRW; 53 (t), Comstock, Inc.; 53 (b), Dean Fo/SuperStock; 55 Sam Dudgeon/HRW Chapter Four: 6-65 (bkgd), Peter Ginter/Bilderberg; 7 S. Lowr/Univ. Ulster/Gett Images/Stone; 75 (t), Francois Gohier/Photo Researchers, Inc.; 75 (b), Flip Nicklin/Minden Pictures; 77 PEANUTS Universal Press Sndicate; 83 GK & Vikki Hart/Gett Images; 87 Joe McDonald/CORBIS; 93 Roberto Rivera; 95 David Young-Wolff/PhotoEdit, Inc.; 96 Sam Dudgeon/HRW; stained glass artist: Leanne Ohlenburg; (t), Classic PIO Partners; (bl), SciMAT/Photo Researchers, Inc.; (br), SciMAT/Photo Researchers, Inc.; (b), Randall Hman/HRW; 3 Sam Dudgeon/HRW Chapter Five: 0- (bkgd), Jenn Thomas/HRW; (t), Dave Jacobs/Inde Stock Imager, Inc.; 7 (c), Sam Dudgeon/HRW; 36 (t), 00 EeWire Collection; 36 (c), Andrew Sred/Microscopi Photolibrar; 36 (b), Ed Reschke/Peter Arnold, Inc.; 0 (l), Jonathan Sprague/Redu; 3 (b), Robb dewall/craz Horse Memorial; (t), Sam Dudgeon/HRW; 7 Lane Kenned/ CORBIS; 8 Courtes Troop 3, Arlington Heights, IL; 5 National Geographic Image Collection; 53 Digital Art/CORBIS; 55 David Young-Wolff/PhotoEdit Inc.; 57 Lee Snider/CORBIS; 59 (b), Richard Meier & Partners Architects LLP; 60 (t), PhotoLink/Gett Images; 60 (b), Ken Karp/HRW; 6 Sam Dudgeon/HRW Chapter Si: 70-7 Ron Vesel/MLB Photos via Gett Images; 7 Charles Gullung/Photonica/Gett Images; 8 Peter Van Steen/HRW; 8 Sam Dudgeon/ HRW; 8 (green beans) Roalt Free/CORBIS; 88 Jeff Rotman/Photo Researchers Inc.; 89 Hans Reinhard/Bruce Coleman, Inc.; 9 Kat Winn/ CORBIS; 93 (cricket) Digital Image 00 PhotoDisc; 93 (wasp) Digital Image 00 PhotoDisc; 93 (black & white beetle) Stockbte; 93 (ladbug) Digital Image 00 PhotoDisc; 93 (mantis) Stockbte; 93 (ant) Brand X Pictures; 93 (harlequin beetle) Digital Image 00 Artville; 93 (earwig) Brand X Pictures; 93 (green beetle) Brand X Pictures; 93 (mantis with etended wings) Brand X Pictures; 97 (r) Ln Topinka/USGS/Cascades Volcano Observator; 97 (l) Kat Winn/CORBIS; 30 Sam Dudgeon/HRW; 307 Pornchai Kittiwongsakul/AFP/Gett Images; 309 (t) Stephanie Friedman/HRW; 309 (b) Sam Dudgeon/HRW; 30 (b) Victoria Smith/HRW; 3 Sam Dudgeon/HRW Chapter Seven: 38-39 John Kell/Gett Images; 35 (l) Stock Trek/ PhotoDisc/Picture Quest; 39 Schenectad Museum/Hall of Electrical Histor Foundation/CORBIS; 333 Ron Kimball Stock; 33 Chip Simons Photograph; 337 Sam Dudgeon/HRW; 3 Andrew Sacks/Time Life Pictures/Gett Images; 357 Sindre Ellingsen/Alam; 36 E.R. Degginger/Bruce Coleman, Inc.; 363 (tr), Harr Engels/Photo Researchers, Inc.; 363 (b), Alan and Sand Care/Photo Researchers, Inc.; 363 (tl), Stephanie Friedman/HRW; 36 (b), Randall Hman/HRW; 365 Sam Dudgeon/HRW Chapter Eight: 37-375 (all), VEER/Christopher Talbot Frank/Gett Images; 38 008 Sol LeWitt/Artists Rights Societ (ARS), New York; 387 Mark Schneider/Visuals Unlimited/Gett Images; 388 Rodolfo Arpia/Alam; 398 (all), Courtes of Lucasfilm, Ltd. Star Wars: Episode I - The Phantom Menace 999 Lucasfilm Ltd. & TM. All rights reserved. Used under authorization. Unauthorized duplication is a violation of applicable law.; 06 (r), Seth Kushner/Gett Images/ Stone; 06 (l), Science Photo Librar/Photo Researchers, Inc.; 0 Matthew Stockman/Gett Images; 6 Harr Lentz/Art Resource, NY; Bob Burch/Inde Stock Imager, Inc.; Jenn Thomas/HRW; 3 Sam Dudgeon/HRW Chapter Nine: 30-3 (all), Richard Cummins/CORBIS; 39 Louie Psihoos/ CORBIS; 3 (t), Roalt-Free/Corbis; 5 (b), Dave G. Houser/Houserstock; 6 (all), Archivo Iconografico, S.A./CORBIS; 58 Larr Lefever/Grant Heilman Photograph; 6 (t), William Hamilton/SuperStock; 63 (t), PhotoDisc/Gett Images; 63 (b), Grant Heilman /Grant Heilman Photograph, Inc.; 6 Jenn Thomas/HRW; 65 Sam Dudgeon/HRW Chapter Ten: 7-75 Robert Landau/CORBIS; 83 (tr), Charles & Josette Lenars/CORBIS; 83 (bl), Kevin Fleming/CORBIS; 83 (tl), Steve Vidler/SuperStock; 83 (br), R.M. Arakaki/Imagestate; 85 Kenneth Hamm/Photo Japan; 89 (r), Dallas and John Heaton/CORBIS; 89 (l), G. Leavens/Photo Researchers, Inc.; 90 Tor Eigeland/Alam; 93 (l), Owen Franken/CORBIS; 93 (r), Steve Vidler/SuperStock; 95 (b), Sam Dudgeon/HRW; 98 00 Kell Houle; 505 (l), Robert & Linda Mitchell Photograph; 506 Baldwin H. Ward & Kathrn C. Ward/CORBIS; 508 NASA/Corbis; 5 (t), Darrl Torckler/Gett Images/Stone; 5 (tc), Dwight Kuhn Photograph; 5 (bc), Sinclair Stammers/Science Photo Librar/Photo Researchers, Inc.; 5 (b), Ron Austing; Frank Lane Picture Agenc/CORBIS; 55 Chris Lisle/CORBIS; 55 006 The LEGO Group; 57 Victoria Smith/HRW; 58 Sam Dudgeon/HRW; 59 Sam Dudgeon/HRW Chapter Eleven: 56-57 Court Mast/Marling Mast/Gett Images; 53 Digital Vision; 5 Karl Weatherl/CORBIS; 5 Peter Van Steen/HRW/Kittens courtes of Austin Humane Societ/SPCA; 58 Roalt Free/CORBIS; 560 AP Photo; 563 (l), Reuters/CORBIS; 563 (r), David Weintraub/Photo Researchers, Inc.; 56 Peter Van Steen/HRW; 568 Sam Dudgeon/HRW; 575 Design Pics; 576 Sam Dudgeon/HRW; 577 Sam Dudgeon/HRW Chapter Twelve: 586-587 (all), Armando Arorizo/epa/Corbis; 590 Dave G. Houser/CORBIS; 599 (t), Paul Eekhoff/Masterfile; 599 (b), Private Collection/ Bridgeman Art Librar/ 00 Fletcher Benton/Artists Rights Societ (ARS),, New York; 60 Steve Gottlieb/Stock Connection/PictureQuest; 603 Sam Dudgeon/HRW; 60 Sam Dudgeon/HRW; 606 Stephen Mallon/The Image Bank/Gett Images; 6 Sam Dudgeon/HRW; 63 Victoria Smith/HRW; 65 Victoria Smith/HRW; 68 Mark Gibson Photograph; 6 (b), Sam Dudgeon/HRW; 63 (t), istock Photo; 63 (bl), Jeff Greenberg/Photo Edit, Inc.; 63 (br), Photodisc/Gett Images; 6 (b), Sam Dudgeon/HRW; 65 (b), Sam Dudgeon/HRW; 586-587 (all), Armando Arorizo/epa/Corbis Student Handbook TOC: 63 John Langford/HRW; 633 Sam Dudgeon/HRW Credits 9