GALOIS THEORY AT WORK: CONCRETE EXAMPLES
|
|
|
- Barnaby Robbins
- 10 years ago
- Views:
Transcription
1 GALOIS THEORY AT WORK: CONCRETE EXAMPLES KEITH CONRAD 1. Examples Example 1.1. The field extension Q(, 3)/Q is Galois of degree 4, so its Galois group has order 4. The elements of the Galois group are determined by their values on and 3. The Q-conjugates of and 3 are ± and ± 3, so we get at most four possible automorphisms in the Galois group. See Table 1. Since the Galois group has order 4, these 4 possible assignments of values to σ( ) and σ( 3) all really exist. σ( ) σ( 3) Table 1 Each nonidentity automorphism in Table 1 has order. Since Gal(Q(, 3)/Q) contains 3 elements of order, Q(, 3) has 3 subfields K i such that [Q(, 3) : K i ] =, or equivalently [K i : Q] = 4/ =. Two such fields are Q( ) and Q( 3). A third is Q( 6) and that completes the list. Here is a diagram of all the subfields. Q( ) Q(, 3) Q( 3) Q( 6) Q In Table 1, the subgroup fixing Q( ) is the first and second row, the subgroup fixing Q( 3) is the first and third row, and the subgroup fixing Q( 6) is the first and fourth row (since ( )( 3) = 3). The effect of Gal(Q(, 3)/Q) on + 3 is given in Table. The 4 values are all different, since and 3 are linearly independent over Q. Therefore Q(, 3) = Q( + 3). The minimal polynomial of + 3 over Q must be (X ( + 3))(X ( + 3))(X ( 3))(X ( 3)) = X 4 10X + 1. In particular, X 4 10X + 1 is irreducible in Q[X] since it s a minimal polynomial over Q. 1
2 KEITH CONRAD σ( ) σ( 3) σ( + 3) Table By similar reasoning if a field F does not have characteristic and a and b are nonsquares in F such that ab is not a square either, then [F ( a, b) : F ] = 4 and all the fields between F and F ( a, b) are as in the following diagram. F ( a) Furthermore, F ( a, b) = F ( a + b). above. F ( a, b) F ( b) F F ( ab) The argument is identical to the special case Example 1.. The extension Q( 4 )/Q is not Galois, but Q( 4 ) lies in Q( 4, i), which is Galois over Q. We will use Galois theory for Q( 4, i)/q to find the intermediate fields in Q( 4 )/Q. The Galois group of Q( 4, i)/q equals r, s, where r( 4 ) = i 4, r(i) = i and s( 4 ) = 4, s(i) = i. (Viewing elements of Q( 4, i) as complex numbers, s acts on them like complex conjugation.) The group r, s is isomorphic to D 4, where r corresponds to a 90 degree rotation of the square and s corresponds to a reflection across a diagonal. What is the subgroup H of Gal(Q( 4, i)/q) corresponding to Q( 4 )? (1.1) Q( 4, i) {1} Q( 4 ) H 4 4 Q D 4 Since s is a nontrivial element of the Galois group that fixes Q( 4 ), s H. The size of H is [Q( 4, i) : Q( 4 )] =, so H = {1, s} = s. By the Galois correspondence for Q( 4, i)/q, fields strictly between Q( 4 ) and Q correspond to subgroups of the Galois group strictly between s and r, s. From the known subgroup structure of D 4, the only subgroup lying strictly between s and r, s is r, s. Therefore only one field lies strictly between Q( 4 ) and Q. Since Q( ) is such a field it is the only one.
3 GALOIS THEORY AT WORK: CONCRETE EXAMPLES 3 Remark 1.3. While Galois theory provides the most systematic method to find intermediate fields, it may be possible to argue in other ways. For example, suppose Q F Q( 4 ) with [F : Q] =. Then 4 has degree over F. Since 4 is a root of X 4, its minimal polynomial over F has to be a quadratic factor of X 4. There are three monic quadratic factors with 4 as a root, but only one of them, X, has coefficients in Q( 4 ) (let alone in R). Therefore X must be the minimal polynomial of 4 over F, so F. Since [F : Q] =, F = Q( ) by counting degrees. Example 1.4. Let s explore Q( 4, ζ 8 ), where ζ 8 = e πi/8 is a root of unity of order 8, whose minimal polynomial over Q is X Both Q( 4 ) and Q(ζ 8 ) have degree 4 over Q. Since ζ 8 = i, Q( 4, ζ 8 ) is a splitting field over Q of (X 4 )(X 4 + 1) and therefore is Galois over Q. What is its Galois group? We have the following field diagram. Q( 4, ζ 8 ) 4 4 Q( 4 ) Q(ζ 8 ) 4 4 Q Thus [Q( 4, ζ 8 ) : Q] is at most 16. We will see the degree is not 16: there are some hidden algebraic relations between 4 and ζ 8. Any σ Gal(Q( 4, ζ 8 )/Q) is determined by its values (1.) σ(ζ 8 ) = ζ a 8 (a (Z/8Z) ) and σ( 4 ) = i b 4 (b Z/4Z). There are 4 choices each for a and b. Taking independent choices of a and b, there are at most 16 automorphisms in the Galois group. But the choices of a and b can not be made independently because ζ 8 and 4 are linked to each other: (1.3) ζ 8 + ζ 1 8 = e πi/8 + e πi/8 = cos ( π 4 ) = = 4. This says belongs to both Q(ζ 8 ) and Q( 4 ). Here is a field diagram that emphasizes the common subfield Q( ) in Q( 4 ) and Q(ζ 8 ). This subfield is the source of (1.3). Q( 4, ζ 8 ) 4 4 Q( 4 ) Q(ζ 8 ) Q( ) Q(i) Q
4 4 KEITH CONRAD Rewriting ζ 8 + ζ8 1 = as ζ8 ζ = 0, ζ 8 has degree at most over Q( 4 ). Since ζ 8 is not real, it isn t inside Q( 4 ), so it has degree over Q( 4 ). Therefore [Q( 4, ζ 8 ) : Q] = 4 = 8 and the degrees marked as 4 in the diagram both equal. Returning to the Galois group, (1.3) tells us the effect of σ Gal(Q( 4, ζ 8 )/Q) on 4 partially determines it on ζ 8, and conversely: (σ( 4 )) = σ(ζ 8 ) + σ(ζ 8 ) 1, which in the notation of (1.) is the same as (1.4) ( 1) b = ζa 8 + ζ a 8. This tells us that if a 1, 7 mod 8 then ( 1) b = 1, so b 0, mod 4, while if a 3, 5 mod 8 then ( 1) b = 1, so b 1, 3 mod 4. For example, σ can t both fix 4 (b = 0) and send ζ 8 to ζ8 3 (a = 3) because (1.4) would not hold. The simplest way to understand Q( 4, ζ 8 ) is to use a different set of generators. Since ζ 8 = e πi/8 = e πi/4 = (1 + i)/, Q( 4, ζ 8 ) = Q( 4, i), and from the second representation we know its Galois group over Q is isomorphic to D 4 with independent choices of where to send 4 (to any fourth root of ) and i (to any square root of 1) rather than 4 and ζ 8. A different choice of field generators can make it easier to see what the Galois group looks like. We also see immediately from the second representation that [Q( 4, ζ 8 ) : Q] = 8. A Galois extension is said to have a given group-theoretic property (being abelian, nonabelian, cyclic, etc.) when its Galois group has that property. Example 1.5. Any quadratic extension of Q is an abelian extension since its Galois group has order. It is also a cyclic extension. Example 1.6. The extension Q( 3, ω)/q is called non-abelian since its Galois group is isomorphic to S 3, which is a non-abelian group. The term non-abelian has nothing to do with the field operations, which of course are always commutative. Theorem 1.7. If L/K is a finite abelian extension then every intermediate field is an abelian extension of K. If L/K is cyclic then every intermediate field is cyclic over K. Proof. Every subgroup of an abelian group is a normal subgroup, so every field F between L and K is Galois over K and Gal(F/K) = Gal(L/K)/ Gal(L/F ). The quotient of an abelian group by any subgroup is abelian, so Gal(F/K) is abelian. Since the quotient of a cyclic group by any subgroup is cyclic, if L/K is cyclic then F/K is cyclic too.. Applications to Field Theory We will prove the complex numbers are algebraically closed (the Fundamental Theorem of Algebra ) using Galois theory and a small amount of analysis. We need one property of the real numbers, one property of the complex numbers, and two properties of finite groups: (1) Every odd degree polynomial in R[X] has a real root. In particular, no polynomial of odd degree greater than 1 in R[X] is irreducible. () Every number in C has square roots in C. (3) The first Sylow theorem (existence of Sylow subgroups).
5 GALOIS THEORY AT WORK: CONCRETE EXAMPLES 5 (4) A nontrivial finite p-group has a subgroup of index p. The first property is a consequence of the intermediate value theorem. The second property follows from writing a nonzero complex number as re iθ and then its square roots are ± re iθ/. (For example, i = e iπ/ and a square root of i is e iπ/4 = 1 + i.) It is a nice exercise to find a square root of a + bi in terms of a and b. The third property is proved as part of the Sylow theorems. The fourth property is often proved in the context of showing finite p-groups are solvable; this can be found in most group theory textbooks. Theorem.1. The complex numbers are algebraically closed. Proof. We need to show any irreducible in C[X] has degree 1. If π(x) C[X] is irreducible and α is a root, then [C(α) : C] = deg π, so our task is the same as showing the only finite extension of C is C itself. Let E/C be a finite extension. Since E is a finite extension of R, and we re in characteristic 0, we can enlarge E/R to a finite Galois extension K/R. Since R C K, [K : R] is even. Let m be the highest power of dividing the size of G = Gal(K/R). There is a subgroup H of G with order m (Property 3). Let F be the corresponding fixed field, so [F : R] is odd. K {1} C F m odd H m odd R Every α F has degree over R dividing [F : R], so [R(α) : R] is odd. That means the minimal polynomial of α in R[X] has odd degree. Irreducible polynomials in R[X] of odd degree have degree 1 (Property 1), so [R(α) : R] = 1. Thus α R, so F = R. Therefore G = H is a -group. G K {1} m 1 C Gal(K/C) R The group Gal(K/C) has order m 1. If m then Gal(K/C) has a subgroup of index (Property 4), whose fixed field has degree over C. Any quadratic extension of C has the form C( d) for some nonsquare d C. But every nonzero complex number has square roots in C (Property ), so [C( d) : C] is 1, not. We have a contradiction. Thus m = 1, so K = C. Since C E K, we conclude that E = C. G
6 6 KEITH CONRAD Theorem.. If L/K be Galois with degree p m, where p is a prime, then there is a chain of intermediate fields K = F 0 F 1 F F m = K where [F i : F i 1 ] = p for i 1 and F i /K is Galois. Proof. The group Gal(L/K) is a finite group of order p m. One of the consequences of finite p-groups being solvable is the existence of a rising chain of subgroups from the trivial subgroup to the whole group where each subgroup has index p in the next one and each subgroup is normal in the whole group. Now apply the Galois correspondence. The next application, which is an amusing technicality, is taken from [8, p. 67]. Theorem.3. Let p be a prime number. If K is a field of characteristic 0 such that every proper finite extension of K has degree divisible by p then every finite extension of K has p-power degree. Aside from examples resembling K = R (where p = works), fields that fit the conditions of Theorem.3 are not easy to describe at an elementary level. But the technique of proof is a pleasant use of elementary group theory. Proof. Let L/K be a finite extension. We want to show [L : K] is a power of p. Since K has characteristic 0, L/K is separable, so we can embed L in a finite Galois extension E/K. Since [L : K] [E : K], it suffices to show [E : K] is a power of p, i.e., show finite Galois extensions of K have p-power degree. By the first Sylow theorem, Gal(E/K) contains a p-sylow subgroup, say H. Let F = E H, so [F : K] is the index of H in Gal(E/K). This index is prime to p by the definition of a Sylow subgroup, so [F : K] is prime to p. E {1} power of p F H prime to p K Gal(E/K) Every proper finite extension of K has degree divisible by p, so [F : K] = 1. Thus F = K and [E : K] = [E : F ] = #H is a power of p. Remark.4. Theorem.3 is true when K has positive characteristic, but then one has to consider the possibility that K has inseparable extensions and additional reasoning is needed. See [8, p. 67]. 3. Applications to Minimal Polynomials When L/K is a Galois extension and α L, the Galois group Gal(L/K) provides us with a systematic way to describe all the roots of the minimal polynomial of α over K: they are the different elements of the Galois orbit {σ(α) : σ Gal(L/K)}. If we let Gal(L/K) act on L[X], and not just L, by acting on polynomial coefficients, then we can relate minimal polynomials of the same number over different fields using a Galois group.
7 GALOIS THEORY AT WORK: CONCRETE EXAMPLES 7 Theorem 3.1. Let L/K be a finite Galois extension and α lie in some extension of L with minimal polynomial f(x) in L[X]. The minimal polynomial of α in K[X] is the product of all the different values of (σf)(x) as σ runs over Gal(L/K). When α L, so f(x) = X α, we recover the construction of the minimal polynomial of α in K[X] as r j=1 (X σ j(α)), where σ 1 (α),..., σ r (α) are the distinct values of σ(α) as σ runs over Gal(L/K). Proof. Let π(x) denote the minimal polynomial of α over K. Since π(α) = 0 and f(x) is the minimal polynomial of α over L, f(x) π(x) in L[X]. For any σ Gal(L/K), f(x) π(x) (σf)(x) π(x) because (σπ)(x) = π(x). Note (σf)(x) = (σ i f)(x) for some i. Each σ i f is monic irreducible in L[X] and therefore σ i f and σ j f are relatively prime when i j. Thus π(x) is divisible by F (X) := r i=1 (σ if)(x). For any σ Gal(L/K), the set of polynomials (σσ i f)(x) are the same as all (σ i f)(x) except it may be in a different order, so r r (σf )(X) = (σσ i f)(x) = (σ i f)(x) = F (X), i=1 so the coefficients of F (X) are in K. Since F (X) π(x) and F (α) = 0, the meaning of minimal polynomial implies F (X) = π(x). Example 3.. Consider X in Q( )[X]. It is irreducible since is not a square in Q( ): if (a + b ) = with a, b Q then a + b = 0, so a = b = 0, a contradiction. The different values of σ(x ) = X σ( ) as σ runs over Gal(Q( )/Q) are X and X +, so the minimal polynomial over Q of the roots of X is i=1 (X )(X + ) = X 4. Since a minimal polynomial over a field is just an irreducible polynomial over that field (with a particular root), we can formulate Theorem 3.1 in terms of irreducible polynomials without mentioning roots: if f(x) is monic irreducible in L[X] then the product of the different (σf)(x), as σ runs over Gal(L/K), is irreducible in K[X]. Consider a potential converse: if f(x) is monic in L[X] and the product of the different polynomials (σf)(x), as σ runs over Gal(L/K), is irreducible in K[X], then f(x) is irreducible in L[X]. This is false: use L/K = Q( )/Q and f(x) = X. Here (σf)(x) = X for either σ, so the product of different (σf)(x) is X, which is irreducible in K[X] but reducible in L[X]. Yet there is a kernel of truth in this false converse. We just have to make sure f(x) doesn t live over a proper subfield of L. Theorem 3.3. Let L/K be a finite Galois extension. Suppose f(x) is monic in L[X] and its coefficients generate L over K. If the product of the different polynomials (σf)(x), as σ runs over Gal(L/K), is irreducible in K[X], then f(x) is irreducible in L[X]. This avoids the previous counterexample f(x) = X with L/K = Q( )/Q, since the coefficients of f(x) do not generate Q( )/Q. Proof. Since the coefficients of f(x) generate L/K any σ in Gal(L/K) that is not the identity changes at least one off the coefficients of f(x). (Otherwise the coefficients lie in the field fixed by σ, which is a nontrivial subgroup of Gal(L/K) and a nontrivial subgroup has a fixed field smaller than L.) It follows that for any distinct σ and τ in Gal(L/K), the
8 8 KEITH CONRAD polynomials (σf)(x) and (τf)(x) are different: if σf = τf then (τ 1 σ)f = f, so τ 1 σ fixes the coefficients of f and therefore σ = τ. Thus the hypothesis of the theorem is that F (X) := (σf)(x). σ Gal(L/K) is irreducible in K[X], where the product runs over all of Gal(L/K), and we want to show f(x) is irreducible in L[X]. We will prove the contrapositive. Suppose f(x) is reducible in L[X], so f(x) = g(x)h(x) in L[X] where g(x) and h(x) are nonconstant. Then F (X) = (σf)(x) = (σg)(x) (σh)(x) = G(X)H(X), σ Gal(L/K) σ Gal(L/K) σ Gal(L/K) where G(X) and H(X) are in K[X] (why?). Since g(x) and h(x) have positive degree, so do G(X) and H(X), and therefore F (X) is reducible in K[X]. Example 3.4. Consider X n in Q( )[X]. Its coefficients generate Q( )/Q. Since (X n )(X n + ) = X n is irreducible over Q, X n is irreducible in Q( )[X] for all n. The same kind of argument shows X n (1 + ) is irreducible over Q( )[X] for all n. Corollary 3.5. Let L/K be a finite Galois extension. Suppose f(x) is monic in L[X], its coefficients generate L/K, and F (X) := σ Gal(L/K) (σf)(x) is separable and irreducible in K[X]. Then each (σf)(x) is irreducible in L[X] and if α is a root of f(x) then the Galois closure of L(α)/K is the splitting field of F (X) over K. Proof. The irreducibility of f(x) in L[X] follows from Theorem 3.3. The polynomials (σf)(x) satisfy the same hypotheses as f(x), so they are all irreducible over L as well. The minimal polynomial of α over K is F (X) and K(α)/K is separable since F (X) is separable over K. Therefore L(α)/K is separable, so L(α) has a Galois closure over K. A Galois extension of K that contains L(α) must contain all the K-conjugates of α and hence must contain the splitting field of F (X) over K. Conversely, the splitting field of F (X) over K is a Galois extension of K that contains α as well as all the roots of f(x), so the extension contains the coefficients of f(x). Those coefficients generate L/K, so the splitting field of F (X) over K contains L(α). There is nothing deep going on in this corollary. The point is that since the coefficients of f generate L, L is already inside the Galois closure of K(α)/K, so just by forming the splitting field of F (X) over K we pick up L inside it. Example 3.6. Consider the extension Q(γ)/Q, where γ is a root of X 3 3X 1. This cubic extension is Galois and the Q-conjugates of γ are γ and γ γ. Let f(x) = X 3 γx 1. The polynomials (σf)(x) as σ runs over the three elements of Gal(Q(γ)/Q) are f(x), X 3 ( γ )X 1, and X 3 (γ γ )X 1. Their product is F (X) = X 9 3X 6 3X 5 + X 3 + 3X 1, which is irreducible mod and thus is irreducible in Q[X]. Therefore the polynomials f(x), X 3 ( γ )X 1, and X 3 (γ γ )X 1 are all irreducible over Q(γ)[X] and the splitting field of F (X) over Q is the smallest Galois extension of Q containing Q(γ, α), where α is a root of f(x). According to PARI, the splitting field of F (X) over Q has degree 684 =
9 GALOIS THEORY AT WORK: CONCRETE EXAMPLES 9 4. What Next? There are two important aspects of field extensions that are missing by a study of Galois theory of finite extensions, and we briefly address them: (1) Galois theory for infinite extensions () transcendental extensions A field extension L/K of infinite degree is called Galois when it is algebraic, separable, and normal. That means each element of L is the root of a separable irreducible in K[X] and that every irreducible in K[X] with a root in L splits completely over L. An example of an infinite Galois extension of Q is Q(µ p ) = n 1 Q(µ pn), the union of all p-th power cyclotomic extensions of Q, where p is a fixed prime. Even if an algebraic extension L/K is infinite, any particular element (or finite set of elements) in L lies in a finite subextension of K, so knowledge of finite extensions helps us understand infinite algebraic extensions. In fact, another way of describing an infinite Galois extension is that it is a composite of finite Galois extensions. For an infinite Galois extension L/K, its Galois group Gal(L/K) is still defined as the group of K-automorphisms of L, and we can associate a subgroup of the Galois group to each intermediate field and an intermediate field to each subgroup of the Galois group just as in the finite case. However, this correspondence is no longer a bijection! This was first discovered by Dedekind, who saw in particular examples that different subgroups of an infinite Galois group could have the same fixed field. So it looks like Galois theory for infinite extensions breaks down. But it isn t really so. Krull realized that if you put a suitable topology on the Galois group then a bijection can be given between all intermediate fields and the closed subgroups in that topology. (See [1] and [10].) Every subgroup of the Galois group is associated to the same field as its closure in the Krull topology, and this explains Dedkind s examples of two different subgroups with the same associated field: one subgroup is the closure of the other. The Krull topology on Galois groups not only rescued Galois theory for infinite extensions, but gave a new impetus to the study of topological groups. To understand infinite Galois theory, first learn about the p-adic numbers and their topological and algebraic structure, as they are used in the simplest examples of interesting infinite Galois groups, such as Gal(Q(µ p )/Q). Turning away from Galois extensions, the next most important class of field extensions are transcendental extensions. These are field extensions in which some element of the top field is transcendental (that is, not algebraic) over the bottom field. The simplest example of a transcendental extension of a field F is the field F (T ) of rational functions over F in an indeterminate T, or more generally the field F (T 1,..., T n ) of rational functions in n independent variables over F. This is called a pure transcendental extension. A general transcendental extension is a mixture of algebraic and transcendental parts, such as F (x, y) where x is transcendental over F and y = x 3 1. Since transcendental extensions of F have infinite degree, the notion of field degree is no longer important. In its place is the concept of transcendence degree, which is a nonlinear analogue of a basis and measures how transcendental the extension is. The need to understand transcendental field extensions is not driven for its own sake, but for other areas of mathematics, such as algebraic geometry. References [1] J. Bastida, Field extensions and Galois theory, Addison-Wesley, Reading, MA 1984.
10 10 KEITH CONRAD [] D. Cox, Galois Theory, Wiley, Hoboken, NJ, 004. [3] M. Fried, A note on automorphism groups of algebraic number fields, Proc. Amer. Math. Soc. 80 (1980), [4] W-D. Geyer, Jede endliche Gruppe ist Automorphismengrupper einer endlichen Erweiterung K/Q, Arch. Math. (Basel), 41 (1983), [5] C. Hadlock, Field Theory and its Classical Problems, Math. Assoc. America, Washington, D.C., [6] I. M. Isaacs, Degrees of sums in a separable field extension, Proc. Amer. Math. Soc. 5 (1970), [7] N. Jacobson, Basic Algebra I, nd ed., Freeman, [8] I. Kaplansky, Fields and Rings, nd ed., Univ. of Chicago Press, Chicago, 197. [9] G. Karpilovsky, Topics in Field Theory, North-Holland, Amsterdam, [10] P. Morandi, Field and Galois theory, Springer-Verlag, New York, [11] H. Osada, The Galois groups of the polynomials X n + ax l + b, J. Number Theory 5 (1987), [1] P. Samuel, Algebraic Theory of Numbers, Dover, 008. [13] J-P. Serre, Topics in Galois theory, Jones and Bartlett, Boston, MA, 199. [14] R. Swan, Factorization of Polynomials over Finite Fields, Pacific J. Math. 1 (196), [15] S. Weintraub, Galois Theory, Springer-Verlag, New York, 005. [16] H. Völklein, Groups as Galois Groups an Introduction, Cambridge Univ. Press, Cambridge, [17]
it is easy to see that α = a
21. Polynomial rings Let us now turn out attention to determining the prime elements of a polynomial ring, where the coefficient ring is a field. We already know that such a polynomial ring is a UF. Therefore
ON GALOIS REALIZATIONS OF THE 2-COVERABLE SYMMETRIC AND ALTERNATING GROUPS
ON GALOIS REALIZATIONS OF THE 2-COVERABLE SYMMETRIC AND ALTERNATING GROUPS DANIEL RABAYEV AND JACK SONN Abstract. Let f(x) be a monic polynomial in Z[x] with no rational roots but with roots in Q p for
3 1. Note that all cubes solve it; therefore, there are no more
Math 13 Problem set 5 Artin 11.4.7 Factor the following polynomials into irreducible factors in Q[x]: (a) x 3 3x (b) x 3 3x + (c) x 9 6x 6 + 9x 3 3 Solution: The first two polynomials are cubics, so if
QUADRATIC RECIPROCITY IN CHARACTERISTIC 2
QUADRATIC RECIPROCITY IN CHARACTERISTIC 2 KEITH CONRAD 1. Introduction Let F be a finite field. When F has odd characteristic, the quadratic reciprocity law in F[T ] (see [4, Section 3.2.2] or [5]) lets
Galois Theory III. 3.1. Splitting fields.
Galois Theory III. 3.1. Splitting fields. We know how to construct a field extension L of a given field K where a given irreducible polynomial P (X) K[X] has a root. We need a field extension of K where
EXERCISES FOR THE COURSE MATH 570, FALL 2010
EXERCISES FOR THE COURSE MATH 570, FALL 2010 EYAL Z. GOREN (1) Let G be a group and H Z(G) a subgroup such that G/H is cyclic. Prove that G is abelian. Conclude that every group of order p 2 (p a prime
H/wk 13, Solutions to selected problems
H/wk 13, Solutions to selected problems Ch. 4.1, Problem 5 (a) Find the number of roots of x x in Z 4, Z Z, any integral domain, Z 6. (b) Find a commutative ring in which x x has infinitely many roots.
SUBGROUPS OF CYCLIC GROUPS. 1. Introduction In a group G, we denote the (cyclic) group of powers of some g G by
SUBGROUPS OF CYCLIC GROUPS KEITH CONRAD 1. Introduction In a group G, we denote the (cyclic) group of powers of some g G by g = {g k : k Z}. If G = g, then G itself is cyclic, with g as a generator. Examples
THE FUNDAMENTAL THEOREM OF ALGEBRA VIA PROPER MAPS
THE FUNDAMENTAL THEOREM OF ALGEBRA VIA PROPER MAPS KEITH CONRAD 1. Introduction The Fundamental Theorem of Algebra says every nonconstant polynomial with complex coefficients can be factored into linear
7. Some irreducible polynomials
7. Some irreducible polynomials 7.1 Irreducibles over a finite field 7.2 Worked examples Linear factors x α of a polynomial P (x) with coefficients in a field k correspond precisely to roots α k [1] of
minimal polyonomial Example
Minimal Polynomials Definition Let α be an element in GF(p e ). We call the monic polynomial of smallest degree which has coefficients in GF(p) and α as a root, the minimal polyonomial of α. Example: We
SOLVING POLYNOMIAL EQUATIONS BY RADICALS
SOLVING POLYNOMIAL EQUATIONS BY RADICALS Lee Si Ying 1 and Zhang De-Qi 2 1 Raffles Girls School (Secondary), 20 Anderson Road, Singapore 259978 2 Department of Mathematics, National University of Singapore,
Unique Factorization
Unique Factorization Waffle Mathcamp 2010 Throughout these notes, all rings will be assumed to be commutative. 1 Factorization in domains: definitions and examples In this class, we will study the phenomenon
Module MA3411: Abstract Algebra Galois Theory Appendix Michaelmas Term 2013
Module MA3411: Abstract Algebra Galois Theory Appendix Michaelmas Term 2013 D. R. Wilkins Copyright c David R. Wilkins 1997 2013 Contents A Cyclotomic Polynomials 79 A.1 Minimum Polynomials of Roots of
OSTROWSKI FOR NUMBER FIELDS
OSTROWSKI FOR NUMBER FIELDS KEITH CONRAD Ostrowski classified the nontrivial absolute values on Q: up to equivalence, they are the usual (archimedean) absolute value and the p-adic absolute values for
Introduction to Finite Fields (cont.)
Chapter 6 Introduction to Finite Fields (cont.) 6.1 Recall Theorem. Z m is a field m is a prime number. Theorem (Subfield Isomorphic to Z p ). Every finite field has the order of a power of a prime number
Field Fundamentals. Chapter 3. 3.1 Field Extensions. 3.1.1 Definitions. 3.1.2 Lemma
Chapter 3 Field Fundamentals 3.1 Field Extensions If F is a field and F [X] is the set of all polynomials over F, that is, polynomials with coefficients in F, we know that F [X] is a Euclidean domain,
Chapter 4, Arithmetic in F [x] Polynomial arithmetic and the division algorithm.
Chapter 4, Arithmetic in F [x] Polynomial arithmetic and the division algorithm. We begin by defining the ring of polynomials with coefficients in a ring R. After some preliminary results, we specialize
1 = (a 0 + b 0 α) 2 + + (a m 1 + b m 1 α) 2. for certain elements a 0,..., a m 1, b 0,..., b m 1 of F. Multiplying out, we obtain
Notes on real-closed fields These notes develop the algebraic background needed to understand the model theory of real-closed fields. To understand these notes, a standard graduate course in algebra is
CHAPTER SIX IRREDUCIBILITY AND FACTORIZATION 1. BASIC DIVISIBILITY THEORY
January 10, 2010 CHAPTER SIX IRREDUCIBILITY AND FACTORIZATION 1. BASIC DIVISIBILITY THEORY The set of polynomials over a field F is a ring, whose structure shares with the ring of integers many characteristics.
MOP 2007 Black Group Integer Polynomials Yufei Zhao. Integer Polynomials. June 29, 2007 Yufei Zhao [email protected]
Integer Polynomials June 9, 007 Yufei Zhao [email protected] We will use Z[x] to denote the ring of polynomials with integer coefficients. We begin by summarizing some of the common approaches used in dealing
SOLUTIONS TO PROBLEM SET 3
SOLUTIONS TO PROBLEM SET 3 MATTI ÅSTRAND The General Cubic Extension Denote L = k(α 1, α 2, α 3 ), F = k(a 1, a 2, a 3 ) and K = F (α 1 ). The polynomial f(x) = x 3 a 1 x 2 + a 2 x a 3 = (x α 1 )(x α 2
FACTORING IN QUADRATIC FIELDS. 1. Introduction. This is called a quadratic field and it has degree 2 over Q. Similarly, set
FACTORING IN QUADRATIC FIELDS KEITH CONRAD For a squarefree integer d other than 1, let 1. Introduction K = Q[ d] = {x + y d : x, y Q}. This is called a quadratic field and it has degree 2 over Q. Similarly,
Since [L : K(α)] < [L : K] we know from the inductive assumption that [L : K(α)] s < [L : K(α)]. It follows now from Lemma 6.
Theorem 7.1. Let L K be a finite extension. Then a)[l : K] [L : K] s b) the extension L K is separable iff [L : K] = [L : K] s. Proof. Let M be a normal closure of L : K. Consider first the case when L
FINITE FIELDS KEITH CONRAD
FINITE FIELDS KEITH CONRAD This handout discusses finite fields: how to construct them, properties of elements in a finite field, and relations between different finite fields. We write Z/(p) and F p interchangeably
Prime Numbers and Irreducible Polynomials
Prime Numbers and Irreducible Polynomials M. Ram Murty The similarity between prime numbers and irreducible polynomials has been a dominant theme in the development of number theory and algebraic geometry.
Factoring of Prime Ideals in Extensions
Chapter 4 Factoring of Prime Ideals in Extensions 4. Lifting of Prime Ideals Recall the basic AKLB setup: A is a Dedekind domain with fraction field K, L is a finite, separable extension of K of degree
11 Ideals. 11.1 Revisiting Z
11 Ideals The presentation here is somewhat different than the text. In particular, the sections do not match up. We have seen issues with the failure of unique factorization already, e.g., Z[ 5] = O Q(
Monogenic Fields and Power Bases Michael Decker 12/07/07
Monogenic Fields and Power Bases Michael Decker 12/07/07 1 Introduction Let K be a number field of degree k and O K its ring of integers Then considering O K as a Z-module, the nicest possible case is
PUTNAM TRAINING POLYNOMIALS. Exercises 1. Find a polynomial with integral coefficients whose zeros include 2 + 5.
PUTNAM TRAINING POLYNOMIALS (Last updated: November 17, 2015) Remark. This is a list of exercises on polynomials. Miguel A. Lerma Exercises 1. Find a polynomial with integral coefficients whose zeros include
Quotient Rings and Field Extensions
Chapter 5 Quotient Rings and Field Extensions In this chapter we describe a method for producing field extension of a given field. If F is a field, then a field extension is a field K that contains F.
Modern Algebra Lecture Notes: Rings and fields set 4 (Revision 2)
Modern Algebra Lecture Notes: Rings and fields set 4 (Revision 2) Kevin Broughan University of Waikato, Hamilton, New Zealand May 13, 2010 Remainder and Factor Theorem 15 Definition of factor If f (x)
ON GENERALIZED RELATIVE COMMUTATIVITY DEGREE OF A FINITE GROUP. A. K. Das and R. K. Nath
International Electronic Journal of Algebra Volume 7 (2010) 140-151 ON GENERALIZED RELATIVE COMMUTATIVITY DEGREE OF A FINITE GROUP A. K. Das and R. K. Nath Received: 12 October 2009; Revised: 15 December
Group Theory. Contents
Group Theory Contents Chapter 1: Review... 2 Chapter 2: Permutation Groups and Group Actions... 3 Orbits and Transitivity... 6 Specific Actions The Right regular and coset actions... 8 The Conjugation
FACTORING POLYNOMIALS IN THE RING OF FORMAL POWER SERIES OVER Z
FACTORING POLYNOMIALS IN THE RING OF FORMAL POWER SERIES OVER Z DANIEL BIRMAJER, JUAN B GIL, AND MICHAEL WEINER Abstract We consider polynomials with integer coefficients and discuss their factorization
PYTHAGOREAN TRIPLES KEITH CONRAD
PYTHAGOREAN TRIPLES KEITH CONRAD 1. Introduction A Pythagorean triple is a triple of positive integers (a, b, c) where a + b = c. Examples include (3, 4, 5), (5, 1, 13), and (8, 15, 17). Below is an ancient
CONSEQUENCES OF THE SYLOW THEOREMS
CONSEQUENCES OF THE SYLOW THEOREMS KEITH CONRAD For a group theorist, Sylow s Theorem is such a basic tool, and so fundamental, that it is used almost without thinking, like breathing. Geoff Robinson 1.
How To Prove The Dirichlet Unit Theorem
Chapter 6 The Dirichlet Unit Theorem As usual, we will be working in the ring B of algebraic integers of a number field L. Two factorizations of an element of B are regarded as essentially the same if
Factoring Polynomials
Factoring Polynomials Sue Geller June 19, 2006 Factoring polynomials over the rational numbers, real numbers, and complex numbers has long been a standard topic of high school algebra. With the advent
Chapter 13: Basic ring theory
Chapter 3: Basic ring theory Matthew Macauley Department of Mathematical Sciences Clemson University http://www.math.clemson.edu/~macaule/ Math 42, Spring 24 M. Macauley (Clemson) Chapter 3: Basic ring
INTRODUCTION TO ARITHMETIC GEOMETRY (NOTES FROM 18.782, FALL 2009)
INTRODUCTION TO ARITHMETIC GEOMETRY (NOTES FROM 18.782, FALL 2009) BJORN POONEN (Please clear your browser s cache before reloading to make sure that you are always getting the current version.) 1. What
4. CLASSES OF RINGS 4.1. Classes of Rings class operator A-closed Example 1: product Example 2:
4. CLASSES OF RINGS 4.1. Classes of Rings Normally we associate, with any property, a set of objects that satisfy that property. But problems can arise when we allow sets to be elements of larger sets
G = G 0 > G 1 > > G k = {e}
Proposition 49. 1. A group G is nilpotent if and only if G appears as an element of its upper central series. 2. If G is nilpotent, then the upper central series and the lower central series have the same
PROBLEM SET 6: POLYNOMIALS
PROBLEM SET 6: POLYNOMIALS 1. introduction In this problem set we will consider polynomials with coefficients in K, where K is the real numbers R, the complex numbers C, the rational numbers Q or any other
r + s = i + j (q + t)n; 2 rs = ij (qj + ti)n + qtn.
Chapter 7 Introduction to finite fields This chapter provides an introduction to several kinds of abstract algebraic structures, particularly groups, fields, and polynomials. Our primary interest is in
Galois representations with open image
Galois representations with open image Ralph Greenberg University of Washington Seattle, Washington, USA May 7th, 2011 Introduction This talk will be about representations of the absolute Galois group
A NOTE ON FINITE FIELDS
A NOTE ON FINITE FIELDS FATEMEH Y. MOKARI The main goal of this note is to study finite fields and their Galois groups. Since I define finite fields as subfields of algebraic closure of prime fields of
The van Hoeij Algorithm for Factoring Polynomials
The van Hoeij Algorithm for Factoring Polynomials Jürgen Klüners Abstract In this survey we report about a new algorithm for factoring polynomials due to Mark van Hoeij. The main idea is that the combinatorial
GROUPS ACTING ON A SET
GROUPS ACTING ON A SET MATH 435 SPRING 2012 NOTES FROM FEBRUARY 27TH, 2012 1. Left group actions Definition 1.1. Suppose that G is a group and S is a set. A left (group) action of G on S is a rule for
Row Ideals and Fibers of Morphisms
Michigan Math. J. 57 (2008) Row Ideals and Fibers of Morphisms David Eisenbud & Bernd Ulrich Affectionately dedicated to Mel Hochster, who has been an inspiration to us for many years, on the occasion
Galois Theory, First Edition
Galois Theory, First Edition David A. Cox, published by John Wiley & Sons, 2004 Errata as of September 18, 2012 This errata sheet is organized by which printing of the book you have. The printing can be
Irreducibility criteria for compositions and multiplicative convolutions of polynomials with integer coefficients
DOI: 10.2478/auom-2014-0007 An. Şt. Univ. Ovidius Constanţa Vol. 221),2014, 73 84 Irreducibility criteria for compositions and multiplicative convolutions of polynomials with integer coefficients Anca
Generic Polynomials of Degree Three
Generic Polynomials of Degree Three Benjamin C. Wallace April 2012 1 Introduction In the nineteenth century, the mathematician Évariste Galois discovered an elegant solution to the fundamental problem
ALGEBRAIC NUMBER THEORY AND QUADRATIC RECIPROCITY
ALGEBRAIC NUMBER THEORY AND QUADRATIC RECIPROCITY HENRY COHN, JOSHUA GREENE, JONATHAN HANKE 1. Introduction These notes are from a series of lectures given by Henry Cohn during MIT s Independent Activities
10 Splitting Fields. 2. The splitting field for x 3 2 over Q is Q( 3 2,ω), where ω is a primitive third root of 1 in C. Thus, since ω = 1+ 3
10 Splitting Fields We have seen how to construct a field K F such that K contains a root α of a given (irreducible) polynomial p(x) F [x], namely K = F [x]/(p(x)). We can extendthe procedure to build
Galois Theory. Richard Koch
Galois Theory Richard Koch April 2, 2015 Contents 1 Preliminaries 4 1.1 The Extension Problem; Simple Groups.................... 4 1.2 An Isomorphism Lemma............................. 5 1.3 Jordan Holder...................................
6. Fields I. 1. Adjoining things
6. Fields I 6.1 Adjoining things 6.2 Fields of fractions, fields of rational functions 6.3 Characteristics, finite fields 6.4 Algebraic field extensions 6.5 Algebraic closures 1. Adjoining things The general
GROUPS WITH TWO EXTREME CHARACTER DEGREES AND THEIR NORMAL SUBGROUPS
GROUPS WITH TWO EXTREME CHARACTER DEGREES AND THEIR NORMAL SUBGROUPS GUSTAVO A. FERNÁNDEZ-ALCOBER AND ALEXANDER MORETÓ Abstract. We study the finite groups G for which the set cd(g) of irreducible complex
POLYNOMIAL RINGS AND UNIQUE FACTORIZATION DOMAINS
POLYNOMIAL RINGS AND UNIQUE FACTORIZATION DOMAINS RUSS WOODROOFE 1. Unique Factorization Domains Throughout the following, we think of R as sitting inside R[x] as the constant polynomials (of degree 0).
The cyclotomic polynomials
The cyclotomic polynomials Notes by G.J.O. Jameson 1. The definition and general results We use the notation e(t) = e 2πit. Note that e(n) = 1 for integers n, e(s + t) = e(s)e(t) for all s, t. e( 1 ) =
THE AVERAGE DEGREE OF AN IRREDUCIBLE CHARACTER OF A FINITE GROUP
THE AVERAGE DEGREE OF AN IRREDUCIBLE CHARACTER OF A FINITE GROUP by I. M. Isaacs Mathematics Department University of Wisconsin 480 Lincoln Dr. Madison, WI 53706 USA E-Mail: [email protected] Maria
a 1 x + a 0 =0. (3) ax 2 + bx + c =0. (4)
ROOTS OF POLYNOMIAL EQUATIONS In this unit we discuss polynomial equations. A polynomial in x of degree n, where n 0 is an integer, is an expression of the form P n (x) =a n x n + a n 1 x n 1 + + a 1 x
9. POLYNOMIALS. Example 1: The expression a(x) = x 3 4x 2 + 7x 11 is a polynomial in x. The coefficients of a(x) are the numbers 1, 4, 7, 11.
9. POLYNOMIALS 9.1. Definition of a Polynomial A polynomial is an expression of the form: a(x) = a n x n + a n-1 x n-1 +... + a 1 x + a 0. The symbol x is called an indeterminate and simply plays the role
EMBEDDING DEGREE OF HYPERELLIPTIC CURVES WITH COMPLEX MULTIPLICATION
EMBEDDING DEGREE OF HYPERELLIPTIC CURVES WITH COMPLEX MULTIPLICATION CHRISTIAN ROBENHAGEN RAVNSHØJ Abstract. Consider the Jacobian of a genus two curve defined over a finite field and with complex multiplication.
Algebraic Number Theory
Algebraic Number Theory 1. Algebraic prerequisites 1.1. General 1.1.1. Definition. For a field F define the ring homomorphism Z F by n n 1 F. Its kernel I is an ideal of Z such that Z/I is isomorphic to
Cyclotomic Extensions
Chapter 7 Cyclotomic Extensions A cyclotomic extension Q(ζ n ) of the rationals is formed by adjoining a primitive n th root of unity ζ n. In this chapter, we will find an integral basis and calculate
Introduction to Algebraic Geometry. Bézout s Theorem and Inflection Points
Introduction to Algebraic Geometry Bézout s Theorem and Inflection Points 1. The resultant. Let K be a field. Then the polynomial ring K[x] is a unique factorisation domain (UFD). Another example of a
ZORN S LEMMA AND SOME APPLICATIONS
ZORN S LEMMA AND SOME APPLICATIONS KEITH CONRAD 1. Introduction Zorn s lemma is a result in set theory that appears in proofs of some non-constructive existence theorems throughout mathematics. We will
calculating the result modulo 3, as follows: p(0) = 0 3 + 0 + 1 = 1 0,
Homework #02, due 1/27/10 = 9.4.1, 9.4.2, 9.4.5, 9.4.6, 9.4.7. Additional problems recommended for study: (9.4.3), 9.4.4, 9.4.9, 9.4.11, 9.4.13, (9.4.14), 9.4.17 9.4.1 Determine whether the following polynomials
Winter Camp 2011 Polynomials Alexander Remorov. Polynomials. Alexander Remorov [email protected]
Polynomials Alexander Remorov [email protected] Warm-up Problem 1: Let f(x) be a quadratic polynomial. Prove that there exist quadratic polynomials g(x) and h(x) such that f(x)f(x + 1) = g(h(x)).
PROOFS BY DESCENT KEITH CONRAD
PROOFS BY DESCENT KEITH CONRAD As ordinary methods, such as are found in the books, are inadequate to proving such difficult propositions, I discovered at last a most singular method... that I called the
Non-unique factorization of polynomials over residue class rings of the integers
Comm. Algebra 39(4) 2011, pp 1482 1490 Non-unique factorization of polynomials over residue class rings of the integers Christopher Frei and Sophie Frisch Abstract. We investigate non-unique factorization
A number field is a field of finite degree over Q. By the Primitive Element Theorem, any number
Number Fields Introduction A number field is a field of finite degree over Q. By the Primitive Element Theorem, any number field K = Q(α) for some α K. The minimal polynomial Let K be a number field and
Basics of Polynomial Theory
3 Basics of Polynomial Theory 3.1 Polynomial Equations In geodesy and geoinformatics, most observations are related to unknowns parameters through equations of algebraic (polynomial) type. In cases where
I. GROUPS: BASIC DEFINITIONS AND EXAMPLES
I GROUPS: BASIC DEFINITIONS AND EXAMPLES Definition 1: An operation on a set G is a function : G G G Definition 2: A group is a set G which is equipped with an operation and a special element e G, called
Mathematics Course 111: Algebra I Part IV: Vector Spaces
Mathematics Course 111: Algebra I Part IV: Vector Spaces D. R. Wilkins Academic Year 1996-7 9 Vector Spaces A vector space over some field K is an algebraic structure consisting of a set V on which are
RINGS WITH A POLYNOMIAL IDENTITY
RINGS WITH A POLYNOMIAL IDENTITY IRVING KAPLANSKY 1. Introduction. In connection with his investigation of projective planes, M. Hall [2, Theorem 6.2]* proved the following theorem: a division ring D in
GENERATING SETS KEITH CONRAD
GENERATING SETS KEITH CONRAD 1 Introduction In R n, every vector can be written as a unique linear combination of the standard basis e 1,, e n A notion weaker than a basis is a spanning set: a set of vectors
Ideal Class Group and Units
Chapter 4 Ideal Class Group and Units We are now interested in understanding two aspects of ring of integers of number fields: how principal they are (that is, what is the proportion of principal ideals
FACTORING AFTER DEDEKIND
FACTORING AFTER DEDEKIND KEITH CONRAD Let K be a number field and p be a prime number. When we factor (p) = po K into prime ideals, say (p) = p e 1 1 peg g, we refer to the data of the e i s, the exponents
Continued Fractions and the Euclidean Algorithm
Continued Fractions and the Euclidean Algorithm Lecture notes prepared for MATH 326, Spring 997 Department of Mathematics and Statistics University at Albany William F Hammond Table of Contents Introduction
COHOMOLOGY OF GROUPS
Actes, Congrès intern. Math., 1970. Tome 2, p. 47 à 51. COHOMOLOGY OF GROUPS by Daniel QUILLEN * This is a report of research done at the Institute for Advanced Study the past year. It includes some general
JUST THE MATHS UNIT NUMBER 1.8. ALGEBRA 8 (Polynomials) A.J.Hobson
JUST THE MATHS UNIT NUMBER 1.8 ALGEBRA 8 (Polynomials) by A.J.Hobson 1.8.1 The factor theorem 1.8.2 Application to quadratic and cubic expressions 1.8.3 Cubic equations 1.8.4 Long division of polynomials
Die ganzen zahlen hat Gott gemacht
Die ganzen zahlen hat Gott gemacht Polynomials with integer values B.Sury A quote attributed to the famous mathematician L.Kronecker is Die Ganzen Zahlen hat Gott gemacht, alles andere ist Menschenwerk.
Associativity condition for some alternative algebras of degree three
Associativity condition for some alternative algebras of degree three Mirela Stefanescu and Cristina Flaut Abstract In this paper we find an associativity condition for a class of alternative algebras
Elements of Abstract Group Theory
Chapter 2 Elements of Abstract Group Theory Mathematics is a game played according to certain simple rules with meaningless marks on paper. David Hilbert The importance of symmetry in physics, and for
Introduction to Modern Algebra
Introduction to Modern Algebra David Joyce Clark University Version 0.0.6, 3 Oct 2008 1 1 Copyright (C) 2008. ii I dedicate this book to my friend and colleague Arthur Chou. Arthur encouraged me to write
Alex, I will take congruent numbers for one million dollars please
Alex, I will take congruent numbers for one million dollars please Jim L. Brown The Ohio State University Columbus, OH 4310 [email protected] One of the most alluring aspectives of number theory
The Division Algorithm for Polynomials Handout Monday March 5, 2012
The Division Algorithm for Polynomials Handout Monday March 5, 0 Let F be a field (such as R, Q, C, or F p for some prime p. This will allow us to divide by any nonzero scalar. (For some of the following,
Chapter 1. Search for Good Linear Codes in the Class of Quasi-Cyclic and Related Codes
Chapter 1 Search for Good Linear Codes in the Class of Quasi-Cyclic and Related Codes Nuh Aydin and Tsvetan Asamov Department of Mathematics, Kenyon College Gambier, OH, USA 43022 {aydinn,asamovt}@kenyon.edu
WHAT ARE MATHEMATICAL PROOFS AND WHY THEY ARE IMPORTANT?
WHAT ARE MATHEMATICAL PROOFS AND WHY THEY ARE IMPORTANT? introduction Many students seem to have trouble with the notion of a mathematical proof. People that come to a course like Math 216, who certainly
(a) Write each of p and q as a polynomial in x with coefficients in Z[y, z]. deg(p) = 7 deg(q) = 9
Homework #01, due 1/20/10 = 9.1.2, 9.1.4, 9.1.6, 9.1.8, 9.2.3 Additional problems for study: 9.1.1, 9.1.3, 9.1.5, 9.1.13, 9.2.1, 9.2.2, 9.2.4, 9.2.5, 9.2.6, 9.3.2, 9.3.3 9.1.1 (This problem was not assigned
Factoring Cubic Polynomials
Factoring Cubic Polynomials Robert G. Underwood 1. Introduction There are at least two ways in which using the famous Cardano formulas (1545) to factor cubic polynomials present more difficulties than
Math 345-60 Abstract Algebra I Questions for Section 23: Factoring Polynomials over a Field
Math 345-60 Abstract Algebra I Questions for Section 23: Factoring Polynomials over a Field 1. Throughout this section, F is a field and F [x] is the ring of polynomials with coefficients in F. We will
REVIEW EXERCISES DAVID J LOWRY
REVIEW EXERCISES DAVID J LOWRY Contents 1. Introduction 1 2. Elementary Functions 1 2.1. Factoring and Solving Quadratics 1 2.2. Polynomial Inequalities 3 2.3. Rational Functions 4 2.4. Exponentials and
