Numerology at Home - A Review of Some Related Literature
|
|
|
- Christina McDowell
- 5 years ago
- Views:
Transcription
1 H. Knaf, P. Lang, S. Zeiser Diagnosis aiding in Regulation Thermography using Fuzzy Logic Berichte des Fraunhofer ITWM, Nr. 57 (2003)
2 Fraunhofer-Institut für Techno- und Wirtschaftsmathematik ITWM 2003 ISSN Bericht 57 (2003) Alle Rechte vorbehalten. Ohne ausdrückliche, schriftliche Gene h mi gung des Herausgebers ist es nicht gestattet, das Buch oder Teile daraus in irgendeiner Form durch Fotokopie, Mikrofilm oder andere Verfahren zu reproduzieren oder in eine für Maschinen, insbesondere Daten ver ar be i- tungsanlagen, verwendbare Sprache zu übertragen. Dasselbe gilt für das Recht der öffentlichen Wiedergabe. Warennamen werden ohne Gewährleistung der freien Verwendbarkeit benutzt. Die Veröffentlichungen in der Berichtsreihe des Fraunhofer ITWM können bezogen werden über: Fraunhofer-Institut für Techno- und Wirtschaftsmathematik ITWM Gottlieb-Daimler-Straße, Geb Kaiserslautern Germany Telefon: +49 (0) 6 31/ Telefax: +49 (0) 6 31/ [email protected] Internet:
3 Vorwort Das Tätigkeitsfeld des Fraunhofer Instituts für Techno- und Wirt schafts ma the ma tik ITWM um fasst an wen dungs na he Grund la gen for schung, angewandte For schung so wie Be ra tung und kun den spe zi fi sche Lö sun gen auf allen Gebieten, die für Techno- und Wirt schafts ma the ma tik be deut sam sind. In der Reihe»Berichte des Fraunhofer ITWM«soll die Arbeit des Instituts kon ti - nu ier lich ei ner interessierten Öf fent lich keit in Industrie, Wirtschaft und Wis sen - schaft vor ge stellt werden. Durch die enge Verzahnung mit dem Fachbereich Mathe ma tik der Uni ver si tät Kaiserslautern sowie durch zahlreiche Kooperationen mit in ter na ti o na len Institutionen und Hochschulen in den Bereichen Ausbildung und For schung ist ein gro ßes Potenzial für Forschungsberichte vorhanden. In die Bericht rei he sollen so wohl hervorragende Di plom- und Projektarbeiten und Dis ser - ta ti o nen als auch For schungs be rich te der Institutsmitarbeiter und In s ti tuts gäs te zu ak tu el len Fragen der Techno- und Wirtschaftsmathematik auf ge nom men werden. Darüberhinaus bietet die Reihe ein Forum für die Berichterstattung über die zahlrei chen Ko o pe ra ti ons pro jek te des Instituts mit Partnern aus Industrie und Wirtschaft. Berichterstattung heißt hier Dokumentation darüber, wie aktuelle Er geb nis se aus mathematischer For schungs- und Entwicklungsarbeit in industrielle An wen dun gen und Softwareprodukte transferiert wer den, und wie umgekehrt Probleme der Praxis neue interessante mathematische Fragestellungen ge ne rie ren. Prof. Dr. Dieter Prätzel-Wolters Institutsleiter Kaiserslautern, im Juni 2001
4
5 ÒÓ Ò Ò Ê ÙÐ Ø ÓÒ Ì ÖÑÓ Ö Ô Ý Ù Ò ÙÞÞÝ ÄÓ À Ò ÃÒ È ØÖ Ä Ò ËØ Ò Ö Ù Ù Ø ¾¼¼ ØÖ Ø Ì Ó Ø Ú Ó Ø ÔÖ ÒØ ÖØ Ð ØÓ Ú ÒÓÚ ÖÚ Û Ó Ò ÔÔÐ ¹ Ø ÓÒ Ó ÙÞÞÝ ÄÓ Ò Ê ÙÐ Ø ÓÒ Ì ÖÑÓ Ö Ô Ý Ñ Ø Ó Ó Ñ Ð ÒÓ ÙÔÔÓÖØº Ò ÒØÖÓ ÙØ ÓÒ ØÓ Ø Ñ Ø Ó Ó Ø ÓÑÔÐ Ñ ÒØ ÖÝ Ñ Ð Ò ÓÒ Ø ÑÔ Ö ØÙÖ Ñ ÙÖ Ñ ÒØ ß Ó¹ ÐÐ Ø ÖÑÓ¹ Ö Ñ ß ÔÖÓÚ º Ì ÔÖÓ Ó ÑÓ ÐÐ Ò Ø Ô Ý Ò³ Ø ÖÑÓ Ö Ñ Ú ÐÙ Ø ÓÒ ÖÙÐ Ù Ò Ø ÐÙÐÙ Ó ÙÞÞÝ ÄÓ ÜÔÐ Ò º à ÝÛÓÖ ÙÞÞÝ ÐÓ ÒÓÛÐ Ö ÔÖ ÒØ Ø ÓÒ ÜÔ ÖØ Ý Ø Ñº ½ ÁÒØÖÓ ÙØ ÓÒ ÙÞÞÝ ÄÓ Ò ÜØ Ò ÓÒ Ó ÓÓÐ Ò ÄÓ ÐÓ Ð Ø Ø Ñ ÒØ Ò ÓÓÐ Ò ÄÓ Ö Ø Ö ØÖÙ ÓÖ Ð º ÁÒ ÙÞÞÝ ÄÓ Ú ÖÝ Ù Ø Ø Ñ ÒØ ØÖÙØ Ú ÐÙ ØÝÔ ÐÐÝ ÐÝ Ò Ò Ø ÒØ ÖÚ Ð ¼ ½ Ê Û Ö Ø Ú ÐÙ ¼ Ö ÔÖ ÒØ Ð Û Ð ½ Ò ØÓ ØÖÙ Ø Ø Ñ ÒØº ÌÖÙØ Ú ÐÙ Ð ¼ ÓÖ¼ Ö Ø Ø Ö Ó Ð Ò ÖØ Ò Ø Ø Ñ ÒØ ÓÙÖÖ Ò ÓÖ Ü ÑÔÐ Ò Ø Ñ Ð Ò ÓÖ Ò ÉÙ ÒØÙÑ È Ý º Ð ÖÐÝ Û Ò Ô Ò ÖÓÑ Ò ÖÝ ØÓ ÑÙÐØ ¹Ú ÐÙ ÐÓ Ø ÐÓ Ð ÓÔ Ö ØÓÖ Çʵ Æ µ Ò Æ ÌÁÇÆµ ÑÙ Ø Ö Ò º Ì Ñ ØÖÙ ÓÖ Ø ÐÓ Ð ÑÔÐ Ø ÓÒ µ Û Ö Ö ØÛÓ ÐÓ Ð Ø Ø Ñ ÒØ º ÁØ ØÙÖÒ ÓÙØ Ø Ø Ø Ö Ö Ò Ò Ø ÐÝ Ñ ÒÝ Û Ý ØÓ ÜØ Ò Ø ÓÓÐ Ò ÐÓ Ð ÓÔ Ö ØÓÖ º Ì ÓÒÖ Ø Ó Ô Ò ÓÒ Ø Ô ØÙ Ø ÓÒ Ò Û ÙÞÞÝ ÄÓ ÔÔÐ º Ì ÖÓÙ ÓÙØ Ø ÔÖ ÒØ ÖØ Ð Û Û ÐÐ ÙÑ ÓÑ Ñ Ð Ö ØÝ Ó Ø Ö Ö Û Ø Ø ÓÒ ÔØ Ó ÙÞÞÝ ÄÓ ÓÙÒ Ò ÒØÖÓ ÙØÓÖÝ ÓÓ Ð ½ ÓÖ º ÅÓÖ Ô Ð Þ ÜÔÓ Ø ÓÒ Ö ÓÖ º ÙÞÞÝ ÄÓ Ò ÔÔÐ Ò Ú Ö ÓÙ Û Ý Ò Ò Ú Ö ØÝ Ó Ö ºÁÒ Ø ÓÒØ ÜØ Ó ÒÓ ÙÔÔÓÖØ Ø Ø Û Ö Ò Ø ÔÖ ÒØ ÖØ Ð ÙÞÞÝ ÄÓ ÔÖÓÚ ÓÒÚ Ò ÒØ Û Ý ÓÖ Ø Ö ÔÖ ÒØ Ø ÓÒ Ó ÙÑ Ò ÒÓÛÐ Û Ø Ò Ò ÜÔ ÖØ ËÝ Ø Ñº Ò ÜÔ ÖØ ËÝ Ø Ñ Ò Ò ÓÐÐ Ø ÓÒ Ó Ø Ò ÖÙÐ ØÓ Ð Û Ø Ø Ø Ø Ø ÐÐÓÛ ØÓ ÑÙÐ Ø Ò ÜÔ ÖØ Ò Ô Ð º ËÙ Ý Ø Ñ ÓÙÐ ÓÖ Ü ÑÔÐ ÓÒ Ø Ó Ø ÔÖ Ö ÔØ ÓÒ Ó Ñ Ø Ó ÓÖ Ø ÒÓ Ó Ñ Ð Ö º ÁÒ Ø Ò Ú ÖÝ ÓÓ ÓÒ Ø ÒÓ Ó ØÖÓÔ Ð Ò ÜÔ ÖØ ËÝ Ø Ñº ÀÓÛ Ú Ö Ù Ù ÐÐÝ Ø Ø ÖÑ Ù Ò Ø ÑÓÖ Ö ØÖ Ø Ò Ó Ó ØÛ Ö Ô ÒØÓ Û Ø Ò ÖÙÐ Ö ÑÔÐ Ñ ÒØ Ò Ø Ø ÐÐÓÛ ½
6 Ø Ù Ö ØÓ ÑÙÐ Ø Ø ÜÔ ÖØ Ý ÖÙÒÒ Ò Ø ÔÖÓ Ö Ñ Û ÐÐ ØÓÚ Û Ò Ø Ø Ò ÖÙÐ º Ï ÓÙÐ Ñ ÒØ ÓÒ Ø Ø ÔÓ ÒØ Ø Ø Ø ÔÔÖÓ ØÓ ÜÔ ÖØ ËÝ Ø Ñ Ù Ø Ö ÐÐ ÖÙÐ ¹ Ò ÓÒØÖ Ø ØÓ Ø Ó Ø ÓÖ ÒØ ÓÒ º Ï Û ÐÐ ÙØ Ð Þ Ø ÖÙÐ ¹ ÔÔÖÓ Ø ÖÓÙ ÓÙØ Ø Û ÓÐ ÖØ Ð º Ï Ò Ù Ð Ò Ò ÜÔ ÖØ ËÝ Ø Ñ Ø ÔÖÓ Ð Ñ Ó ÓÖÑ ÐÐÝ Ö ÔÖ ÒØ Ò Ø ÜÔ ÖØ³ ÒÓÛÐ Ò ÓÒÚ Ò ÒØ Û Ý Û Ø Ò Ø Ý Ø Ñ Ö º À Ö Ø Ø Ú ÓÒÚ Ò ÒØ Ñ Ò Ø Ø Ø ÓÖÑ Ð Ö ÔÖ ÒØ Ø ÓÒ ÓÙÐ Ý ØÓ Ö Ò ØÓ ÙÒ Ö Ø Ò ÓÖ Ø ÜÔ ÖØ Ò Ø ÓÒ Ö Ð ØÓ ÐÐÓÛ Ø Ñ Ö Ø ØÓ Ø ÒÓÛÐ ØÓÖ Ò Ø Ý Ø Ñº Ô Ò Ò ÓÒ Ø ØÝÔ Ó ÒÓÛÐ ÙÞÞÝ ÄÓ ÔÖÓÚ ÔÓ Ð ÓÐÙØ ÓÒ ÓÖ Ø Ö ÔÖ ÒØ Ø ÓÒ ÔÖÓ Ð Ñº Í Ù ÐÐÝ Ø ÐÙÐÙ Ó ÙÞÞÝ ÄÓ ÒÓØ ÓÒÐÝ Ù ØÓ Ö ÔÖ ÒØ ÜÔ ÖØ ÒÓÛÐ Û Ø Ò Ý Ø Ñ ÙØ Ø Ö ÔÖ ÒØ Ø ÓÒ ÓÙÔÐ Û Ø Ó ØÛ Ö Ø Ø ÐÐÓÛ ØÓ ÓÑÔÙØ Ø ØÖÙØ Ú ÐÙ Ó Ø Ø Ñ ÒØ ÓÖÑÙÐ Ø Ò Ø ÐÙÐÙ ß Ó¹ ÐÐ ÙÞÞÝ ÁÒ Ö Ò ËÝ Ø Ñº Å Ð ÒÓ ØÝÔ Ð Ð Ó ÔÔÐ Ø ÓÒ ÓÖ Ú Ö ÓÙ ØÝÔ Ó ÜÔ ÖØ ËÝ Ø Ñ ÓÒ ÓÒ Ò Ø ÐÝ ÛÓÖ Ó Ô Ý Ò ÔÖÓ Ù Ð Ö ÑÓÙÒØ Ó Ø Ø Ø Ò Ù ØÓ Ø Ø Ü Ø Ò ÓÖ ØÓ Ø Ð Ò Û Ñ Ð ÝÔÓØ º ÇÒ Ø ÓØ Ö Ò ÐÓÒ ¹Ø ÖÑ ÜÔ Ö Ò Ó Ø Ò Ý Ð ÜØ Ò Ú Ý Ø Ñ Ó ÖÙÐ ÐÔ Ò Ò Ø Ø Ó ÖÐÝ Ò ÙÖ Ø Ø ÓÒ Ó Ô º ÁÒ Ø ØÙ¹ Ø ÓÒ Ò ÜÔ ÖØ ËÝ Ø Ñ Ò Ù ÙÐ Ò Ú Ö Ð Û Ý º ÁØ ÖÚ Ò Ý ØÓ Ù Ø Ø Ø ÐÐÓÛ ØÓ ÖÙÒ ÑÙÐ Ø ÓÒ ÓÒ Ø ÒÓÖÔÓÖ Ø ÒÓÛÐ º ÆÓÚ Ñ Ý Ù Ø Ò Ø Ö ØÖ Ò Ò º ÖÓÙÔ Ó ÒØ Ø Ò Ö ÓÒ ÜÔ ÖØ ËÝ Ø Ñ Ø Ù Ð Ø Ø Ò Ø ÔÖÓ Ó Ó Ø Ý Ò ÒÓÛÐ º Ì Ü ÑÔÐ Ó ÓÒÐÝ ÓÖÑ Ô ÖØ Ó Ø ÔÓ Ð ÔÔÐ Ø ÓÒ º Ê ÙÐ Ø ÓÒ Ì ÖÑÓ Ö Ô Ý ÒÓ Ø Ñ Ø Ó Ø Ø ÙØ Ð Þ Ø Ú ÓÖ Ó Ø ÙÑ Ò Ó Ý³ Ò Ø ÑÔ Ö ØÙÖ ØÖ ÙØ ÓÒ ÙÒ Ö Ø Ò Ù Ò Ó ÓÐ Ø ÑÙÐÙ º Ì Ó ÖÚ Ø ÑÔ Ö ØÙÖ Ô ØØ ÖÒ Ö Ð ÓÖ Ò ØÓ Ø Ö ØÝÔ Ò Ö Ó Ô Ø ÓÐÓ Ýº Ú ÒØÙ ÐÐÝ Ø Ó ÒØ ÖÔÖ Ø Ø ÓÒ ÖÙÐ ÔÔÐ ØÓ Ò ÒÓ Ø Ø Ø Ñ ÒØ º Ì Û ÓÐ ÔÖÓ ÓÒ ÓÙ Ð Ñ ÙÖ Ñ ÒØ Ó Ø Ò Ø ÑÔ Ö ØÙÖ Ø ½½¼ ÐÓ Ø ÓÒ Ö µ Ó Ø Ó Ý Ð Ò ØÓ Ó¹ ÐÐ Ø ÖÑÓ Ö Ñº Ì Ø ÑÔ Ö ØÙÖ Ø Ö Ñ ÙÖ ÓÖ Ò ÖØ Ò Ø Ñ Ø Ö Ø ÓÐ Ø ÑÙÐÙ º Ì ÒØ ÖÔÖ Ø Ø ÓÒ ÖÙÐ ÒÚÓÐÚ ÓØ Ø ÓÐÙØ Ø ÑÔ Ö ØÙÖ Ú ÐÙ Ò Ø «Ö Ò ØÛ Ò Ø Ñ ÙÖ Ñ ÒØ ÓÖ Ò Ø Ö Ø ÓÐ Ø ÑÙÐÙ º Ø ÔÖ ÒØ Ê ÙÐ Ø ÓÒ Ì ÖÑÓ Ö Ô Ý Ñ Ø Ó ÒÓØ Ò Ö ÐÐÝ ÔØ ÑÓÒ Ô Ý Ò Ô ÖØÐÝ Ù ØÓ Ø Ø Ø Ø Ø ÒÓ Ø ÔÓÛ Ö ÒÓØ Ý Ø Ú Ö Ý Ø Ò Ö Ñ Ð Ñ Ò º ÀÓÛ Ú Ö Ô ÐÐÝ Ò Ø Ð Ó Ñ Ð Ö Ø Ò Ö ÒÓ ÓÑ «ÓÖØ Ó Ò ÓÒ ØÓ ÑÔÖÓÚ Ø ØÙ Ø ÓÒº ÇÒ Ø Ú ØÝ Ò Ø ØÖ Ð ÓÒ Ø Ó Ø Å ¹ÔÖÓ Ø Ø Ò ÖØ ÒÓ ¹ ÙÒØ Ö ØĐÙØÞÙÒ Ò Ö Ê ÙÐ Ø ÓÒ Ø ÖÑÓ Ö Ô Ú Ò Ø Ñ ØÓ ÑÔÐ Ñ ÒØ ÓÑÔÐ Ø Ø Ó Ø ÖÑÓ Ö Ñ ÒØ ÖÔÖ Ø Ø ÓÒ ÖÙÐ ÓÖ Ø ÒÓ Ó Ñ Ð Ö Ø Ò Ö ÒØÓ ÖÙÐ ¹ ÜÔ ÖØ ËÝ Ø Ñ Ù Ò ÙÞÞÝ ÄÓ Ò Æ ÙÖ Ð Æ Ø º Ø Ø Ø Ñ Ó ÛÖ Ø Ò Ø ÖØ Ð ÔÔÖÓÜ Ñ Ø ÐÝ ½ ¼ ÒØ ÖÔÖ Ø Ø ÓÒ ÖÙÐ Ù Ý Ø ÖÑÓ Ö Ô Ö Ú Ò ÒÓÖÔÓÖ Ø ÒØÓ ÙÞÞÝ ÁÒ Ö Ò ËÝ Ø Ñº Ì Ý Ø Ñ Ø Ø ¾¾¼ Ú ÐÙ Ó Ø ÖÑÓ Ö Ñ ÒÔÙØ Ò Ø ÖÑ Ò ÔÖÓ Ð ØÝ ÓÖ Ø ÔÖ Ò Ó Å ÑÑ Ö ÒÓÑ ÓÒ ¹ Ø Ð º ÁÒ ¾
7 Ø ÕÙ Ð Ø Ö Ð Ö Ú Ø Ý Ê º Ì ÔÖÓ Ó ÑÔÐ Ñ ÒØ Ø ÓÒ Ñ Ò ÓÒØ ÒÓÙ ÐÓ ØÛ Ò Ô Ý ¹ Ò Ò Ñ Ø Ñ Ø Ò Ò Ø Ñ Ø Ñ Ø Ð ÑÓ ÐÐ Ò Ö ÕÙ Ö Ø Ø Ö¹ Ñ Ò Ø ÓÒ Ó ÒÙÑ Ö Ð ÓÒ Ø ÒØ Ò ÙÒØ ÓÒ Ø Ø ÒÒÓØ ÜØÖ Ø ÖÓÑ Ø ÖÙÐ Ö ØÐݺ Ì ØÖÙØÙÖ Ó Ø ÙÞÞÝ ÁÒ Ö Ò ËÝ Ø Ñ Ö Ø Ø ÔÖÓ ÙÖ Ô Ý ¹ Ò ÔÔÐÝ Ò Û Ò Ð Ý Ò Ø ÖÑÓ Ö Ñ Û Ø Ö Ô Ø ØÓ Ê º ÊÓÙ ÐÝ Ô Ò Ø Ê Ø ÖÑ Ò Ý ÓÑ Ò Ò Ú Ö Ð Ø ÖÑÓ Ö Ñ ÔÖÓÔ ÖØ Ó Ø Ñ ØÝÔ ÐÐÝ ÒÚÓÐÚ Ò ÓÒÐÝ Ù Ø Ó ÐÐ Ó Ø ½½¼ Ö º ÓÒ ¹ ÕÙ ÒØÐÝ Ø ÜÔ ÖØ³ ÒØ ÖÔÖ Ø Ø ÓÒ ÖÙÐ Ò ÖÓÙÔ ÓÖ Ò ØÓ Ø Ö ÒÚÓÐÚ Ó Ø Ò Ò ½ «Ö ÒØ ÖÓÙÔ º ÁÒ Ø ÜÔ ÖØ ËÝ Ø Ñ Ø ØÖÙØÙÖ Ö ÔÖ ÒØ Ý Ö Ø ÐÙÐ Ø Ò ½ Ó¹ ÐÐ Ô ÖØ Ð ÙÞÞÝ Ú ÐÙ Ó Ø Ñ Ñ ÙÖ Ò Ø Ö Ó Ô Ø ÓÐÓ Ý Ó Ø Ö Ò Ð Ø ÖÑÓ Ö Ñ Ô ÖØ ÓÖ Ó Ú Ö Ð Ø ÖÑÓ Ö Ñ Ô ÖØ Û Ø Ö Ô Ø ØÓ Ô ÔÖÓÔ ÖØÝ Ð ÓÖ Ü ÑÔÐ ÝÑÑ ØÖݺ Ø ÖÛ Ö Ø ½ Ú ÐÙ Ö ÓÑ Ò Ù Ò ÓÑ ÐÓ Ð ÖÙÐ ØÓ Ó Ø Ò Ø Ê º Å Ø Ñ Ø ÐÐÝ Ø Ø Ô Ó ÓÑÔÙØ Ò Ø Ô ÖØ Ð ÙÞÞÝ Ú ÐÙ ÖÓÑ Ø Û ÓÐ Ø ÖÑÓ Ö Ñ Ò ÙÒ Ö ØÓÓ Ñ Ò ÓÒ Ö ÙØ ÓÒ Ú Ò Ý ÒÓÒ¹Ð Ò Ö ÙÒØ ÓÒ Ô Ê ¾¾¼ Ê ½ º ¾ Ê ÙÐ Ø ÓÒ Ì ÖÑÓ Ö Ô Ý Ê ÙÐ Ø ÓÒ Ì ÖÑÓ Ö Ô Ý ÊÌ µ ÒÓ Ø Ñ Ø Ó Ò Ø Ñ Ð Ò ÓÒ Ø ÝÔÓØ Ø Ø Ó Ø ÙÑ Ò Ó Ý ÓÖ Ø Ö ÔÖ Ô µ ÒØ Ð Ö Ø Ö Ø Ò Ò Ø Ó Ý³ Ð ØÝ ØÓ ÔØ Ö Ô Ø Ú ÐÝ Ö Ø ØÓ Ø ÙÖÖ ÒØ Ñ ÒØ Ø ÑÔ Ö ØÙÖ º ÊÓÙ ÐÝ Ô Ò ÓÑÔ Ö ÓÒ Ó Ø Ó Ý³ ØÙ Ð Ø ÖÑÓÖ ÙÐ Ø ÓÒ Ð ØÝ Û Ø Ø ÜÔ Ø ÐØ Ý Ö ÙÐ Ø ÓÒ Ð ØÝ ÓÙÐ Ú Ò ÓÖÑ Ø ÓÒ Ö Ð Ú ÒØ ÓÖ Ø ÒÓ Ó ÖØ Ò º ÁÒ Ø Ø ÓÒ Ö ÓÚ ÖÚ Û Ó Ø Ô Ý ÓÐÓ Ð Ó ÊÌ ÔÖÓÚ º ÙÖØ ÖÑÓÖ Ø ÔÖÓ Ó Ñ ÙÖ Ò Ø ÖÑÓ Ö Ñ Ö Ò ÓÑ ¹ Ø Ð Ò Ò ÖÝ Ø ÖÑ ÒÓÐÓ Ý ÒØÖÓ Ù º Ò ÐÐÝ Ø ÒÓÖÑ Ð Ö ÙÐ Ø ÓÒ Ô ØØ ÖÒ Ò Ø ØÝÔ Ó Ú Ø ÓÒ ÖÓÑ Ø Ö Ö º Ì Ô ØÙÖ ½ ¾ Ò Ö Ø Ò ÖÓÑ º ¾º½ È Ý ÓÐÓ Ý Ó Ø ÖÑÓÖ ÙÐ Ø ÓÒ Ì ÐØ Ý Ó Ý ÓÒØ ÒÓÙ ÐÝ Ö ÙÐ Ø Ø Ø ÔÖÓ ÙØ ÓÒ Ò ÐÓ Û Ø Ø Ñ ØÓ Ô ÙÔ Ô Ø ÑÔ Ö ØÙÖ Ô ØØ ÖÒº Ì Ô ØØ ÖÒ Ø ÖÑ Ò Ý ÙÒØ ÓÒ Ò ØÓÑÝ Ò Ø ÖÑÓ ÝÒ Ñ ÙÖ ½µ Ø Ø ÑÔ Ö ØÙÖ Ó Ø Ó Ý³ ÓÖ Û ÐÐ Ø Ø Ó Ø ÑÙ Ø ÔØ ÓÒ Ø ÒØ ØÓ Ò ÙÖ Ø ÙÒÖ ØÖ Ø ÙÒØ ÓÒ Ò Ó Ø ÒÒ Ö ÓÖ Ò Ò Ø Ö Òº ÖÑ Ò Ð Ø ÓØ Ö ÜØÖ Ñ ÙÒ ÖÐÝ Ö Ø Ö ØÖÓÒ Ú Ö Ø ÓÒ Ó Ø ÑÔ Ö ØÙÖ º Ì Ü Ð ÝÑÑ ØÖÝ Ó Ø Ø ÑÔ Ö ØÙÖ ØÖ ÙØ ÓÒ ÑÔÐ Ò ØÓÑ Ö ÓÒ Û Ð Ø Ö Ð Ö Ó Ø ÑÔ Ö ØÙÖ Ú ÐÙ Ö ÔÖ ÒØ Ø ÓÛ Ó Ò Ö Ý ÖÓÑ Ø Ö ÓÙÖ Ø ÖÓÙ Ø Ó Ý³ ÙÖ ÒØÓ Ø Ñ ÒØ Ô º Ì Ö ÙÐ Ø ÓÒ Ó Ø Ø ØÖ ÙØ ÓÒ Ò Ø Ó Ý Ô Ö ÓÖÑ Ý ÑÙй Ø ØÙ Ó ÓÑÔÓÒ ÒØ Ó Ø ÙÑ Ò ÓÖ Ò Ñ ÓÖÑ Ò ÓÑÔÐ Ü ÓÒØÖÓÐ Ý Ø Ñ Ø ÒØ Ö Ó Ø Ý Ø Ñ ÓÒ Ø ØÙØ Ý Ø ÀÝÔÓØ Ð ÑÙ Ô ÖØ ÙÐ Ö Ô ÖØ Ó Ø Ö Òº Î Ò ÖÚ Ø ÓÒÒ Ø ØÓ ÓÐ Ò Ø Ö ÔØÓÖ ØÖ ÙØ
8 ÙÖ ½ Ø ØÖ ÙØ ÓÒ Ø ÖÓÙ ÓÙØ Ø Ó Ý Ò ÓÒØ ÒÓÙ ÐÝ ÔÖÓÚ Ò Ô ØÙÖ Ó Ø Ø ØÖ Ù¹ Ø ÓÒº Ô Ò Ò ÓÒ Ø Ô ØÙÖ Ø ÀÝÔÓØ Ð ÑÙ ¹» Ø Ú Ø Ø Ñ Ø ÓÐ Ø Ú ØÝ Ò ÓÑÑ Ò ØÓ ÓÔ Ò»ÐÓ Û Ø Ð Ò ÓÖ ØÓ ÜÔ Ò»ÓÒØÖ Ø Ø Ñ Ø Ö Ó ÐÓÓ Ú Ð ØÓ Ñ ÒØ ÓÒ ÓÒÐÝ Û Ó Ø ÔÓ Ð Ö ÙÐ Ø ÓÒ Ñ Ò Ñ º ËÓÑ Ó Ø Ñ Ò Ñ Ö ØÓ ÖØ Ò ÜØ ÒØ Ð ¹ ÙÆ ÒØ ÓÑ ÓØ Ö Ò Ö ØÐÝ ÒØ Ö Ø Û Ø ÓØ Öº ÅÓÖ ÓÚ Ö Ø ÓÑÑÙÒ ¹ Ø ÓÒ Û Ø Ò Ø ÓÒØÖÓÐ Ý Ø Ñ ÒÓØ ÓÒÐÝ ÓÒ ÙØ Ú Ò ÖÚ ÙØ Ð Ó Ú ÐÓÛ Ö Ñ Ð ÒÒ Ð ÒÚÓÐÚ Ò ÓÖÑÓÒ º ÐØÓ Ø Ö Ø Ö ÙÐ Ø ÓÒ Ý Ø Ñ Ò Ð Ø Ó Ý ØÓ Ô Ø Ø ØÖ ÙØ ÓÒ ÓÒ Ø ÒØ ÓÖ Ñ ÒØ Ø ÑÔ Ö ¹ ØÙÖ ØÛ Ò ¾ Æ Ò ¾ Æ ÓÙØ Ø ÒØ ÖÚ Ð Ú Ø ÓÒ ÖÓÑ Ø ÒÓÖÑ Ð ØÖ ÙØ ÓÒ ÔÔ Öº ÀÓÛ Ú Ö Ø ÓÖ Ò Ñ Ø ÐÐ Ô ÙÒØ ÓÒ Ò ÔÖÓÔ ÖÐÝ Ò Û Ø ÑÔ Ö ØÙÖ Ö Ò º ÌÓ ÙÒ Ö Ø Ò Ò Û Û Ý Ò Ò Ù Ò Ø Ð ØÝ ÓÖ Ø ÖÑÓÖ ¹ ÙÐ Ø ÓÒ ÓÒ ØÓ Ø ÐÓÓ Ø Ø Ó Ý³ ÒÒ ÖÚ Ø ÓÒ Ò ÖÚ Ð ÒÒ Ð ÓÒÒ Ø Ø Ö Ò Û Ø ÓÖ Ü ÑÔÐ ÒÒ Ö ÓÖ Ò Ò Ø Òº ËÙ ÒÒ Ð ØÝÔ ÐÐÝ Ø ÖØ Ò Ø Ö Ò ÖÙÒ ÐÓÒ Ø Ô Ò Ð ÓÖ ØÓ Ô ÔÓ ÒØ Ò Ð Ú Ø Ô Ò ØÛ Ò ØÛÓ ÒØ ÖÚ ÖØ Ö Ð ØÓ Ö Ø Ò Ð Ø Ò Ø ÓÒº Ù ØÓ Ö ÓÒ ÐÝ Ò Ò Ø Ñ ÖÝÓÒ Ð ÚÓÐÙØ ÓÒ Ó ÙÑ Ò ÐÐ Ò ÖÚ Ð Ú Ò Ø Ô Ò ØÛ Ò ØÛÓ Ô ÒØ ÖÚ ÖØ Ö Ð ÒÒ ÖÚ Ø ÓÖ ÞÓÒØ Ð Ð Ó Ø Ó Ýº Ì Ò Ü ÔØ ÓÒ ÖÓÑ Ø ÔÖ Ò ÔÐ º ÅÓÖ ÓÚ Ö Ø Ð Ñ Ø ÓÖÑ ÒÚ ÖØ Ð Ö Ø ÓÒ ß ÙÖ ¾º Ì Ñ Ò ÓÒ ÕÙ Ò Ó Ø Ñ ÒØ Ø ÓÒ Ø Ø «Ö ÒØ Ò ÖÚ ÖÙÒÒ Ò ØÓ ÓÖ ÓÑ Ò ÖÓÑ ÔÓ ÒØ Ò ÓÒ Ò Ø Ñ Ñ ÒØ Ò ÒØ Ö Ø Ò Ø Ô Ò Ð ÓÖ º Ò ÑÔÙÐ ÒØ Ý Ò ÒÒ Ö ÓÖ Ò Ò Ò Ù Ò ÑÔÙÐ ÖÙÒÒ Ò ØÓ Ô Ô ÖØ Ó Ø Ò Ýº Ì ÑÔÙÐ Ò ÐØ Ö Ú Ö ÓÙ ÔÖÓÔ ÖØ Ó Ø Ò Ð Ø Ø ÑÔ Ö ØÙÖ Ø Ñ Ò Ð ØÓÒÙ Ò Ò Ú ØÝ Ø ÑÓÙÒØ Ó Û Ø Ò Ò Ó ÓÒº Ì ØÖÙØÙÖ Ù Ø Ö ÐÐ Ö Ü Ö Ò Ñ Ø ÐÐÝ ÓÛÒ Ò ÙÖ º ÓÑÔÖ Ò ÓÒ Ò Ø Ø Ø Ø Ô Ø ÓÐÓ Ð Ò Ó Ò ÒÒ Ö ÓÖ Ò Ò ÐÓ ÐÐÝ Ò Ù Ò Ø Ñ Ø ÓÐ Ñ Ø ÑÔ Ö ØÙÖ Ò ÓØ Ö ÔÖÓÔ ÖØ Ó Ø Ò Ú Ö Ü Ö º Ì Ø Ø Ó Ê ÙÐ Ø ÓÒ Ì ÖÑÓ Ö Ô Ýº
9 ÙÖ ¾ ÓÖ ÞÓÒØ Ð Ñ ÒØ Ø ÓÒ ÙÖ Ö Ü Ö Ì ÔÖ Ñ ÖÝ ÝÔÓØ Ó ÊÌ Ò ÒÓÛ ÖÓÙ ÐÝ ÓÖÑÙÐ Ø Ð Ø Ò ÓÒ Ó Ò ÓÖ Ñ Ö Ò Ò Ù Ò Ø Ø ÖÑÓÖ ÙÐ Ø ÓÒ ÔÖÓÔ ÖØÝ Ó Ô ¹ Ö Ó Ø Ò Ò Ø Ò Ù Û ÝºÌ ÒÓÛÐ Ó Ø ÒÓÖÑ ÐÐÝ Ö Ø Ò Ö ÓÑ Ò Û Ø Ð Ø ÓÒ Ó Ø ØÝÔ Ó Ö Ø ÓÒ Ø Ý ÓÛ Ò Ö ÔÓÒ ØÓ Ø ÑÔ Ö ØÙÖ Ø ÑÙÐÙ ÐÐÓÛ ÒÓ Ø ÓÒÐÙ ÓÒ º ¾º¾ Å ÙÖ Ñ ÒØ Ó Ø Ø ÖÑÓÖ ÙÐ Ø ÓÒ Ð ØÝ Ì Ö ÔØ ÓÒ Ó Ø ÖÑÓÖ ÙÐ Ø ÓÒ Ú Ò Ò Ø ÔÖ Ò Ô Ö Ö Ô ÓÛ Ø Ø Ø Ø ÖÑÓÖ ÙÐ Ø ÓÒ Ð ØÝ ÒÒÓØ Ñ ÙÖ Ö ØÐÝ Û Ø ÓÙØ Ñ Ú ÒØ ÖÚ ÒØ ÓÒ ÒØÓ Ø Ó Ýº ÁÒ Ø ÓÒ ÒÚ Ø Ø Ø ÁÒÔÙØ¹ÇÙØÔÙØ Ú ÓÖ Ó Ø Ó Ý³ Ö ÙÐ Ø ÓÒ Ý Ø Ñ ØÓ Ù Ø Ø ØÙ ÐÐÝ Ø ÓÒ Ý Ü¹ ÔÓ Ò Ø ÔÖÓ Ò ØÓ ÓÐ Ø ÑÙÐÙ Ò Ñ ÙÖ Ò Ø ÙÖ Ø ÑÔ Ö ØÙÖ Ó Ø Ó Ý ÓÖØÐÝ ÓÖ Ò Ò ÑÓÙÒØ Ó Ø Ñ Ø Ö Ø ÓÒ Ø Ó Ø Ø ÑÙÐÙ º ÁÒ Ö Ö Ñ Ö Û ÐÐ Ú Ö ÓÙ ØÝÔ Ó ÓÒØ Ø Ø ÖÑÓÑ Ø Ö Ò Ù ØÓ Ô Ö ÓÖÑ Ø Ø º ÁÒ Ô Ø Ó Ø Ú ÒØ Ó Ù Ò Ò Ò Ö Ö Ñ Ö ß Ø Ú Ò Ô ÓØ Ó Ø Ø ÑÔ Ö ØÙÖ ØÖ ÙØ ÓÒ ÓÚ Ö Ø Û ÓÐ Ó Ý Ò ÐÐÓÛ Ø Ó ÖÚ Ø ÓÒ Ó Ø ÝÒ Ñ Ó Ø Ö ÙÐ Ø ÓÒ ÔÖÓ ß ÓÒØ Ø Ø ÖÑÓÑ Ø Ö Ö Ö Ø ÒÓÛ Ò ØÓ ÓÙÖ ÒÓÛÐ Ø ÔÖ ÖÖ Ñ Ø Ó Ù ØÓ Ö ØÖ Ú Ø ÑÔ Ö ØÙÖ Ò ÊÌ º Ì Ô ÖØ ÐÐÝ ØÓÖ Ð Ö ÓÒ ÙØ ÑÓ Ø Ð ÐÝ Ó Ø Ó Ð Ó ÔÐ Ý Ò ÒØ ÖÓÐ º Í Ò ÓÒØ Ø Ø ÖÑÓÑ Ø Ö Ø ÙÖ Ø ÑÔ Ö ØÙÖ Ó Ø Ó Ý Ò ÓÒÐÝ Ø ÖÑ Ò Ø Ô Ò Ø µ Ø Ó ÔÓ ÒØ º ÁÒ ÊÌ Ø ÔÓ ÒØ Ö ÐÐ Ö Ò ÜÔÖ ÓÒ Ø Ø Ù ÖÓÑ ÒÓÛ ÓÒ Ø ÖÓÙ ÓÙØ Ø ÖØ Ð º ÁØ ÓÙÐ ÓÛ Ú Ö ÑÔ Þ Ø Ø Ò Ô Ø Ó Ø Ñ Ð Ò Ò Ñ Ø Ö Ú Û Ðй Ò Ò ØÓÑ ÔÓ Ø ÓÒº À Ú Ò Ü Ø Ó Ö ÓÒ Ñ ÙÖ Ø Ó Ý Ø ÑÔ Ö ØÙÖ ØÛ Ø Ö ÓÒ Ñ ÙÖ Ñ ÒØ ÓÖ Ò ÓÒ Ø Ö Ø ÓÐ Ø ÑÙÐÙ º Ì Ø Ó Ø ÑÔ Ö ØÙÖ Ú ÐÙ Ó Ó Ø Ò ÐÐ Ø ÖÑÓ Ö Ñº ÌÓ Ú ÓÑÔ Ö Ð ØÝ Ò ÊÌ Ø Ò Ö Ø Ó Ö Û Ò Ý º ÊÓ Ø Ò ½ µ Ø Ø ÖÑÓ Ö Ñ ÐØ Û Ø Ò Ø ÔÖ ÒØ ÖØ Ð Ö ÓÒ Ø Øº ÁØ ÓÒ Ø Ó Ø ÓÐÐÓÛ Ò Ñ Ñ Ö ÖÓÙÔ ÒØÓ Ø Ö Ù Ø
10 Ì Ø Ò Ö Ö Ì ¼ «Ö ÒØ Ø Ò Ö Ö Ö ØÖ ÙØ ÓÚ ÖØ Û ÓÐ Ó Ý Ò Ò Ü¹ Ð ÝÑÑ ØÖ Ñ ÒÒ Öº Ë Ò Ø Ö Û ÐÐ Ö ÕÙ ÒØÐÝ ÓÙÖ Ò Ø Ù ÕÙ ÒØ Ô Ö Ö Ô Ø Ö Ò Ñ Ò Ö Ú Ø ÓÒ Ö ÔÖÓÚ Ò Ø Ð ÓÖÑ ÐÓÛ Ø Ö ÐÐ ÒØÓ «Ö ÒØ Ù ÖÓÙÔ Ø Ø Ö ÓÛÒ Ò Ø Ö Ø ÓÐÙÑÒ Ó Ø Ø Ð º Ü Ð ÝÑÑ ØÖ Ö Ö Ð Ø Ô Ö ß Ð Ì½ ̾µ ÓÖ Ø ØÓÒ Ð ß ÓÙÔÝ Ò ÓÒÐÝ ÓÒ ÖÓÛ Ò Ø Ø Ð º ÅÓÖ ÓÚ Ö ÓÑ Ö Ö ÖÓÙÔ ØÓ Ø Ö ØÓ Ô Ø Ø Ð ÓÖØº Ì Ö Ø Ø Ð ÓÛ Ö Ñ ÙÖ ØÛ Ø Ø ÒÒ Ò Ò Ø Ø Ò Ó Ø Ö Ø Ò Ø ÓÒ Ñ ÙÖ Ñ ÒØ н Õ٠РРо ÕÙ Ð Ð µº Ì ÓÒ ÓÖ ÓÒØÖÓÐ ÔÙÖÔÓ Ò ÒØÐÝ «Ö ÒØ Ú ÐÙ Ø Ø ÒÒ Ò Ò Ø Ò Ó Ñ ÙÖ Ñ ÒØ Ò Ø Ø Ø Ø Ö Ø Ú ÐÓ ØÝ Ò Ñ ÙÖ Ò Û ØÓÓ ÐÓÛ ÓÖ Ø Ø Ø Ö ÙÐ Ø ÓÒ ÕÙ Ð Ö ÙÑ Û ÒÓØ Ö Ý Ø ÓÒ Ñ ÙÖ Ñ ÒØ ÓÒÐݵº ÖÓÙÔ ÆÓº Ö Úº Æ Ñ ½ ËÌ ÓÖ ¾ ÆÏ ÖÓÓØ Ó ÒÓ Ð½ оµ Ð ÓÛ ËÀ½ ËÀ¾µ ÖÓÒØ Ð Ò٠˽ ˾µ Ø ÑÔÐ À ½¼ Û½ Û¾µ ÒØ Ù ½½ ½¾ Ž žµ Ñ ØÓ ½ ½ Ë ½ Ë ¾µ Ø ÑÓ ÓÒ ½ ½ ÃÀ½ ÃÀ¾µ Ñ Ü ÐÐ ÖÝ ÒÙ ½ ½ ̽ ̾µ ØÓÒ Ð Ì ÖÓ Ø» ½ ¹¾¾ Ľ¹ ÐÝÑÔ Ø Ú Ð Æ ¾ ¹¾ Ä ¹ ÙÔÖ Ð Ú ÙÐ Ö Ó ¾ ¹¾ Ä ¹ ÐÝÑÔ Ø Ú Ð ¾ ¾ Ë ½ Ë ¾µ Ø ÝÖÓ Ð Ò ¾ Ì Ý Ø ÝÑÙ Ð Ò ¼ ËØ Ø ÖÒÙÑ ½ ¾ ÅÔ½ ÅÔ¾µ Ô ØÓÖ Ð ÑÙ Ð Ì ÓÖ Ü À ½ ØÖ ÙÑ»Ö Ø À ¾ ØÖ ÙÑ»Ð Ø À Ö ÑÙ Ð»Ö Ø À Ö ÑÙ Ð»Ð Ø ËÓÐ ÓÐ Ö ÔÐ ÜÙ Å ØÓÑ ÍÔÔ Ö Ä ½ Ð Ú Ö ËØÓÑ ¼ Ä Ð Ú Ö ½ Ð ÐÐ Ð Ö ¾ È ½ È ¾µ Ô ÒÖ ÁÒØ ÒØ Ø ÒÙÑ ÁÒØ Ø Ò ¹ ¼ ½¹ ÒØ Ø Ò ½ ÔÔ ÔÔ Ò Ü ¾ ÍØ»ÈÖÓ ÙØ ÖÙ»ÔÖÓ Ø Ø ÄÓÛ Ö ÇÚ½ ÇÚ¾µ ÓÚ Ö ËØÓÑ Æ ½ Æ ¾µ Ò Ý Á ½ Á ¾µ Ð Ó Ö Ð Ó ÒØ ¼ Ð Ð µ Ð ÓÛ Ì Ð ½ Ø Ò Ö Ö
11 Ì Ö Ø Ö Ì Ö Ö ½ Ù Ö Ø Ö Ø Ò Ñ ½ ½ ½ ½ ½ ½ ½ ½ ½ ÓÖ Ø Ö Ø Ò Û Ø Ø ½ Ö ÔÐ Ý ¾ ÓÖ Ò ÐÝ ÓÖ Ø Ð Ø Ö Øº Ì Ö Ø Ö Ö Ñ ÒÐÝ Ñ ÙÖ ÓÖ Ñ Ð Ô Ö ÓÒ Ò Ô ÖØ ÙÐ Ö Ò Ø ÓÒØ ÜØ Ó Ö Ø Ò Ö ÒÓ º Ì ØÓÓØ Ö ÇÒ Ù Ö ÐÓ Ø Ò Ø Ò Ö Ó Ø Ø Ø º Ì ØÓÓØ Ö ÔÐ Ý ÒÓ ÖÓÐ Ò Ø ÓÙÖ Ó Ø ÖØ Ð º ÖÓÙ Ó Ø ÐÓ Ø ÓÒ Ó ÓÑ Ó Ø Ö Ú Ò Ý ÙÖ º Forehead (reference value) Root of the nose Frontal sinus Temple Canthus Ethmoid bone Maxillary sinus Tonsil Lymphatic vessel/gland Lymphatic vessel/gland Thyroid gland Supraclavicular fossa Thymus gland Lymphatic vessel/gland Sternum Musculus pectoralis Atrium/right Atrium/left Cardiac muscle/right Cardiac muscle/left Solar plexus Liver Gallbladder Liver Colon Elbow Pancreas Stomach Pancreas Appendix Intestinum Ovarium Uterus ÙÖ Ö Ø Ø ÖÓÒØ Ó Ø Ó Ý
12 Ç Ú ÓÙ ÐÝ Ø ÔÖÓ Ó Ö Ø Ò Ø ÖÑÓ Ö Ñ Ò Ð Ó ØÓ Ø Ò Ö ¹ Þ ØÓ ÔÖÓ Ù ÓÑÔ Ö Ð Ö ÙÐØ Ø ÔÖÓ Ò ÙÒ Ö Ò ÖÓÓÑ Û Ø ÒÓÖÑ Ø ÑÔ Ö ØÙÖ ¾¼ Æ ¾¾ Æ µ Ò Ö ÙÑ ØÝ ¼±µ ß Ò Ø Ñ ¹ ÒØ Ø ÑÔ Ö ØÙÖ Ò ÒØÐÝ ÐÓÛ Ö Ø Ò Ø Ñ Ò Ó Ý Ø ÑÔ Ö ØÙÖ ÓÐ Ø ÑÙÐÙ Ù Ø Û Ýº ÁÑÑ Ø ÐÝ Ø Ö ÙÒ Ö Ò Ø Ø ÑÔ Ö ØÙÖ Ó Ø «Ö ÒØ Ö Ö Ø ÖÑ Ò º Ì Ñ ÙÖ Ñ ÒØ ÓÙÐ Ô Ö ÓÖÑ Ö Ø Ö ÕÙ ÐÝ ØÓ Ñ ÙÖ Ø Ø Ø ÓÒ Ø Ó Ø ÖÑÓÖ ÙÐ Ø ÓÒ Ó ÒÓØ ÐÖ Ý Ò Ù Ò Ø Ø ÑÔ Ö ØÙÖ Ú ÐÙ º Ì Ñ ÙÖ Ñ ÒØ Ö Ô Ø Ø Ö ¾¼ Ñ ÒÙØ Û Ò Ø Ø ÑÔ Ö ØÙÖ ØÖ ÙØ ÓÒ Ó Ø Ó Ý Ö Ø Ò Û ÕÙ Ð Ö ÙѺ Ð ÖÐÝ Ø Ö Ö ÓÑ ÓØ Ö ÔÓ ÒØ Ø ÒÚ Ø ØÓÖ ÓÙÐ Ö ÓÖ ÙÖ Ò Ø ÔÖÓ Ó Ø ÖÑÓ Ö Ñ Ö Ø ÓÒº Ï Ö Ö Ø ÒØ Ö Ø Ö Ö ØÓ ÊÓ Ø³ ÓÓ ÓÖ ÑÓÖ Ø Ð º Ì ØÓØ Ð ØÝ Ó ¾¾¼ Ú ÐÙ Ó Ø Ò Ý Ñ ÙÖ Ò Ø ÊÓ Ø³ Ö ØÛ ÐÐ Ö ÙÐ Ø ÓÒ Ø ÖÑÓ Ö Ñ Ê̵º Ì Ø ÖÑÓ Ö Ñ Ú ÐÙ Ø Ø Ø ÁÌÏÅ Û Ö Ñ ÙÖ Ù Ò Ò Ð ØÖÓÒ ÔÖ Ø Ø ÖÑÓÑ Ø Ö Û Ø Ò ÔØ ÓÒ Ø Ñ Ñ ÐÐ Ö Ø Ò ¼ ÓÒ º Ì Ø ÑÔ Ö ØÙÖ Ú ÐÙ Ö Ö ØÐÝ ØÖ Ò ÖÖ ØÓ È Ö ÓÒ Ð ÓÑÔÙØ Ö Ò ØÓÖ ØÓ Ø Ö Û Ø Ö Ð Ú ÒØ ÔÖÓ Ò Ò ÓÖÑ Ø ÓÒ Ð Ò Ö ÓÒ Ó Ò Ñ Ø ÓÒ Øºº ¾º Ê ÙÐ Ø ÓÒ Ô ØØ ÖÒ ÁÒ ÓÖ Ö ØÓ ÕÙ ÐÝ Ò Ò ÓÚ ÖÛ Û ÓÚ Ö Ø ÙÒ Ó Ø ÑÔ Ö ØÙÖ Ú ÐÙ Ø ÖÑÓ Ö Ñ ÓÒ Ø Ó ÓÒ Ö ÕÙ ÒØÐÝ Ù Ö ÔÐÓØ Ð Ø ÓÒ ÓÛÒ Ò ÙÖ Ì «Ö ÒØ Ö Ö Ð Ø ÓÒ Ø ÓÖ ÞÓÒØ Ð Ü ß Ö Ö Ú Ø ÓÒ Û ÐÐ Ø Ö ÒÙÑ Ö Ö ÓÛÒ ß Û Ð Ø Ú ÖØ Ð Ü ÓÛ Ø ÓÖÖ ÔÓÒ Ò Ø ÑÔ Ö ØÙÖ Ú ÐÙ º ÅÓÖ ÔÖ ÐÝ Ö Ø ÖØ Ò ÖÓÑ Ð Ò Ø ÖÑ Ò Ý Ø ÔÖ ¹ Ø ÑÙÐÙ ¹Ú ÐÙ Ø Ø ËØ¹ Ö ÓÖ µ Ô Ø Ø ÔÖ ¹ Ø ÑÙÐÙ ¹Ú ÐÙ Ò Ð Ò Ø ÔÓ Ø¹ Ø ÑÙÐÙ ¹Ú ÐÙ Ò Ö ÓÐÓÙÖº Ì ËØ¹Ú ÐÙ ÒÓÖÑ ÐÐÝ ÒÓØ Ò Ù Ò ÑÙ Ý Ø ÑÙÐ Ò Ø Ö ÓÖ ÖÚ Ö Ö Ò Ð Ò Ò Ø Ê̺ ÁÒ ÙÖ ÓÒÐÝ Ø Ø Ò Ö Ö Ö ÓÛÒ Ø Ý Ö ÓÖ Ö ÒØ ÐÐÝ Û Ø Ö Ô Ø ØÓ Ø Ö Ò ØÓÑ ÔÓ Ø ÓÒ ÖÓÑ ØÓÔ ØÓ ÓØØÓѺ Ï Ò Ú ÐÙ Ø Ò Ò ÊÌ Ø Ô Ý Ò ØÓ ÒØ Ý Ô ØØ ÖÒ ÑÓÒ Ø Ø ÑÔ Ö ØÙÖ Ú ÐÙ Ø «Ö ÒØ Ö º Ð ÖÐÝ Ø ÔÔ Ö Ò Ó Ô ØØ ÖÒ Ò Ø Ö ÔÐÓØ Ô Ò ÓÒ Ø ÓÖ Ö Ò Ó Ø Ö º ÓÖ ÙÑ Ò ÜÔ ÖØ Ø Ø Ö ÓÖ Ó ÑÔÓÖØ Ò ØÓ ÐÛ Ý ÛÓÖ Û Ø ÓÒ Ü ÓÖ Ö Ò º ÓÖ Ø Ó ÑÔÐ Ø ÓÒ Ò Ø ÕÙ Ð Û Ö Ö ØÓ Ø ÔÖ ¹ Ø ÑÙÐÙ ¹Ú ÐÙ Ó Ò Ö Ø Ö Ø Ú ÐÙ Ö Ú Ø Ý ½ صº Ì ÔÓ Ø¹ Ø ÑÙÐÙ ¹Ú ÐÙ ÓÒ ÕÙ ÒØÐÝ ÐÐ ÓÒ Ú ÐÙ Ò Ö Ú Ø Ý ¾Ò µº Ï ÐÐ Ð Ó Ù Ø «Ö Ò ½ ص¹ËØ ½ ص Ò ÒÓØ Ø Ñ Ý Ø ÑÔµº Ò ÐÐÝ Û Ö ÒØ Ö Ø Ò Ø «Ö Ò ØÛ Ò Ø ÓÒ Ò Ø Ö Ø Ú ÐÙ Ø Ø Ö º Ì ÕÙ ÒØ ØÝ ÐÐ Ø Ö ÙÐ Ø ÓÒ Ø Ò ÒÓØ Ý Ö µº ÙÖ ÑÓÒ ØÖ Ø Ø ÒÓÖÑ Ð Ö Ø ÓÒ Ó Ø ÙÑ Ò Ó Ý ØÓ ÓÐ Ø ÑÙÐÙ Û ÐÐ Ø ÜÔ Ø ÝÑÑ ØÖ º Ì Ö Ö Ò ÐÝ Ö Ó Ò Þ Ø ÓÐÐÓÛ Ò ÓÚ Ö ÐÐ Ô ØØ ÖÒ Ö Ò ÝÑÑ ØÖ Ò ØÓÑ ÔÓ Ø ÓÒ Ú ÐÑÓ Ø ÕÙ Ð Ø ÑÔ Ö ØÙÖ Ú Ð¹ Ù º Ì Ù Ð Ó Ø Ö Ö ÙÐ Ø ÓÒ ÐÑÓ Ø Ó Ò º
13 37 St NW El1 El2 SH1 SH2 S1 S2 Aw1 Aw2 M1 M2 Si1 Si2 KH1 KH2 T1 T2 L1 L2 L3 L4 L5 L6 L7 L8 SD1 SD2 Thy Ste Mp1 Mp2 He1 He2 He3 He4 Sol Ma Le1 Le3 Gbl Pa1 Pa2 Int Da1 Da3 Da5 Da2 Da4 Da6 App UtP Ov1 Ov2 Ni1 Ni2 Is1 Is2 El3 El ÙÖ Ð Ø ÖÑÓ Ö Ñ Ì Ö ÙÐ Ø ÓÒ ÓÛ Ø Ò ÒÝ ØÓ ÒÖ ÖÓÑ ØÓÔ ØÓ ÓØØÓÑ Û Ð Ø Ö ÓÛ ÓÒÐÝ Ñ ÐÐ Ö ÙÐ Ø ÓÒ Ø Ö ÙÐ Ø ÓÒ Ú ÐÙ Ö ÖÓÙÒ ½ Æ Ã ÓÖ Ø ÙÔÔ Ö Ò ÐÓÛ Ö ØÓÑ Ö º ÅÓ Ø Ó Ø Ö ÙÐ Ø ÓÒ Ú ÐÙ Ö Ò Ø Ú ÓÐ Ø ÑÙÐÙ µ Ü ÔØ ÓÖ Ø Ò Ø Ø ÝÖÓ Ð Ò º Ì ½ Ø Ú ÐÙ Ó Ø Ö Ò Ø Ø ÓÖ Ü ÒØ Ø Ò Ò ÙÔÔ Ö Ò ÐÓÛ Ö ØÓÑ ÖÓÙÔ Ö ÐÓÛ Ø Ö Ö Ò Ð Ò º Ì Ö ÓÒ ÓÖ Ø Ó ÖÚ Ü Ð ÝÑÑ ØÖÝ Ò Ø ØÓÔ¹ ÓÛÒ Ô ØØ ÖÒ Ú Ð Ò Ø Ð ÊÌ Ö ÐÖ Ý Ñ ÒØ ÓÒ Ò Ù Ø ÓÒ ¾º½º ÓÒ ÕÙ Ò Ó Ø ÓÖ Ò Ñ ØÖ Ð ØÓ ÔÖÓØ Ø Ø Ö Ò Ò Ø Ñ Ð ÙÒØ ÓÒ Ù ØÓ ÓÓÐ Ò ½ Ø Ò ¾Ò Ú ÐÙ Ó Ø Ö Ö ÓÒÐÝ Ð ØÐÝ «Ö Ò º Ø Ø Ø ÝÖÓ Ð Ò Ö Ë ½ Ë ¾µ Ø Ö ÙÐ Ø ÓÒ ÔÓ Ø Ú º ÐÖ Ý Ñ ÒØ ÓÒ ÓÒ Ö Ø ÓÒ ØÓ ÓÐ Ø ÑÙÐÙ Ø ÒÖ Ó Ñ Ø ÓÐ Ø Ú ØÝ ÔÖÓ Ø Ø ÒÚÓÐÚ Ø ÓÖÑÓÒ ÔÖÓ Ù Ò Ø Ø ÝÖÓ Ð Ò º Ì Ö ÓÖ ÒÖ Ò Ñ Ø ÓÐ Ø Ú ØÝ Ý Ð Ö Ø Ú ØÝ Ó Ø Ð Ò Ò Ø Ù Û ÖÑ Ò ÙÔº Ì ØÖ ÙØ ÓÒ Ó Ø ½ Ø Ú ÐÙ ÓÙØ Ø Ö Ö Ò Ð Ò Ò Ñ ÒÐÝ Ò ØÓÑ Ö ÓÒ º Ï Ò ÜØ Ø ÐÓ Ö ÐÓÓ Ø Ø Ñ Ò Ú Ø ÓÒ ÖÓÑ ÒÓÖÑ Ð Ø ÖÑÓÖ ¹ ÙÐ Ø ÓÒº Ð ÖÐÝ Ò Ø ÖÑÓ Ö Ñ ÒØ ÖÔÖ Ø Ø ÓÒ Ø ÔÖ Ø ÑÔ Ö ØÙÖ Ö Ôº Ö ÙÐ Ø ÓÒ Ú ÐÙ Ö Ù º ÀÓÛ Ú Ö Ò Ø ÔÖ ÒØ Ù Ø ÓÒ Û ÓÙ ÓÒ Ø
14 ÕÙ Ð Ø Ø Ú ÔÖ ÒØ Ø ÓÒ Ó Ø ÑÓ Ø ÑÔÓÖØ ÒØ ÊÌ¹Ô ØØ ÖÒ Ò ÔÓ ØÔÓÒ ÑÓÖ ÕÙ ÒØ Ø Ø Ú Ö ÔØ ÓÒ ØÓ Ù Ø ÓÒ º½º Ì Ú Ø ÓÒ ÖÓÑ ÒÓÖÑ Ð ØÝ ÖÓÙ ÐÝ ÐÐ ÒØÓ ØÛÓ Ð ÐÓ Ð Ô ØØ ÖÒ Ø Ø ÒÚÓÐÚ ÓÒÐÝ ÓÒ Ö Ò Ô ØØ ÖÒ Ø Ø ÔÔÐÝ ØÓ ÖÓÙÔ Ó Ö ÓÖ Ú Ò Ø Û ÓÐ Ê̺ Ï Ø ÖØ Û Ø Ø ÜÔÐ Ò Ø ÓÒ Ó Ø «Ö ÒØ ÄÓ Ð Ô ØØ ÖÒ ¹Ö ÙÐ Ø ÓÒ Ø Ö Ú Ø ÓÒ Ø Ò ÓÖ ÓÒØÖ Ö Ø ÓÒ Ð Ñ Ò¹ Ò Ø Ø Ø Ò Ó Ø Ö ÙÐ Ø ÓÒ Ú ÐÙ Ø ÓÔÔÓ Ø Ó Ø ÜÔ Ø ÓÒ º ÓÖ ÑÓ Ø Ó Ø Ö ¹Ö ÙÐ Ø ÓÒ Ø Ö ÓÖ Ñ Ò Ö µ ¼ º º Ö Ø ÓÒ ØÓ Ø ÓÐ Ø ÑÙÐÙ Ø Ø ÑÔ Ö ØÙÖ ÒÖ º Ò Ü ÑÔÐ Ó ¹Ö ÙÐ Ø ÓÒ Ò Ò Ò ÙÖ Ø Ø Ö Ë ½ Ë ¾µ Ò Ø Ø Ö ÍØÈº Ø Ë ½ Ò Ë ¾ Ø Ö ÙÐ Ø ÓÒ Ú ÐÙ Ö Ò Ø Ú Û Ð Ø Ý ÓÙÐ ÖÓÙÒ Þ ÖÓ ÓÖ Ð ØÐÝ ÔÓ Ø Ú Ö µº Ø ÍØÈ Ø Ö ÙÐ Ø ÓÒ Ú ÐÙ ÔÔÖÓÜ Ñ Ø ÐÝ ¼ Æ Ã ÙØ ÙÔÔÓ ØÓ Ò Ø Ú º ÀÝÔÓÖ ÙÐ Ø ÓÒ Ö ÙÐ Ø ÓÒ Ú Ò Ø ÓÖÖ Ø Ò ÙØ Û Ø Ò ÓÐÙØ Ú ÐÙ Ò ØÓÓ Ñ Ðк Ò Ü ÑÔÐ Ö Ø Ö Ä½ Ò Ä¾ Ò ÙÖ º Ì ØÝÔ Ó Ý Ö ÙÐ Ø ÓÒ ÑÐ ÐÝ Ô ÓÚ Ö ÒØÓ Ê Ö ÙÐ Ø ÓÒ Ö ÒÓ Ö ÙÐ Ø ÓÒ Ø ÔÐ Ø ÐÐ ÐØ ÓÙ Ø ÙÔÔÓ ØÓº ÌÝÔ Ð Ü ÑÔÐ Ö Ø Ö Ä Ò Ä Ò ÙÖ º ÀÝÔ ÖÖ ÙÐ Ø ÓÒ Ö ÙÐ Ø ÓÒ Ú Ò Ø ÓÖÖ Ø Ò ÙØ Û Ø Ú ÐÙ Ò ØÓÓ º Ò Ü ÑÔÐ Ø Ö È ¾ Ò ÙÖ Û Ø Ö ÙÐ Ø ÓÒ Ú ÐÙ Ó ÔÔÖÓÜ Ñ Ø ÐÝ ¾ Æ Ãº ÝÑÑ ØÖÝ Ú Ø ÓÒ ÖÓÑ Ø Ò Ö Ð ÖÙÐ Ø Ø Ò ØÓÑ ÐÐÝ ÝÑÑ ØÖ Ö¹ ÓÙÐ Ü Ø ÐÑÓ Ø Ø Ñ Ø ÑÔ Ö ØÙÖ Ò Ö ÙÐ Ø ÓÒ Ú ÐÙ Ò¹ Ô Ò ÒØÐÝ Û Ø Ö Ø Ý Ö ÒÓÖÑ Ð ÓÖ Ô Ø ÓÐÓ Ðº Ì Ô ÒÓÑ ÒÓÒ Ð ÖÐÝ ÔÔ Ö Ø Ø Ð ÓÛ Ö Ð½ оµ ÓÖ ÓØ Ø ½ Ø Ò ¾Ò Ú Ð¹ Ù Ò ÙÖ º ÅÓÖ ÓÚ Ö Ø Ö Ð Ð µ ÓÛ Ø Ú ÓÖ ØÓÓ ß Ö ÐÐ Ø Ø Ð½ оµ ÕÙ Ð Ð Ð µ Ò Ø Ø Ø Ú ÐÙ Ó Ð Ð µ Ö Ø Ö ÙÐØ Ó ÓÒ Ñ ÙÖ Ñ ÒØ Ø Ð½ оµ ÓÖ ÓÒØÖÓÐ ÔÙÖÔÓ º ÀÓØ ÔÓØ ÓØ ÔÓØ Ö Ö Û Ø Ò ÓÙØ Ø Ò Ò ÐÝ ½ Ø Ò ¾Ò Ú ÐÙ ÓÑÔ Ö ØÓ Ø ËØ¹ Ö Û Ö Ø ½ Ø Ò ¾Ò Ú ÐÙ ÓÙÐ ÓÛ ÓÒÐÝ Ñ ÐÐ «Ö Ò º Ì ÐÓ Ð Ô ØØ ÖÒ Ù Ø Ð Ø Ñ Ý ÕÙ Ð ÙÖØ Ö Ù Ò ØØÖ ÙØ Ñ ÒØ ÓÒ ÖÐ Ö Ø Ø ÑÔ Ö ØÙÖ Ú ÐÙ Ø Ø Ö Ó ÒÓÖÑ Ð ÊÌ Ö ØÖ ÙØ ÓÙØ Ø Ö Ö Ò Ú ÐÙ ËØ ½ ص Ò Ô ÖØ ÙÐ Ö Û Ýº Ï Ð ÓÖ Ü ÑÔÐ Ø Ö ØÝÔ ÐÐÝ ÔÐ Ý Ø ÑÔ Ö ØÙÖ ÓÚ Ø Ö Ö Ò Ð Ò Ø Ú ÐÙ Ó Ø ØÓÖ Ó Ð ÖÐÝ Ð ÐÓÛ Øº Ì Ò Ø Ø ÒØÓ ¹ ÓÙÒØ Ô Ø ÓÐÓ Ð Ô ØØ ÖÒ Ñ Ý ÕÙ Ð Ù Ò Ø Ø Ú ÓØ Ò ÓÐ º ÊÓÙ ÐÝ Ô Ò Ø ØØÖ ÙØ Ò Ø Û Ø Ö Ø Ø ÑÔ Ö ØÙÖ Ú ÐÙ ÒÚÓÐÚ ÒØÓ Ø Ô ØØ ÖÒ Ð ÓÚ ÓÖ ÐÓÛ Ø Ö Ö Ò Ð Ò º Ì Ü Ø Ò Ø ÓÒ Ô Ò ÓÒ Ø Ô Ô Ø ÓÐÓ Ýº ½¼
15 37 St NW El1 El2 SH1 SH2 S1 S2 Aw1 Aw2 M1 M2 Si1 Si2 KH1 KH2 T1 T2 L1 L2 L3 L4 L5 L6 L7 L8 SD1 SD2 Thy Ste Mp1 Mp2 He1 He2 He3 He4 Sol Ma Le1 Le3 Gbl Pa1 Pa2 Int Da1 Da3 Da5 Da2 Da4 Da6 App UtP Ov1 Ov2 Ni1 Ni2 Is1 Is2 El3 El ÙÖ Ö Ð Ø ÖÑÓ Ö Ñ Ü ÑÔÐ ½ ÆÓÒ¹ÐÓ Ð Ô ØØ ÖÒ Ø Ú ÓÖ Ó Ø Ø ÑÔ Ö ØÙÖ Ø ÓÐ Ø Ö Ø ÜÔ ÖØ Ò Ê ¹ ÙÐ Ø ÓÒ Ì ÖÑÓ Ö Ô Ý Ú ÐÙ Ø Ø Ö ÙÐ Ø ÓÒ Ô ØØ ÖÒ ÔÔ Ö Ò Ò Ø Ö ÖÓÙÔ Ò Ò Ø Ð ½ ÓÖ Ú Ò Û Ø Ò Ð Ö Ö Ô ÖØ Ó Ø Ê̺ Ì Ö ÔÖ ¹ ÒØ Ø Ø Ø Ø Ò ÓÒ Ó Ò Ò Ù Ò Ú Ö Ð ÓÖ Ò Ò Ô Û Ýº ÁÒ Ø ÕÙ Ð Û Ö ÓÑ Ó Ø ÑÓÖ ÑÔÓÖØ ÒØ ÒÓÒ¹ÐÓ Ð Ö ÙÐ Ø ÓÒ Ô ØØ ÖÒ º Ê ÙÐ Ø ÓÒ ØÝÔ Ó Ø ÊÌ Ø ÒÓØ ÓÒ Ó ÝÔÓ¹ ÝÔ Ö¹ Ò Ö Ö ÙÐ Ø ÓÒ Ó Ð Ó Ü Ø Û Ò ÓÒ Ö Ò Ø ÓÑÔÐ Ø ÊÌ Ò Ø Ó ÓÒÐÝ ÓÒ Ö º Ò ÊÌ ÓÛ Ò ÝÔÓÖ ÙÐ Ø ÓÒ ÓÖ Ü ÑÔÐ ÑÔÐÝ ÓÛ ÝÔÓÖ ÙÐ Ø ÓÒ Ø Ø Ñ ÓÖ ØÝ Ó Ø Ö º Ì ÓØ Ö ÒÓØ ÓÒ Ö Ò Ñ Ð ÖÐݺ ÇÚ Ö¹À Ø Ò Ø Ô ØØ ÖÒ ÔÖ ÒØ Ò ÖØ Ò Ø Ó Ö Ø Ñ ÓÖ ØÝ Ó Ø Ñ Ù Ù ÐÐÝ ÑÓÖ Ø Ò ¼±µ ÔÓ ÓØ ½ Ø Ú ÐÙ ÓØ Ò ÙÒ Ö ØÓÓ Ò ØØÖ ÙØ Ö ÖÐ Ö Ò Ø ÔÖ ÒØ Ø ÓÒº Ì ÊÌ ÓÛÒ Ò ÙÖ ÔÐ Ý ÓÚ Ö¹ Ø Ò Ò Ø ÙÔÔ Ö Ò ÐÓÛ Ö ØÓÑ Ö ÖÓÙÔº Ó Ø ÓÒ Ø Ö Ø Ö ÓÑÔÐ Ü Ô ØØ ÖÒ ÐÐÝ ÓÒ Ø Ó Ø È Ó Ö ÓÒØ Ò Ò Ò Ö ÖÓÙÔ ÓÖ ÙÒ ÓÒ Ó Ò ØÓÑ ÐÐÝ Ö Ð Ø Ö ÖÓÙÔ Û Ø ¹ ÓÖ Ö Ö ÙÐ Ø ÓÒ Ú Ò Ò ÓÑÓ Ò ÓÙ ÐÝ Û Ø Ö Ô Ø ØÓ ½½
16 37 St NW El1 El2 SH1 SH2 S1 S2 Aw1 Aw2 M1 M2 Si1 Si2 KH1 KH2 T1 T2 L1 L2 L3 L4 L5 L6 L7 L8 SD1 SD2 Thy Ste Mp1 Mp2 He1 He2 He3 He4 Sol Ma Le1 Le3 Gbl Pa1 Pa2 Int Da1 Da3 Da5 Da2 Da4 Da6 App UtP Ov1 Ov2 Ni1 Ni2 Is1 Is2 El3 El ÙÖ Ö Ð Ø ÖÑÓ Ö Ñ Ü ÑÔÐ ¾ Ø ØØÖ ÙØ ÓÐ Ò ÓØ Ø ½ Ø Ú ÐÙ Ó Ø Ö ¾ È Ö ÓÑ Ø Ñ ÐÓÛ Ò ÓÑ Ø Ñ ÓÚ Ø Ö Ö Ò Ú ÐÙ ËØ ½ صº ÅÓÖ ÓÚ Ö ÓÖ Ö Ò Ø Ø È ÓÐÐÓÛ Ò Ø Ò ØÓÑÝ ÖÓÑ ØÓÔ ØÓ ÓØØÓÑ Ø Û Ø Ò ØÛ Ò ÓÐ Ò ÓØ Ý Ö ÙÐ Ø ÓÒ ÓÙÐ Ò ÖÐÝ ÐØ ÖÒ Ø Ò º Ü Ù Ø ÓÒ ÒØ ÐÐÝ Ø Ü Ù Ø ÓÒ Ô ØØ ÖÒ ÓÒ Ø Ó Ø È Ó Ò ØÓѹ ÐÐÝ Ö Ð Ø Ö Ù Ø Ø Ö µ ÓÖ Ú ÖÝ ¾ È Û Ö ¼ ÓÒ Ø ÒØ ØÝÔ ÐÐÝ Ñ ÐÐ Ö Ø Ò ½ ¾ Æ º Ì Ø È Ò Ø Ö ÓÑÔÐ Ø Ö ÖÓÙÔ ÓÖ ÙÒ ÓÒ Ó Ù º ÛÓÖ Ó Û ÖÒ Ò ÓÒ ÖÒ Ò Ø Ø ÖÑ Ò ØÓ Ø «Ö ÒØ Ô ØØ ÖÒ ¹ Ö Ò Ø ÙÖÖ ÒØ Ù Ø ÓÒ Ø Ø ÖÑ Ö ÒÓØ Ò Ö ÐÐÝ Ù ÑÓÒ Ø ÜÔ ÖØ ÔÔÐÝ Ò Ê ÙÐ Ø ÓÒ Ì ÖÑÓ Ö Ô Ýº Ì Ý Ö Ð Ø Ö ÐÐÝ ØÖ Ò Ð Ø ÖÓÑ Ø ÖÑ Ò Ø ÖÑ Ù Ò Ø Å ¹ÔÖÓ Ø Ø Ò ÖØ ÒÓ ÙÒ¹ Ø Ö ØĐÙØÞÙÒ Ò Ö Ê ÙÐ Ø ÓÒ Ø ÖÑÓ Ö Ô º ½¾
17 Ê ÙÐ Ø ÓÒ Ì ÖÑÓ Ö Ô Ý Ò ÙÞÞÝ ÄÓ Ì Ñ Ð ÒØ ÖÔÖ Ø Ø ÓÒ Ó ÊÌ ÓÖ ÒÓ Ø ÔÙÖÔÓ ÓÒ ÑÔ Ö ÖÙÐ ÜØÖ Ø ÖÓÑ ÐÓÒ ¹Ø ÖÑ ÜÔ Ö Ò Ó Ô Ð Ø Ò Ø Ð º Ì ÖÙÐ Ö ÒÓØ ÖÔ Ò Ø Ò Ó Ñ Ø Ñ Ø Ð Ø Ø Ñ ÒØº Ê Ø Ö Ø Ý Ó ÓÖ Ü ÑÔÐ Ô Ò ÓÒ ÓÒÐÝ Ú Ù ÐÝ Ò ÒÙÑ Ö Ð ÓÒ Ø ÒØ ÓÖ ÓÒ Ø Ú Ù Ð ÑÔÖ ÓÒ Ó ÖØ Ò Ô ØØ ÖÒ º ÙÖØ ÖÑÓÖ Ø ÔÖ ÒØ Ø Ö ÒÓ ÓÑÑÓÒÐÝ ÔØ Ø Ó ÒØ ÖÔÖ Ø Ø ÓÒ ÖÙÐ Ü Ø Ò ÑÓÒ ÊÌ ÜÔ ÖØ º ÁÒ Ø ÙÖÖ ÒØ Ø ÓÒ Ø ÓÛÒ ÓÛ ÙÞÞÝ ÄÓ Ò Ù ØÓ ÑÓ Ð Ø ÜÔ ÖØ³ Ø ÖÑÓ Ö Ñ ÒØ ÖÔÖ Ø Ø ÓÒ ÖÙÐ º ÙÖØ ÖÑÓÖ Ø ÜÔÐ Ò Ò Û Û Ý Ø Ó¹Ó Ø Ò ÙÞÞÝ ÖÙÐ Ò ØÙÖÒ Ò Ù Ù Ð Ò ÐÓ Ó Ò ÜÔ ÖØ ËÝ Ø Ñº ËÙ Ý Ø Ñ Ñ Ý ÙÔÔÓÖØ Ô Ý Ò Ò ÊÌ Ú ÐÙ Ø ÓÒ ÓÖ ÐÔ Ø Ñ ØÓ Ð ÖÒ Ø Ù Øº ÁØ Ò Ð Ó ÖÚ Ø Ó ÒÓÛÒ ÒØ ÖÔÖ Ø Ø ÓÒ ÖÙÐ Ò Ø Ù ÐÔ Ò Ø ÔÖÓ Ó Ø Ö Ö Ø Ð Ú ÐÙ Ø ÓÒº º½ Å Ð ÒØ ÖÔÖ Ø Ø ÓÒ Ó Ø ÖÑÓ Ö Ñ Ì Ñ Ð ÒØ ÖÔÖ Ø Ø ÓÒ Ö Ôº Ú ÐÙ Ø ÓÒ Ó Ò ÊÌ ÓÑÔÐ Ø ÔÖÓ Ø Ø ÒÚÓÐÚ Ø Ð Ø Ø ÓÐÐÓÛ Ò Ñ Ò Ø Ô Ò ÐÝ Ó Ò Ð Ö ÖÓÙÔ Û ØÝÔ Ó Ý Ö ÙÐ Ø ÓÒ ÓÙÖ Û Ø Ò Ò Ö ÖÓÙÔ Ò ØÓ Û ÜØ ÒØ ÓÑ Ò Ø ÓÒ Û Ö Ò Ö ÖÓÙÔ ÓÛ Ò ÒØ Ý Ö ÙÐ Ø ÓÒ Ö Ø Ö Ò ØÓÑ Ð ÓÖ ÙÒØ ÓÒ Ð Ö Ð Ø ÓÒ Ô ØÛ Ò Ø ÓÒ Ô ÙÓÙ Ö» Ö ÖÓÙÔ Ü Ø Ò ÐÓ Ð ÔÖÓÔ ÖØ Û Ø Ø Ò Ö Ð Ø Ò ÒÝ Ó Ø Ø ÖÑÓÖ ÙÐ Ø ÓÒ Ö Ø Ö ÓÚ Ö ÐÐ Ô ØØ ÖÒ Ü Ø Ò Ò Ø Ø ÖÑÓ Ö Ñ Ð Ø ÓÒ ººº Ó Ø ÊÌ Ù Ò ÓÑ Ö Ø ¹ Ô Ð Ø ÓÒ Ñ ÓÑ Ò Ò ÐÐ Ó ÖÚ Ô Ø ÓÐÓ º Ì ÖÓÙ Ú ÐÙ Ø ÓÒ Ñ Ò Ó ÓÙÖ Ö Ò Ô Ò Ò ÓÒ Ø Ô Ö¹ Ø ÙÐ Ö ÓÒ ÒÚ Ø Ø º Ë Ò Ø ÙØ ÓÖ Ó Ø ÔÖ ÒØ ÖØ Ð Ö ÒÓ Ô Ý Ò Ò Ó ÒÓØ Û ÒØ ØÓ ÖÙÒ Ø Ö Ó ÔÖÓÚ Ò Ò ÙÆ ÒØ ÓÖ Ú Ò ÛÖÓÒ Ò ÓÖÑ Ø ÓÒ Ø ÒØ Ö Ø Ö Ö ÓÒ Ò Ö ÖÖ ØÓ Ø ÓÙÖ º ÁÒ Ø Ó Ø Ô Ò ÒØÓ Ø Ø Ð Ó Ñ Ð ÊÌ ÒØ ÖÔÖ Ø Ø ÓÒ Û Ù Ø Ò ÐÝ Ó Ò Ð Ö ÖÓÙÔ ß Ø Ô ½ Ò Ø ÔÖ Ò Ñ ß ÙØ Ð Þ Ò Ô Ü ÑÔÐ ÖÓÑ Ö Ø Ò Ö ÒÓ º Ï Ð Ó ÔÖÓÚ Ò Ü ÑÔÐ ÓÖ Ø ÓÑ Ò Ø ÓÒ ÔÖÓ Ø Ô ¾µº ÀÓÛ Ú Ö ÓÑ Ò Ö Ð Ö Ñ Ö ÓÙØ Ø ÖÑÓ Ö Ñ Ú ÐÙ Ø ÓÒ ÓÙÐ Ú Ò ÓÖ Ò º Ê ÙÐ Ø ÓÒ Ì ÖÑÓ Ö Ô Ý Ñ ØÓ Ð Ý Ø ÖÑÓ Ö Ñ ÖÓÑ ÓÐ Ø ÔÓ ÒØ Ó Ú Û ÒÓØ Ó ÑÙ ÓÙ Ò ÓÒØÓ Ò Ð Ø ÑÔ Ö ØÙÖ Ú ÐÙ º Ì Ø Ö Ø Ò Ø ÓÖ Ó Ò Ð Ø ÓÒ Ñ º ÓÒ ÕÙ ÒØÐÝ Ø ÕÙ Ø ØÖ Ý ØÓ ÓÖÑÙÐ Ø Ø Ú ÐÙ Ø ÓÒ ÖÙÐ ÔÖ ÐÝ Û ÒØÙÖÒÑ Ø ÆÙÐØ ÓÖ Ò ÛÓÑ Ö ØÓ Ð ÖÒ Ê̹ ÒØ ÖÔÖ Ø Ø ÓÒº Ì ÖÙÐ Ø Ø Ö ÔÖ ÒØ Ò Ø ÓÐÐÓÛ Ò Ù Ø ÓÒ Ö ÕÙ ¹Ñ Ø Ñ ¹ Ø Ð Ú Ö ÓÒ Ó Ø ÖÙÐ Ù ÝÔ Ý Ò ÔÔÐÝ Ò Ê ÙÐ Ø ÓÒ Ì ÖÑÓ Ö Ô Ýº Ì Ý Û Ö Ö Ø Ò ÐÓ Û Ø Ù Ô Ý Ò Ò Ø Ö ÓÖ ÑÓ Ø Ð ÐÝ Ó ÒÓØ ÓÑÔÖ Ò Ø ÙÐÐ ÓÑÔÐ Ü ØÝ Ó Ø Ö Ð ÖÙÐ ÓÖ Ø Ð Ø ØÛÓ Ö ÓÒ Ö Ø Ø Ó Ø Ò ÆÙÐØ ÓÖ Ô Ð Ø ØÓ ÓÑ Û Ö Ó Ø Ñ Ø Ó ÙØ Ð Þ ½
18 ØÓ Ô Ö ÓÖÑ ÖØ Ò Ñ ÒØ Ð Ð Ø ÓÒ» Ú ÐÙ Ø ÓÒ Ø º Ë ÓÒ Ø ÐÓ ØÛ Ò ÙÑ Ò ÛÓÖ Ò Ò Ò «Ö ÒØ Ñ Ø Ñ Ø Ò Ñ Ò ØÝÔ ÐÐÝ Ù«Ö ÖÓÑ ÙÒÖ Ó Ò Þ Ñ ÙÒ Ö Ø Ò Ò º ÅÓÖ ÓÚ Ö Ø ÒÓØ Ð Ö Ø Ø Ø ÖÙÐ Ö ÔÖ ÒØ Ø ÓÑÑÓÒ Ò ÑÓÒ Ø Ú Ö ÓÙ Ô Ð Ø Ò ÊÌ º ÇÒ Ñ Û Ò Ö Ø Ò Ò ÜÔ ÖØ ËÝ Ø Ñ ÓÖ ÒÓ ÙÔÔÓÖØ Ø Ö ÓÖ ØÓ ÔÖÓÚ ØÓÓÐ Ø Ø ÐÔ ØÓ Ü ÓÑÑÓÒ ÒÓÛÐ º Ì Ú ÐÙ Ø ÓÒ ÖÙÐ Ø Ñ ÐÚ Ô ÖØ ÐÐÝ Ô Ò ÓÒ Ø Ò Ó ÓÒ Û ÒØ ØÓ ÒÚ Ø Ø º Ð ÖÐÝ Ø Ö ÓÑ ÓÚ ÖÐ Ô ØÛ Ò Ø Ø Ó ÖÙÐ ÓÖ «Ö ÒØ º ÓÖ Ü ÑÔÐ Ø ÐÝÑÔ Ø Ö Ä½¹ Ö ÒÚÓÐÚ Ò Ø ÒÓ Ó Ú Ö ÓÙ ØÝÔ Ó Ò Ö Û Ø Ñ Ð Ö ÖÙÐ º ÁÒ Ø ÕÙ Ð Û Ö ÜÐÙ Ú ÐÝ ÓÒ Ö Ò Ñ Ð Ö Ø Ò Öº Ì Ú ÒØÙ Ð Ö ÙÐØ Ó Ø Ú ÐÙ Ø ÓÒ Ó Ò ÊÌ Ò Ø ØÙ Ø ÓÒ Ù Ò Ø ÖØ Ð Ö Ð Ê µ ÓÖ Ø ÔÖ Ò Ó Ö Ø Ò Öº Ï Ø Ò Ø Å ¹ÔÖÓ Ø Ñ ÒØ ÓÒ ÖÐ Ö Ü Ö Ð ÒÙÑ Ö ÖÓÑ ½ ØÓ Û Ø ÒÖ Ò Ö Ö Ù º Ì Ù Ê ½ Ñ Ò Ø Ø ÒÓ Ô Ø ÓÐÓ Ð Ô ØØ ÖÒ ÔÓ ÒØ Ò ØÓ Ö Ø Ò Ö Ò Ó ÖÚ Ò Ø ÊÌ Û Ð Ê ÜÔÖ Ø ÔÖ Ò Ó Ú Ö ÓÙ ØÖÓÒ ÐÝ ÔÖÓÒÓÙÒ Ö Ø Ò Ö Ô ØØ ÖÒ º º¾ Ú ÐÙ Ø ÓÒ Ó Ø Ì ÓÖ Ü ÖÓÙÔ ß Ò Ü ÑÔÐ Ò Ü ÑÔÐ Ó Ø ÐÓ Ð Ú ÐÙ Ø ÓÒ ÖÙÐ ÔÔÐ ØÓ Ò Ð Ö ÖÓÙÔ Û Ö Ø Ø Ó ÖÙÐ Ù ØÓ Ú ÐÙ Ø Ô ÖØ Ó Ø Ì ÓÖ Ü Ö ÖÓÙÔº Ì Ô ÖØ ÓÒ Ø Ó Ø Ö ËØ ÖÒÙÑ ËØ µ Ò Ø Ü Ð ÝÑÑ ØÖ ÅÙ ÙÐÙ Ô ØÓÖ Ð Ö ÅÔ½ ÅÔ¾µº ÓÖ Ö ÓÒ Ó Ö Ú ØÝÛ Ø ËØ ÅÔ½ ÅÔ¾ ÓÖ Ø Ö ÖÓÙÔº Ì ÖÙÐ Ø Ñ ÐÚ Ò Ú ÒØÓ Ø Ö ÖÓÙÔ ÓÖ Ò ØÓ Ø Ô ¹ ÕÙ Ð Ø Ó Ø Ö ¾ Ø Ý Ö Ö ØÓº ÓÙÖØ Ø Ó ÖÙÐ Ð Û Ø Ø ÓÑ Ò Ø ÓÒ Ó Ø Ó ÖÚ Ö ÙÐ Ø ÓÒ Ô Ø ÓÐÓ º ÓÐÙØ Ú ÐÙ Ö Ø «Ö Ò Ø ÑÔµ ½ ص ËØ ½ ص ¾ ØÛ Ò Ø ½ Ø Ø ÑÔ Ö ØÙÖ Ú ÐÙ Ò Ø ½ Ø Ø ÑÔ Ö ØÙÖ Ú ÐÙ Ø Ø ËØ¹ Ö ÓÖ Ö Ö Ò Ð Ò µ Ö Ú ÐÙ Ø º Ì ÒÓÖÑ Ð Ö Ò ÓÖ Ó Ø Ø Ö Ö ÔÔÖÓÜ Ñ Ø ÐÝ ÓÚ Ö Ý Ø ÒØ ÖÚ Ð ¼ à ¼ ¾ à º Î ÐÙ ÓÚ ¼ ¾ Ã Ò ÐÓÛ ¼ Ã Ö ÓÒ Ö Ô Ø ÓÐÓ Ð Ò Ö Ö ÖÖ ØÓ ÓØ Ö Ôº ÓÐ Ö º Ì Ö Ó Ô Ø ÓÐÓ Ý Ô Ò ÓÒ ÓÛ ÑÙ Ø ØÙ Ð Ú ÐÙ Ü Ö Ôº Ð ÐÓÛ Ø Ú Ò ÓÙÒ º Ì Ñ Ü Ñ Ð Ö Ó Ô Ø ÓÐÓ Ý Ö Ø ¼ Ã Ö Ôº ½ ¾ ú Ê ÙÐ Ø ÓÒ Ö Ö µ ÓÖ ¾ Ø Ò ÒØÓ ÓÙÒØº Ò Ò Ô Ò ÒØÓ Ø Ô ÖØ ÙÐ Ö Ö ÓÒ ÒÓÖÑ Ð Ö ÙÐ Ø ÓÒ Ö Ò Ó ¼ à ¼ à º ÀÝÔ Ö Ö ÙÐ Ø ÓÒ Ø Ò Ø ÔÔÖÓÜ Ñ Ø ÐÝ ½ ½ Ã Û Ø Ò ÒÖ Ò ¹ Ö Ó Ô Ø ÓÐÓ Ý Ø ÐÓÛ Ö Ø Ú ÐÙ Ö Ø Ñ Ü ÑÙÑ ØØ Ò Ø ÔÔÖÓÜ Ñ Ø ÐÝ ½ ú Ê Ò ¹Ö ÙÐ Ø ÓÒ Ö ÒÓØ ØÖ Ø Ô Ö Ø Ðݺ ÁÒ Ø ÐÐ Ú ÐÙ ÓÚ ÔÔÖÓÜ Ñ Ø ÐÝ ¼ ¾ Ã Ö Ð Ú Ø ÓÒ ÖÓÑ ÒÓÖÑ Ð Ú ÓÖ Ø ÛÓÖ Ø Ò Ú ÐÙ ÓÚ ¼Ãº ÝÑÑ ØÖ Ø ÔÖÓÔ ÖØÝ ÒÚÓÐÚ Ø Ú ÐÙ ½ Ø ÅÔ½ ½ ص ÅÔ¾ ½ ص ¾Ò ÅÔ½ ¾Ò µ ÅÔ¾ ¾Ò µ Ø Ø ÅÙ ÙÐ Ô ØÓÖ Ð Ö Ò Ø Ò Ó Ø ÔÓØ ÒØ Ð ÝÑÑ ØÖݺ Ì Ú ÐÙ Ó ½ Ø ¾Ò Ö ÙÔÔÓ ØÓ Ð ÐÓÛ¼ Ã ÓØ ÖÛ Ô Ø ÓÐÓ Ð ÝÑÑ ØÖÝ ÔÖ ÒØ Ô Ò Ò ÓÒ ½
19 Ø ÑÓÙÒØ Ó Ú Ø ÓÒ ÖÓÑ ÒÓÖÑ Ð ØÝ Ò Ö Ò Ø Ñ Ü Ñ Ð Ö Ø ½ ¾ ú ÓÑ Ò Ø ÓÒ ½º Ì Ú ÓÖ Ó Ø Ø Ö Ö ¾ Û Ø Ö Ô Ø ØÓ Ø Ö ÓÐÙØ Ø ÑÔ Ö ØÙÖ ÙÑÑ Ö Þ Ò ÓÒ Ú ÐÙ Ø ÓÒ ØÖ Ø Ò Ø Ö ÓÐÐÓÛ Ø ØÛÓ ÅÙ ÙÐÙ Ô ØÓÖ Ð Ö «Ö Ò Ø Ö Ú ÓÖ ÓÒÐÝ Ø ÛÓÖ Ø Ø Ò ÒØÓ Ø Ö Òº Ì Ú ÐÙ Ø ÓÒ Ó Ø Ö ËØ Ò Ø Ø Ó ÅÔ½ ÅÔ¾ Ö Ó ÕÙ Ð ÑÔÓÖØ Ò º Ì Ñ ÔÖÓ ÙÖ ÔÔÐ ØÓ Ø Ö ÙÐ Ø ÓÒ Ú ÓÖº ¾º È Ø ÓÐÓ Ò Ö ÙÐ Ø ÓÒ Ö ÓÒ Ö Ò ÑÓÖ Ö Ð Ú ÒØ Ø Ò Ô Ø ÓÐÓ Ò Ø ÓÐÙØ Ø ÑÔ Ö ØÙÖ Ú ÐÙ º º Ì ØÓØ Ð ÝÑÑ ØÖÝ Ò Ø ÅÙ ÙÐÙ Ô ØÓÖ Ð Ö Ú Ò Ý Ø Ñ Ò Ó Ø ÝÑÑ ØÖ Ò Ø Ò Ð Ö º Ç ÓÙÖ Ø Ü ÑÔÐ Ù Ø ÔÖ ÒØ Ö Ø Ö ÑÔÐ Ò Ø Ø Ø ÒÚÓÐÚ ÓÒÐÝ Û Ö º ÁÒ Ò Ö Ð Ö ÖÓÙÔ Ò Ò ÒØÐÝ Ð Ö Ö Ø Ò ÓÒ Ò Ò Ø Ð ½º ÅÓÖ ÓÚ Ö Ø Ü ÑÔÐ Ó ÒÓØ ÓÛ Ø ÒØ ÖÓÒÒ Ø ÓÒ ØÛ Ò Ø «Ö ÒØ Ö ÖÓÙÔ º ÀÓÛ Ú Ö Ø Ñ Ò ÔÖ Ò ÔÐ Ó ÊÌ ÒØ ÖÔÖ Ø Ø ÓÒ Ö Ð ÖÐÝ Ú Ð ÐÖ Ý ÓÒ Ø ÔÖ ÒØ Ð Ú Ðº º ÙÞÞÝ Ú ÐÙ Ø ÓÒ ÖÙÐ ÁÒ Ø ÕÙ Ð Ø Ö ÔÖ ÒØ Ø ÓÒ Ó Ê̹ ÒØ ÖÔÖ Ø Ø ÓÒ ÖÙÐ Ò Ø ÖÑ Ó ÙÞÞÝ ÄÓ ÑÓÒ ØÖ Ø ÙØ Ð Þ Ò Ø Ü ÑÔÐ Ú Ò Ò Ù Ø ÓÒ º¾º ÐÐ Ö Ñ ÔÖ ÒØ Ò Ø Ù Ø ÓÒ Û Ö ÔÖÓ Ù Ù Ò Ø ÙÞÞÝ ÄÓ ÌÓÓÐ ÓÜ Ú Ö ÓÒ ¾º¼ Ó Å ÌÄ Ú Ö ÓÒ º Å Ø ÏÓÖ ÁÒº ÓÖ Ø ÓÒÚ Ò Ò Ó Ø Ö Ö Û Ø ÖØ Ý Ö ÐÐ Ò ÓÑ ÒÓØ ÓÒ Ó ÙÞÞÝ ÄÓ ÙÞÞÝ Ø Ø Ö Ô Ó Ñ Ô ¼ ½ º º Ü Üµ ¾ ¼ ½ Ü ¾ º Ì Ø Ö ÕÙ ÒØÐÝ ÐÐ Ø ÙÒ Ú Ö Ò Ø Ñ Ñ Ö Ô ÙÒØ ÓÒ Ó º ÙÞÞÝ Ø ÓÙÖ Ò ØÙÖ ÐÐÝ Û Ò ÑÓ Ð Ò ÔÖÓÔ ÖØ Ø Ø Ö ÒÓØ ÖÔÐÝ Ò Ð ÓÖ Ü ÑÔÐ Ø ÔÖÓÔ ÖØÝ Ó Ò Ø ÐÐ Ó ÙÑ Ò Ò º ÁÒ Ø Ü ÑÔÐ Ø ÙÒ Ú Ö ÓÒ Ø Ó ÐÐ ÙÑ Ò Ò Ò Ø Ú ÐÙ Ü Ñ Ý ÒØ ÖÔÖ Ø Ø Ø ÐÐÒ Ó Ø Ò Ú Ù Ð Ü ¾ º ÁØ Ö ÕÙ ÒØÐÝ Ù ÙÐ ØÓ Ø Ò Ó Ü ØÖÙØ Ú ÐÙ ÓÖ Ø Ø Ñ ÒØ Ñ ÓÙØ Ü Û Ö Ü ¼ Ò Ü ½ Ö ÒØ ÖÔÖ Ø Ð Ö Ôº ØÖÙ º Ì Ø Ø Ñ ÒØ Ø Ð Ô Ò ÓÒ Ø ÙÞÞÝ Ø ß Ò ÓÙÖ Ü ÑÔÐ Ø ÓÑ Ø Ò Ð Ø Ô Ö ÓÒ Ü Ø ÐÐ º Ì Ò ÖÝ Ú Ö Ð Ó ÈÖ Ø ÄÓ Ö Ö ÔÐ Ý Ó¹ ÐÐ Ð Ò Ù ¹ Ø Ú Ö Ð ÄÎ µ Ò ÙÞÞÝ ÄÓ Ð Ò Ù Ø Ú Ö Ð Î Ø Ú ÐÙ Ò Ò Ø Ø Ä Û Ó Ð Ñ ÒØ Ö ÙÞÞÝ Ø Ø Ð Ñ ÒØ Ö ÐÐ Ð Ò Ù ¹ Ø Ú ÐÙ º Ê Ñ Ö Ø Ò Ø ÓÒ Ó Ð Ò Ù Ø Ú Ö Ð Ù Ø ÔÖ ÒØ ÑÔÐ Ú Ö ÓÒ Ó Ø Ù Ù Ð ÓÒ ºµ Ð ÖÐÝ Û Ò Ö ÔÐ Ò Ò ÖÝ Û Ø Ð Ò Ù Ø Ú Ö Ð ÓÒ ØÓ Ö Ò Ø Ñ Ò Ò Ó Ø ÐÓ Ð ÓÔ Ö Ø ÓÒ Ò ÓÖ Ò Ø ÓÒ Ò Ñ¹ ÔÐ º Á ÓÖ Ü ÑÔÐ Î ½ Î ¾ Ö Ð Ò Ù Ø Ú Ö Ð Ò Ä ½ Ä ¾ ÔÓ Ð Ú ÐÙ Ó Ø Ú Ö Ð Ø Ò Ø Ø Ø Ñ ÒØ Î ½ Ä ½ µ µ Î ¾ Ä ¾ µ Ý Ð ÙÞÞÝ Ø Ò Ø Ó ÓÒ Ó Ø Ú ÐÙ ØÖÙ ÓÖ Ð º Ì Ñ Ø Ó Ø Ø ÔÖÓ Ù Ø ÙÞÞÝ Ø Ú Ò Ø ÓÒ Ó Ä ½ Ò Ä ¾ ÐÐ Ø ÑÔÐ Ø ÓÒ Ñ Ø Ó º ÁÒ ½
20 ÓÒØÖ Ø ØÓ ÈÖ Ø ÄÓ Ø ÑÔÐ Ø ÓÒ Ñ Ø Ó Û ÐÐ Ø Ò Ø ÓÒ Ó ÐÐ ÓØ Ö ÐÓ Ð ÓÔ Ö Ø ÓÒ ÒÓØ ÙÒ ÕÙ ÙØ Ò ÓÓ Ò Ù Ø ØÓ ÖØ Ò Ü ÓÑ Ø ÓÒ Ø ÓÒ º Ì Ó Ø Ð Ô Ò ÓÒ Ø Ô ÔÔÐ Ø ÓÒ ÓÒ Ò Ñ Ò º Ì Ú ÐÙ Ø ÓÒ Ó ÙÞÞÝ ÄÓ Ø Ø Ñ ÒØ ØÝÔ ÐÐÝ Ý Ð ÙÞÞÝ Ø Ö ÙÐØº ÇÒ Ø ÓØ Ö Ò Ò ÔÔÐ Ø ÓÒ ÓÒ Û ÒØ ØÓ Ø Ò Ð ÒÙÑ Öº Ì ÒÙÑ Ö Ö Ú ÖÓÑ Ø Ú Ò ÙÞÞÝ Ø Ý ÔÔÐ Ø ÓÒ Ó Ø ÙÞÞ Ø ÓÒ Ñ Ø Ó Û ÓÙÐ ÓÖ Ü ÑÔÐ ÓÒ Ø Ó Ò Ò Ø ÓÖ Ò Ø Ó Ø ÒØÖÓ ØÓ ÙÞÞÝ Ø º Ò ÐÐÝ Û Ú ØÓÑ ÒØ ÓÒ Ö Ø ÓÒ Ó ÙÞÞÝ Ø Ò Ý Ø Ñ Ó ÙÞÞÝ ÑÔÐ Ø ÓÒ Ø ÓÒÐÙ ÓÒ Ô ÖØ Ö Ø µ Ó Ø ÑÔÐ Ø ÓÒ Ý Ð Ú Ö ¹ ÓÙ ÙÞÞÝ Ø Ø Ø ÑÙ Ø Ñ Ö ÓÖ Ö Ø ØÓ Ó Ø Ò Ø ÓÚ Ö ÐÐ ÓÒÐÙ¹ ÓÒ Ó Ø Ý Ø Ñ ß ÙÞÞÝ Ø ØÓÓº ÇÒ Ó Ø ÚÓÖ Ø Ñ Ø Ó ØÓ Ø ÖÑ Ò Ø Ö Ø ÓÒ Ó ÙÞÞÝ Ø ØÓ Ø Ø Ö ÔÓ ÒØÛ Ñ Ü ÑÙѺ ÁÒ ÓÖ Ö ØÓ ØÖ Ò Ð Ø Ø Ê̹ ÒØ ÖÔÖ Ø Ø ÓÒ ÖÙÐ Ó Ù Ø ÓÒ º¾ ÒØÓ ÙÞÞÝ ÄÓ Û Ö Ø Ú ØÓ Ü Ø Ó Ð Ò Ù Ø Ú Ö Ð ÙÆ ÒØ ØÓ Ö Ø Ø ÖÑÓÖ ÙÐ Ø ÓÒ Ú ÓÖº ÁÒ Ø ÔÖ ÒØ ØÓ Ö Ø Ú ÓÖ Ó Ø ÓÐÙØ Ø ÑÔ Ö ØÙÖ Ø ÜÔ ÖØ Ö Ù Ò Ø Ø ÖÑ ÒÓÐÓ Ý ÓÐ ÒÓÖÑ Ð Ò ÓØ Û Ð ÓÖ Ø Ö ÙÐ Ø ÓÒ Ø ÜÔÖ ÓÒ ÝÔ Ö ÒÓÖ¹ Ñ Ð Ò Ô Ö ÓÜ ÔÔÐÝ Û Ö Ô Ö ÓÜ Ö ÙÐ Ø ÓÒ ÓÑÔÖ Ò Ö Ò ¹Ö ÙÐ Ø ÓÒ ß Ù Ø ÓÒ ¾º º Ï Ø Ö ÓÖ ÒØÖÓ Ù ØÛÓ Ð Ò Ù Ø Ú Ö Ð Ì Ò Ê Ø Ò Ú ÐÙ Ò Ø Ø Ì ÓÐ ÆÓÖÑ Ð ÀÓØ Ò Ê ÀÝÔ Ö ÆÓÖÑ Ð È Ö ÓÜ ½µ Ö Ô Ø Ú Ðݺ Ì Ö Ø ÓÐÙØ Ø ÑÔ Ö ØÙÖ Ú ÓÖ Ò Ê Ø Ö ÙÐ ¹ Ø ÓÒº ÆÓØ Ø Ø Ø Ð Ò Ù Ø Ú ÐÙ ÆÓÖÑ Ð Ò ØØ Ò Ý Ì Ò Ê ÙØ Ø Ó ÒÓØ Ò Ö ÐÝ Ñ Ò Ø Ø Ø Ú ÐÙ ÆÓÖÑ Ð Ò ÓØ Ú Ò Ý Ø Ñ ÙÞÞÝ Øº ÖÓÑ Ñ Ø Ñ Ø Ð ÔÓ ÒØ Ó Ú Û Û ÓÙÐ Ø Ö ¹ ÓÖ Ù «Ö ÒØ Ú Ö Ð Ò Ñ ÙØ ÓÖ Ø Ó Ö Ð ØÝ Ó Ø ÙÞÞÝ Ø Ø Ñ ÒØ Û Ô Ø Ñ Ø Ñ Ø ÐÐÝ Ñ ÙÓÙ Ú Ö ÓÒº Æ ÜØ Ø Ó ÖÚ Ö Ó Ô Ø ÓÐÓ Ý ÑÓ ÐÐ Ù Ò Ø Ð Ò Ù Ø Ú Ö ¹ Ð È Ì ÓÐÙØ Ø ÑÔ Ö ØÙÖ µ Ò È Ê Ö ÙÐ Ø ÓÒµ Ø Ò Ø Ð Ò Ù Ø Ú ÐÙ ÈÌ Æ Ø Ú ÈÓ Ø Ú ÈÊ Æ Ø Ú ËÙ Ô ÓÙ ÈÓ Ø Ú ¾µ Ì Ñ Ñ Ö Ô ÙÒØ ÓÒ Ó Ø Ð Ò Ù Ø Ú ÐÙ ÔÔ Ö Ò Ò ½µ Ò ¾µ Ö Ó Ò ØÓ ØÖ Ô ÞÓ Ð Ø ÔÖÓÚ Ø ÑÔÐ Ø Û Ý ØÓ ØÖ Ø Ø Ó Ô ÖØ Ó Ø ÜÔ ÖØ ÒÓÛÐ ÓÒ Ø Ò Ó Ö Ø Ð ÓÙÒ ÓÖ Ø ÑÔ Ö ØÙÖ Ò Ö ÙÐ Ø ÓÒ º Ì ÙÒ Ú Ö Ó Ø ÙÞÞÝ Ø Ò ÈÌ Ò ÈÊ Ö ÓÑÔ Ø ÒØ ÖÚ Ð ß ÓÖ Ü ÑÔÐ Ø ÒØ ÖÚ Ð ½ ¼ ½ Ê Ò Ø Ð ØØ Ö º ÇÒ Ñ ÙÖ Ñ ÒØ Ð ÓÙØ Ø Ö Ô Ø Ú ÒØ ÖÚ Ð Ø Ñ ÔÔ ØÓ Ø Ò Ö Ø ÒØ ÖÚ Ð ÓÖ Öº Ì ÔÖÓ ÙÖ Ö Ø Ø Ø Ø Ø ÖÓÑ Ñ Ð ÔÓ ÒØ Ó Ú Û Ø Ö ÒÓ «Ö Ò ÒÝÑÓÖ µ ØÛ Ò ÓÖ Ü ÑÔÐ ÝÔ ÖÖ ÙÐ Ø ÓÒ Ó ½ à ÓÖ ÝÔ ÖÖ ÙÐ Ø ÓÒ Ó ¾ ½Ãº Ì ÙÞÞÝ Ø Ò ÈÊ Ö Ô Ø Ò ÙÖ º ÁÒ Ø ÖÑ Ó ÙÞÞÝ ÄÓ Ø Ê̹ ÒØ ÖÔÖ Ø Ø ÓÒ ÖÙÐ ÓÖ ÓÐÙØ Ø ÑÔ Ö ØÙÖ Ò Ö ÙÐ Ø ÓÒ Ø Ø Ø ÓÖ Ü Ö ¾ ÒÓÛ Ö ÓÐÐÓÛ ½
21 Normal Pathology / P R Hyper Paradox Regulation (K) / R ÙÖ Ñ Ñ Ö Ô ÙÒØ ÓÒ ÓÖ Ø Ú ÐÙ Ó Ê ÓÐÙØ Ø ÑÔ Ö ØÙÖ Á Ì ÓÐ µ Ì Ò È Ì ÈÓ Ø Ú µ Á Ì ÆÓÖÑ Ðµ Ì Ò È Ì Æ Ø Ú µ Á Ì ÀÓØµ Ì Ò È Ì ÈÓ Ø Ú µ Ê ÙÐ Ø ÓÒ Á Ê ÀÝÔ Öµ Ì Ò È Ê ËÙ Ô ÓÙ µ Á Ê ÆÓÖÑ Ðµ Ì Ò È Ê Æ Ø Ú µ Á Ê È Ö Óܵ Ì Ò È Ê ÈÓ Ø Ú µ Ø ÔÖ ÒØ ÒÓ ÜÔ ÖØ ÒÓÛÐ Ò Ø Ø Ø Ò Ø Ò Ø ÓÒ Ó Ø ÙÞÞÝ ÄÓ ÓÔ Ö ØÓÖ ÓÒ ÓÙÐ Ú Ø ÖÓÑ ÓÑÑÓÒÐÝ Ù Ñ Ø Ó º Ì Ö ÓÖ Ø ÓÐÐÓÛ Ò ØØ Ò Ù ÁÑÔÐ Ø ÓÒ Ì Ñ Ñ Ö Ô ÙÒØ ÓÒ Ó Ø ÓÒÐÙ ÓÒ ÙØ Ó«Ø Ø ÙÞÞÝ Ú ÐÙ ÓÖÖ ÔÓÒ Ò ØÓ Ø ÒÔÙØ Ú ÐÙ ß Ó¹ ÐÐ Ñ Ò ÑÙÑ Ñ Ø Ó º Ö Ø ÓÒ Å Ü ÑÙÑ Ó Ø ÒÚÓÐÚ Ñ Ñ Ö Ô ÙÒØ ÓÒ º ÙÞÞ Ø ÓÒ ÇÖ Ò Ø Ó Ø ÒØÖÓ º Ì Ú ÓÖ Ó ÐÓ Ó ÖÙÐ Ð ÓÖ Ü ÑÔÐ Ø ÓÒ Ú ÐÙ Ø Ò Ø Ö Ù¹ Ð Ø ÓÒ Ó ÖÚ Ø Ò Ö ¾ Ò Ö ÔÖ ÒØ Ý Ö Ô Ò Ø ÙÒØ ÓÒ ½ ¼ ½ ¼ ½ Ø Ø Ò ØÓ Ö ÙÐ Ø ÓÒ Ú ÐÙ Ó Ê Ø Ö Ó Ô Ø ÓÐÓ Ý È Ê Ø ÖÑ Ò Ý Ö Ø Ò Ò ÙÞÞ Ý Ò Ø ÙÞÞÝ Ø Ö ÙÐØ¹ Ò ÖÓÑ Ø Ø Ö Ö ÙÐ Ø ÓÒ ÖÙÐ º Ì ÙÒØ ÓÒ ÔÐ Ý Ò ÙÖ º Ì Ö Ø Ò Ó ÝÑÑ ØÖÝ Ø Ø ÅÙ ÙÐÙ Ô ØÓÖ Ð Ö ÅÔ½ Ò ÅÔ¾ Ô Ö ÓÖÑ Ý Ú ÐÙ Ø Ò Ù Ø ÐÝ Ò ØÖ Ô ÞÓ Ð ÙÒØ ÓÒ È Ø Ø ØÛÓ Ó ÖÚ ÓÐÙØ Ø ÑÔ Ö ØÙÖ «Ö Ò ½ Ø Ò ¾Ò ØÛ Ò Ø Ñ ÙÖ ¹ Ñ ÒØ Ø ÅÔ½ Ò ÅÔ¾º ÓÖÑ ÐÐÝ Ø ÝÑÑ ØÖÝ Ú ÐÙ Ø Ù Ò Ò ÄÎ Û Ø ½
22 Pathology / P R Regulation (K) / R ÙÖ Ö Ó Ô Ø ÓÐÓ Ý ÓÖ Ø Ö ÙÐ Ø ÓÒ ÓÒÐÝ ÓÒ Ð Ò Ù Ø Ú ÐÙ ÓÒ ÕÙ ÒØÐÝ Ø ÄÎ Ò Ø Ñ Ñ Ö Ô ÙÒØ ÓÒ ¹ Ö Ò Ø Ò Ð Ú ÐÙ Ö ÒØ Ò ÒÓØ Û Ø È º Ì ÙÒØ ÓÒ ÓÛÒ Ò ÙÖ ½¼º Ú ÒØÙ ÐÐÝ Û Ú ØÓ Ø ÖÑ Ò Ñ Ø Ó ØÓ ÓÑ Ò Ø Ú Ö ÓÙ Ú ÐÙ Ø ÓÒ Ö ÙÐØ Ø Ø Û Ó Ø Ò Ý ÔÔÐÝ Ò Ø ÖÙÐ Ò Ó Ö Ø Ø Ö Ö Ó Ô Ø ÓÐÓ Ý È Ì ÅÔ½µ È Ì ÅÔ¾µ È Ì ËØ µ ÓÖ Ø ÓÐÙØ Ø ÑÔ Ö ØÙÖ Ø Ø Ö Ö Ó Ô Ø ÓÐÓ Ý È Ê ÅÔ½µ È Ê ÅÔ¾µ È Ê ËØ µ ÓÖ Ø Ö ÙÐ Ø ÓÒ Ò Ø Ö Ó ÝÑÑ ØÖÝ È ½ Ø µ È ¾Ò µº Ì ÔÖÓ ÙÖ Ö Ò Ù ¹ Ø ÓÒ º¾ ØÓ ÓÑ Ò Ø Ú ÐÙ ÖÓÙ Ø ÒØÓ Ø ÓÐÐÓÛ Ò Ñ Ø Ñ Ø Ð ÓÖÑ È Ø ÖÒÙÑ ¼ È Ì ËØ µ ¼ È Ê ËØ µ È ÑÙ Ô ¼ È Ì ÅÔ µ ¼ È Ê ÅÔ µ ½ ¾ È ÝÑÑ ØÖÝ ¾ È ½ ½ Ø µ È ¾Ò µµ È Ø ÓÖ Ü Ñ Ò È Ø ÖÒÙÑ Ñ Ü È ½ ÑÙ Ô È¾ ÑÙ Ô µ È ÝÑÑ ØÖÝ µ ½µ Û Ö Ø Ú ÐÙ È Ø ÖÒÙÑ Ò È ÑÙ Ô ½ ¾ ÒÓØ Ø ØÓØ Ð ÓÖ ÓÖ Ø ËØ ÖÒÙÑ Ö Ôº ÅÙ ÙÐÙ Ô ØÓÖ Ð Ö Û Ø Ö Ô Ø ØÓ Ô Ø ÓÐÓ Ó ÓÐÙØ Ø ÑÔ Ö ØÙÖ Ò Ö ÙÐ Ø ÓÒ Û Ð È ÝÑÑ ØÖÝ Ø ØÓØ Ð ÓÖ Ó ÝÑÑ ØÖÝ Ø ÓØ ÅÙ ÙÐÙ Ô ØÓÖ Ð Ö º Ú ÒØÙ ÐÐÝ È Ø ÓÖ Ü Ø ÓÚ Ö ÐÐ ÓÖ ÓÖ Ø Ø ÓÖ Ü Ö ÖÓÙÔº Ï Ð Ú ØÓ Ø Ö Ö Ø Ø Ó Ú Ö Ý Ò Ò Ø Ð Ø Ø Ø ÔÐ Ý ÓÖÑÙÐ Ý Ð Ñ Ò Ò ÙÐ ÑÓ Ð Ó Ø ÓÑ Ò Ø ÓÒ ÔÖÓ ÙÖ º ½
23 Pathology / P A Absolute temperature difference (K) ÙÖ ½¼ Ö Ó Ô Ø ÓÐÓ Ý ÓÖ Ø ÝÑÑ ØÖÝ Ø ÅÔ½ ÅÔ¾ º ÊÙ Ñ ÒØ Ó Ò ÜÔ ÖØ Ý Ø Ñ ÓÖ ÒÓ ÙÔÔÓÖØ ÁÒ Ø Ù ÕÙ ÒØ Ô Ö Ö Ô Ò ÓÚ ÖÚ Û Ú Ò ÓÚ Ö Ø Å ØÐ Ó ØÛ Ö Ô ÊÇËÌ ½ ÓÖ ÒÓ ÙÔÔÓÖØ Ò Ê ÙÐ Ø ÓÒ Ì ÖÑÓ Ö Ô Ý Ö Ø Ý Ø Ñ Ð ÒÓ ÖÓÙÔ Ø Ø Ô ÖØÑ ÒØ ÔØ Ú ËÝ Ø Ñ Ó Ø ÁÌÏź Ì Ô ÓÖÑ Ý Ø ÒÓÑÔÐ Ø ÔÖÓØÓØÝÔ ÔÔÐ Ð ÓÖ Ø Ú ÐÙ ¹ Ø ÓÒ Ó Ö ÙÐ Ø ÓÒ Ø ÖÑÓ Ö Ñ Û Ø Ö Ô Ø ØÓ Ñ Ð Ö Ø Ò Öº Ú ÒØÙ ÐÐÝ ÊÇËÌ ÙÔÔÓ ØÓ ÓÒØ Ò ÓÑÔÐ Ø ÑÔÐ Ñ ÒØ Ø ÓÒ ÒØÓ ÙÞÞÝ ÄÓ Ó Ø Ú Ð Ð ÜÔ ÖØ ÒÓÛÐ Ò Ø Ô Ð Ð Ó Ê̹ Ú ÐÙ Ø ÓÒº Å ØÐ Ò ÓÑ Ò Ø ÓÒ Û Ø Ø ÙÞÞÝ ÄÓ ÌÓÓÐ ÓÜ ÓÒÚ Ò ÒØ ÔÖÓ¹ Ö ÑÑ Ò Ð Ò Ù ÓÖ ÕÙ ÐÝ Ù Ð Ò ÙÔ Ù Ý Ø Ñº ØÝÔ Ð ÓÖ Å Ø¹ Ð ÔÔÐ Ø ÓÒ ÊÇËÌ ÓÒ Ø Ó ÙÒ Ð Ó Å ØÐ Ö ÔØ Рѹ Ð µ ÓÒØ Ò Ò Ø ÑÔÐ Ñ ÒØ Ø ÓÒ Ó Ø ÙÒØ ÓÒ Ð ØÝ ÊÇËÌ ÓÑÔÖ ÔÔÖÓÜ ¹ Ñ Ø ÐÝ ½¼¼ ѹ Ð º Ì Ø Ò Ð Ò ØÖÙØÙÖ Ð Ø Ð Ó Ø ÑÔÐ Ñ ÒØ Ø ÓÒ Ñ ØÓ Ó Ð ØØÐ ÒØ Ö Ø ÓÖ Ö Ö Ó Ø ÖØ Ð º Ì Ö ÓÖ Ò Ø Ù ¹ ÕÙ ÒØ Ö ÔØ ÓÒ Û ÓÙ ÓÒ Ø Ö ÔØ ÓÒ Ó ÊÇË̳ ÙÒØ ÓÒ Ð ÓÑÔÓÒ ÒØ º ÀÓÛ Ú Ö ÓÖ Ø ÓÖÓÙ ÙÒ Ö Ø Ò Ò Ó Ø ÓÑÔÓÒ ÒØ Û Ú ØÓ Ø ÖØ ÓÙÖ Ö ÔØ ÓÒ Û Ø ÓÑ Ø Ò Ð Ø º Ì Ú Ö ÓÙ ÓÑÔÓÒ ÒØ Ó ÊÇËÌ ÓÑÑÙÒ Ø Û Ø ÓØ Ö ÒÓØ ÓÒÐÝ Ú Ô Ò Ô Ö Ñ Ø Ö Ù Ù Ð Ò ÑÓ Ø ÔÖÓ Ö ÑÑ Ò Ð Ò Ù ÙØ Ð Ó Ý Ò Ø Ø Ø Ö Ú Ð Ð Ò Ø Å ØÐ ÛÓÖ Ô Ó Ø ÓÒ ÖÓÑ Û ÊÇËÌ Ò Ø ÖØ º Ì Ú Ö Ð ÓÒØ Ò Ò Ø Ø Ò ÓÒ Ö ÐÓ Ð Ú Ö Ð Ò Ø Ý Ö Ð Ý ÐРѹËÖ ÔØ º Ì Å ØÐ ÛÓÖ Ô Ò Ø Ð Þ ÑÑ Ø ÐÝ Ø Ö Ø ÖØ Ò ÊÇËÌ Ò Ó ÓÙÖ Ø ÓÒØ ÒØ Ò ÓÒØ ÒÓÙ ÐÝ Û Ð Ù Ò Ø ÔÖÓ Ö Ñº ½ Öº Ñ º ÒØº ÖÒÓ ÊÓ Ø ½ ½ ÓÒ Ó Ø Ô ÓÒ Ö Ò Ê ÙÐ Ø ÓÒ Ì ÖÑÓ Ö Ô Ý ½
24 ÊÇËÌ ÓÒ Ø Ó ÓÙÖ ÔÖ Ò Ô Ð ÙÒØ ÓÒ Ð ÓÑÔÓÒ ÒØ Ò Ø ÕÙ Ð Û Û ÐÐ ÔÖÓÚ ÓÖØ Ö ÔØ ÓÒ Ó Ó Ø Ñº Ê̹ Ø Ò ÊÇËÌ ÙÖÖ ÒØÐÝ ÒÓØ Ñ ÒØ ØÓ ØÓÓÐ ØÓ Ú ÐÙ Ø Ê̳ Ù Ø Ñ ÙÖ ÓÖ Ü ÑÔÐ Ò Ø ÓØÓÖ³ ÔÖ Ø Ø Ø Ø ÒÔÙØ Ø ÖÑÓ Ö Ñ ÖÓÑ Ø º Ì Ø ÒÓØ ÓÒÐÝ ÓÒØ Ò Ø ÔÙÖ Ø ÖÑÓ Ö Ñ Ø Ø ÑÔ Ö ØÙÖ Ú ÐÙ µ ÙØ Ð Ó ÓÑÔÖ Ô Ø ÒØ Ò ÓÖ¹ Ñ Ø ÓÒ Ð Ò Ö Ò Ø Ð ÒÓ ÓÒ Ó Ò Ø Ö ÔÝ Ò ÔÖÓ Ö Ó Ø Ö Ôº Ð Ò ÔÖÓ º Ç ÓÙÖ Ô Ø ÒØ ÒÒÓØ ÒØ Ô Ö ÓÒ ÐÐÝ ÓÒ Ø Ó Ø Ø º Å ØÐ Ó ÒÓØ ÔÖÓÚ Ö Ð Ø ÙÒØ ÓÒ Ð ØÝº Ì Ê̹ Ø Û Ö Ù Ò Ö ÓÒ Ø Ó Å ØÐ ÛÓÖ Ô Ð Ñ Ø¹ Ð µ ÒØ ÐÐÝ ÓÒØ Ò Ò Ø Ø ÖÑÓ Ö Ñ Ò Ô Ø ÒØ Ò ÓÖÑ Ø ÓÒ Ò Ñ ØÖ Ü ÓÖѺ Ì Ò ÖÝ Ø ÙÒØ ÓÒ Ð ØÝ ÑÔÐ Ñ ÒØ Ò ÙÒ Ð Ó Ñ¹ Ö ÔØ ÓÔ Ö Ø Ò ÓÒ Ø Ñ ØÖ ÓÒ Ø Ý Ö ÐÓ ÒØÓ Ø ÙÖÖ ÒØ Ø Ú µ Å ØÐ ÛÓÖ Ô º ÐÐ Ö ÔØ Ò Ù Ø Ò ÐÓÒ Ø Ø Ò Ô ÖØ ÙÐ Ö Ò Ô Ò ÒØÐÝ ÖÓÑ ÊÇËÌ Ø Ð º Ì ØÙ Ð Ø Ø Ø Ø Ø ÖÑÓ Ö Ñ Ø Ò Ô Ø ÒØ Ò ÓÖÑ Ø ÓÒ ÐÓ ÒØÓ Ø ÙÖÖ ÒØ ÛÓÖ Ô Ø Ø ÖØÙÔ Ó ÊÇË̺ Ø ÖÓÛ Ö Ò ÊÌ¹Ú Û Ö Ø Ê̹ Ø Ò Ú ÖÓÛ Ö Ø Ø ÐÐÓÛ ØÓ ÔÐ Ý Ø Ò ÓÖÑ Ø ÓÒ Ú Ð Ð ÓÖ Ô Ø Ö¹ ÑÓ Ö Ñ Ò Ú Ö Ð Û Ý ÓÒ ÓÒ Ò Ø Ô Ø ÒØ Ò ÓÖÑ Ø ÓÒ Ò ÓÛÒº ÇÒ Ø ÓØ Ö Ò Ø Ö «Ö ÒØ Ö Ô Ð Ö ÔÖ ÒØ Ø ÓÒ Ó Ø Ø ÖÑÓ Ö Ñ Ø Ð Ö Ú Ð Ð ÓÒ Ó Û ÐÐ Ø Ø Ò¹ Ö Ö ÔÖ ÒØ Ø ÓÒ Ò Ù ÓÖ Ü ÑÔÐ Ò ÙÖ º Ì ÓØ Ö Ö ÔÖ ÒØ Ø ÓÒ Ô Ø Ø ÔÔ Ö Ò ÝÑÑ ØÖ Ò Ø Ø ÖÑÓÖ ÙÐ ¹ Ø ÓÒº ÅÓÖ ÓÚ Ö Ø ÔÓ Ð ØÓ Ö ØÖ Ø Ø Ö ÔÖ ÒØ Ø ÓÒ ØÓ ÖØ Ò Ö ÖÓÙÔ Ò Ø Ó Ø Û ÓÐ Ø ÖÑÓ Ö Ñº ÜÔ ÖØ ÖÙÐ Ø Ò Ê̹ Ò ÐÝÞ Ö Ø Ø Ø Ñ Ó ÛÖ Ø Ò Ø ÖØ Ð ÔÔÖÓÜ Ñ Ø ÐÝ ½ ¼ ÒØ ÖÔÖ Ø Ø ÓÒ ÖÙÐ ÓÖ Ö ÙÐ Ø ÓÒ Ø ÖÑÓ Ö Ñ Û Ø Ö Ô Ø ØÓ Ñ Ð Ö Ø Ò Ö ÓÙÐ ÓÖÑÙÐ Ø Ò Ø ÖÑ Ó ÙÞÞÝ ÄÓ º Ì ÙÞÞÝ ÄÓ ÌÓÓÐ ÓÜ Î Ö ÓÒ ¾º¼º½ ʽ½µ Û Ù ØÓ ÑÔÐ ¹ Ñ ÒØ Ø ÖÙÐ ÒØÓ Ò Ü ÙØ Ð ÙÞÞÝ ÁÒ Ö Ò ËÝ Ø Ñº Ì Ý Ø Ñ Ø ÔÖ ÒØ ÓÒ Ø Ó ÔÔÖÓÜ Ñ Ø ÐÝ ¼ Ð Ó ØÛÓ ØÝÔ Ø Ð Ó Ø Ö Ø ØÝÔ ¹ Ð µ ÓÒØ Ò Ø ÔÙÖ ÙÞÞÝ ÄÓ ÓÑÔÓÒ ÒØ Ó Ø Ú ÐÙ Ø ÓÒ ÖÙÐ ÖÓ Ò ÙÔ ÒØÓ Ñ ÐÐ ÙÒ Ø Ø Ù ÕÙ ÒØ Ô Ö ¹ Ö Ô µº Ì ÓÒ ÖÓÙÔ ÓÒ Ø Ó Ö ÔØ Ø Ø Ô Ö ÓÖÑ Ø Ø ÔÖ ¹ Ò ÔÓ ØÔÖÓ Ò Ö Ò Ù Ø ÓÒ º º ËÓÑ Ó Ø Ö ÔØ ÑÓÖ ÓÚ Ö ÓÒØÖÓÐ Ø ÕÙ Ò Ò Û Ø Ú Ö ÓÙ ÓÑÔÓÒ ÒØ Ó Ø ÙÞÞÝ ÁÒ Ö Ò ËÝ Ø Ñ Ö Ü ÙØ º Ì Ê̹ Ú ÐÙ Ø ÓÒ ÖÙÐ ÐÐ ÒØÓ ½ Ù Ø Ø ÖÙÐ Ò Ù Ù Ø Ø Ö Ú ÐÙ Ø Ô ÖØ Ó Òµ Ö ÖÓÙÔ Ò Ò Ø Ð ½ Û Ø Ö Ô Ø ØÓ Ø ÓÚ Ö ÐÐ Ö Ó Ô Ø ÓÐÓ Ý Ó Ø Ó ÖÚ Ø ÖÑÓÖ ÙÐ Ø ÓÒ ¹ Ú ÓÖ ÓÖ Ö Ø Ð Ö Ö Ô ÖØ Ó Ø ÊÌ Û Ø Ö Ô Ø ØÓ Ø ÔÔ Ö Ò Ó ÖØ Ò ÒÓÒ¹ÐÓ Ð Ô ØØ ÖÒ ÖÓÙ ÐÝ Ö Ò Ù Ø ÓÒ ¾º º ÁÒ Ø ÕÙ Ð Ø ÑÔÐ Ñ ÒØ Ø ÓÒ Ó Ó Ø ½ Ù Ø Ó Ê̹ Ú ÐÙ Ø ÓÒ ÖÙÐ ÐÐ Ô ÖØ Ð Ê̹ Ú ÐÙ Ø ÓÒ Ý Ø Ñ È Ëµº ¾¼
25 Ð ÓÛ À Ì ÖÓ Ø»Æ Ì¹ Ð Ò Ì ÓÖ Ü ÍÔÔ Ö ØÓÑ ÁÒØ Ø Ò ÄÓÛ Ö ØÓÑ Å ÑÑ Ð ÓÛ ÁÑÑÙÒÓÐÓ Ý ÌÓÒ Ð ËÙÔÖ Ð Ú ÙÐ Ö Ó ÁÑÑÙÒÓÐÓ Ý Ì ÝÖÓ ÁÑÑÙÒÓÐÓ Ý À ÖØ Ì ÓÖ Ü ËØÓÑ ËØÓÑ Ó Ø ÓÒ ÁÑÑÙÒÓÐÓ Ý ËØÓÑ Ó Ø ÓÒ ÁÑÑÙÒÓÐÓ Ý ÇÚ Ö ÀÓØ ÔÓØ ÝÑÑ ØÖÝ Ì Ð ¾ Ö ÖÓÙÔ Ò Ô ÖØ Ð Ê̹ Ú ÐÙ Ø ÓÒ Ý Ø Ñ Ì Þ Ó Ø È Ë Ú ÖÝ ØÛ Ò ØÓ ÖÙÐ ÒÚÓÐÚ Ò ¾ ØÓ ¾ Ö ØÝÔ Ð È Ë ÓÒ Ø Ó ÖÙÐ Ò ÔÔÐ ØÓ Ö º Ì ØÖ Ù¹ Ø ÓÒ Ó Ø Ö Û Ø Ò Ø «Ö ÒØ È Ë Ò Ò Ò Ø Ð ¾ Û Ö Ø Ð Ø ÓÐÙÑÒ ÔÐ Ý Ø Ö ÖÓÙÔ Û Ð Ò Ø Ö Ø ÓÐÙÑÒ Ø Ò Ñ Ó Ø Ó È Ë ÔÔ Ö Ø Ø Ö Ö ØÓ Ö Ò Ø Ö Ô Ø Ú ÖÓÙÔº ÑÓÒ ÓØ Ö Ø Ò ÓÒ Ò ÖÓÑ Ø Ø Ð Ø Ø ÙÖÖ ÒØÐÝ ÓÒÐÝ È Ë ËØÓÑ Ó Ø ÓÒ ÁÑÑÙÒÓÐÓ Ýµ Ö Ö Ø Ò ÒÓÒ¹ÐÓ Ð Ô ØØ ÖÒ º Ì Ö Ø Ø Ø Ø Ø ÓÑÔÐ Ü ÒØ ÖÔÖ Ø Ø ÓÒ ÖÙÐ Ö ÒÓØ Ý Ø ÓÑÔÐ Ø ÐÝ ÓÖÑ Ð Þ º Ì È Ë Ü Ù Ø ÓÒ ÒÓØ ÔÐ Ý Ø ÐÐ Ù ØÓ Ø ÒÓÑÔÐ Ø Ò º Ó Ø ½ È Ë Ó Ø Ô ÖØ Ð ÓÖ Ô ½ ½ ØÓ Ú Ò Ø ÖÑÓ Ö Ñº Ì Ô ÔÓ ÖØ Ò Ñ Ð Ñ Ò Ò Ø Ð Ø ØÓ Ô ¹ Ð Ø º Ì Ö Ð Ê ÓÖ Ø ÔÖ Ò Ó Ö Ø Ò Ö ÒØÖÓ Ù Ò Ù Ø ÓÒ º½ Ò ÓÒ Ö ÙÖØ Ö ÓÒ Ò Ø ÓÒ Ó Ø Ô ÖØ Ð ÓÖ ØÓ Ó Ø Ò Ö Ø Ú ÐÙ Ê ¾ ½ º Ì ÓÒ Ò Ø ÓÒ Ð Ó Ö Ð Þ ÙØ Ð Þ Ò ÓÖÑ Ð Þ ÜÔ ÖØ ÒÓÛÐ ÙØ Û ÛÓÒ³Ø Ó ÒØÓ Ø Ø Ð Ö º Ï Ø Û Ù Ø Ö Ø ÖÓÙ ØÖÙØÙÖ Ó Ø Ê̹ Ò ÐÝÞ Ö ÔÖÓ¹ Ö Ñ Ø Ø Ø Ø ÖÑÓ Ö Ñ Ò ÒÔÙØ ÔÔÐ Ø ÖÙÐ Ó Ø È Ë ØÓ Ó Ø Ò Ô ÖØ Ð ÓÖ ÓÒ Ò Ø Ø ÓÖ ØÓ Ö Ð Ò Ý Ð Ø Ð Ò Ø Ô ÖØ Ð ÓÖ ÓÙØÔÙØº Ì ÙÞÞÝ ÁÒ Ö Ò ËÝ Ø Ñ Ø Ð Ò ÓÒ Ö Ø Ó ÓÖÑ Ð Þ ÜÔ ÖØ ÖÙÐ Ø Ð ØØ Ö Ò ÐÝ Ú Û Ò Ø Ù Ò Ø ÙÒØ ÓÒ Ó Ø ÙÞÞÝ ÄÓ ÌÓÓÐ Óܺ ÁÒ ÓÑ Ò Ø ÓÒ Û Ø Ø Ú Ö ÓÙ Ö ÔØ Ð Ñ ÒØ ÓÒ ÓÚ Û Ú Ý Ø Ñ Ø Ò Ø Ø ÒÓØ ÓÒÐÝ ÐÐÓÛ ØÓ Ú ÐÙ Ø ÊÌ Û Ø Ö Ô Ø ØÓ Ø ÔÖ Ò Ó Ô ØØ ÖÒ Ö Ø Ö Ø ÓÖ Ñ Ð Ö Ø Ò Ö ÙØ Ð Ó Ò Ð Ò ÜÔ ÖØ ØÓ Ö Ø ÐÐÝ Ú Ð Ø ÓÖ Ø Ø ÑÔÐ Ñ ÒØ ÜÔ ÖØ ÒÓÛÐ º Ì Ê̹ Ò ÐÝÞ Ö Ð Ò ØÓ Ø Ø ÖÓÛ Ö Ö ÔÖ Ú ÓÙ ÐÝ Ø Ò Ø ÖØ ÖÓÑ Ø ÖÓÛ Ö³ Ù Ö ÒØ Ö Ò Ò ÐÝÞ Ø Ø Ö¹ ÑÓ Ö Ñ ÙÖÖ ÒØÐÝ ÐÓ Ý Ø ÖÓÛ Öº Ð Ø ÓÒ ØÓÓÐ Ò Ø ÙÖÖ ÒØ Ø Ó Ú ÐÓÔÑ ÒØ ÊÇËÌ Ù ØÓÓÐ Ò Ø ÓÑÑÙÒ Ø ÓÒ ØÛ Ò Ô Ý Ò Ò Ñ Ø Ñ Ø Ò º ÙÖ¹ Ò Ø ÔÖÓ Ó Ø ÓÖÑ Ð Þ Ø ÓÒ Ó ÜÔ ÖØ Ê̹ Ú ÐÙ Ø ÓÒ ÖÙÐ Ò Ø ÖÑ Ó ÙÞÞÝ ÄÓ Ø Ö ÕÙ ÒØÐÝ Ò ÖÝ ØÓ ÔØ ÒÙÑ Ö Ð Ô Ö Ñ Ø Ö Ð ÓÖ Ü ÑÔÐ Ø ÑÔ Ö ØÙÖ Ø Ö ÓÐ Ò Ò ÔÔÖÓÔÖ Ø Û Ýº ÌÓ Ø ¾½
26 Ò Ø Ù ÙÐ ØÓ Ú ÙÆ ÒØ ÕÙ ÒØ ØÝ Ó Ê̳ Ø Ò Ø Ø Ö Ð ¹ Û Ø Ö Ô Ø ØÓ Ê Ò Ø Ô ÖØ Ð Ú ÐÙ Ø ÓÒ ÓÖ Ý Ò ÜÔ ÖØº ÊÇËÌ ÔÖÓÚ Ò ÒØ Ö ØÓ Ø Ê̹ Ø Ø Ø ÐÐÓÛ ØÓ ÒØ Ö Ø Ò ØÓÖ Ø Ð Ø ÓÒ º Ä Ø Ê̹ Ò ÐÝÞ Ö Ø Ð Ø ÓÒ ØÓÓÐ Ò Ø ÖØ ÖÓÑ Ø ÍÁ Ó Ø Ø Ú Û Ö Ò Ø Ø ÒØ Ö Ö Ö ØÓ Ø ÊÌ ÙÖÖ ÒØÐÝ ÔÐ Ý Ý Ø ÖÓÛ Öº Î Ø ÖÓÑ Ø Ñ Ð ÔÓ ÒØ Ó Ú Û Ø ÔÖ Ò Ô Ð ÔÙÖÔÓ Ó Ö Ö Ò Ê ÙÐ Ø ÓÒ Ì ÖÑÓ Ö Ô Ý Ø ÔÖ ÒØ Ð Ò ÒØ Ú Ð Ø ÓÒ Ó Ø Ñ Ø Ó Ó Ø Ø Ø Ú ÒØÙ ÐÐÝ ÓÑ Û Ðй ÔØ ÑÓÒ Ô Ý Ò º Ì ÜÔ ÖØ Ý Ø Ñ ÊÇËÌ Ö Ø Ø Ô Ò Ø Ø Ö Ø ÓÒ Ò Ø ÓÑÔÖ Ò Ø ÒÓÛÒ ÜÔ ÖØ ÒÓÛÐ Ò Ø Ê̹ Ú ÐÙ Ø ÓÒ Û Ø Ö Ô Ø ØÓ Ö Ø Ò Ö Ò Ò Ó Ø Ú Ñ ÒÒ Ö Û Ò ØÙÖÒ Ò Ð ÒØ Ø ØÓ Ô Ö ÓÖÑ ÓÑÔ Ö Ø Ú Ø Ø Û Ø Ø ÊÌ¹Ñ Ø Ó º Ø Ø ÊÇËÌ ÓÙÐ Ð Ó Ù Ò Ø ØÖ Ò Ò Ó Ô Ý Ò Û Ó Û ÒØ ØÓ Ð ÖÒ ÓÙØ Ê ÙÐ Ø ÓÒ Ì ÖÑÓ Ö Ô Ýº ÅÓÖ ÓÒÖ Ø ÐÝ Û Ø Ò Ø Å ¹ÔÖÓ Ø Ø Ò ÖØ ÒÓ ÙÒØ Ö¹ ØĐÙØÞÙÒ Ò Ö Ê ÙÐ Ø ÓÒ Ø ÖÑÓ Ö Ô Ú Ö Ð ÓØ Ö Ñ Ø Ñ Ø Ð Ñ Ø ¹ Ó Ú Ò ÔÔÐ Ò Ø Ô Ö Ø Ó Ø ÙÐØ Ñ Ø Ñ Ó Ú Ö Ø ÓÒ Ó ÊÌ Æ ÙÖ Ð Æ Ø Ø Ò Ø Ô ÖØ Ð ÓÖ Ò ÒÔÙØ Ú Ò ØÖ Ò ØÓ Ø Ñ Ø Ø Ö Ð Ó Ø ÖÑÓ Ö Ñº ËÙÔÔÓÖØ¹Ú ØÓÖ¹Ñ Ò Ú Ò Ù ØÓ Û Ø Ö Ø Ñ Ð Ð Ø ÓÒ Ó Ø ÖÑÓ Ö Ñ Ò Ö ÓÚ Ö ÙØÓÑ Ø ÐÐݺ Ì Ñ Ø Ó Ó Ð Ø ÓÒ ØÖ Ò ÙØ Ð Þ ØÓ ÜØÖ Ø Ò Û Ê̹ Ú ÐÙ Ø ÓÒ ÖÙÐ ÖÓÑ Ø Ò Ù Ø Ñ Û Ø ÜÔ ÖØ º ÁØ ÔÐ ÒÒ ØÓ ÔÙ Ð Ø Ö ÙÐØ Ó Ø Ò Û Ø Ø Ñ Ø Ó Ù Ø Ø Ò ÓÖØ ÓÑ Ò ÔÖ ÔÖ ÒØ Ó Ø ÁÌÏŹ Ö º Ê Ö Ò ½ À¹Àº ÓØ ÙÞÞÝ ÄÓ ËÔÖ Ò Ö ÖÐ Ò¹À Ð Ö ½ º ¾ Àº ÃÒ Èº Ä Ò º ÈÖĐ ØÞ йÏÓÐØ Ö ÜÔ ÖØ Ò Ý Ø Ñ Ò Ö ÓÑÔÐ Ñ ÒØĐ Ö Ò ÇÒ ÓÐÓ Ò Âº ÙØ ÀÖ ºµ ÖÙÒ Ð Ò Ö ÃÓÑÔÐ Ñ ÒØĐ ÖÓÒ ÓÐÓ À ÔÔÓ Ö Ø ËØÙØØ ÖØ ¾¼¼¾º ʺ ÃÖ٠º Ö Ø º ÃÐ ÛÓÒÒ ÙÞÞݹËÝ Ø Ñ Ì Ù Ò Ö ËØÙØØ ÖØ ½ º º Æ Ù º ÃÐ ÛÓÒÒ Êº ÃÖÙ Æ ÙÖÓÒ Ð Æ ØÞ ÙÒ ÙÞÞݹ ËÝ Ø Ñ Î Û Ö ÙÒ Û ½ º Ϻ È ÖÝÞ ÙÞÞÝ ÓÒØÖÓÐ Ò ÙÞÞÝ ËÝ Ø Ñ ÂÓ Ò Ï Ð Ý ² ËÓÒ ÁÒº Ï ÒÒ Ô ½ º º ÊÓ Ø Ä Ö Ù Ö Ê ÙÐ Ø ÓÒ Ø ÖÑÓ Ö Ô À ÔÔÓ Ö Ø ËØÙØØ ÖØ ½ º ¾¾
27 Published reports of the Fraunhofer ITWM The PDF-files of the following reports are available under: berichte 1. D. Hietel, K. Steiner, J. Struckmeier A Finite - Volume Particle Method for Compressible Flows We derive a new class of particle methods for conser va tion laws, which are based on numerical flux functions to model the in ter ac tions between moving particles. The der i va tion is similar to that of classical Finite-Volume meth ods; except that the fixed grid structure in the Fi nite-volume method is sub sti tut ed by so-called mass pack ets of par ti cles. We give some numerical results on a shock wave solution for Burgers equation as well as the well-known one-dimensional shock tube problem. (19 pages, 1998) 2. M. Feldmann, S. Seibold Damage Diagnosis of Rotors: Application of Hilbert Transform and Multi-Hypothesis Testing In this paper, a combined approach to damage diagnosis of rotors is proposed. The intention is to employ signal-based as well as model-based procedures for an im proved detection of size and location of the damage. In a first step, Hilbert transform signal processing techniques allow for a computation of the signal envelope and the in stan ta neous frequency, so that various types of non-linearities due to a damage may be identified and clas si fied based on measured response data. In a second step, a multi-hypothesis bank of Kalman Filters is employed for the detection of the size and location of the damage based on the information of the type of damage pro vid ed by the results of the Hilbert transform. Keywords: Hilbert transform, damage diagnosis, Kalman filtering, non-linear dynamics (23 pages, 1998) 3. Y. Ben-Haim, S. Seibold Robust Reliability of Diagnostic Multi- Hypothesis Algorithms: Application to Rotating Machinery Damage diagnosis based on a bank of Kalman filters, each one conditioned on a specific hypothesized system condition, is a well recognized and powerful diagnostic tool. This multi-hypothesis approach can be applied to a wide range of damage conditions. In this paper, we will focus on the diagnosis of cracks in rotating machinery. The question we address is: how to optimize the multi-hypothesis algorithm with respect to the uncertainty of the spatial form and location of cracks and their re sult ing dynamic effects. First, we formulate a measure of the re li abil i ty of the diagnostic algorithm, and then we dis cuss modifications of the diagnostic algorithm for the max i mi za tion of the reliability. The reliability of a di ag nos tic al go rithm is measured by the amount of un cer tain ty con sis tent with no-failure of the diagnosis. Un cer tain ty is quan ti ta tive ly represented with convex models. Keywords: Robust reliability, convex models, Kalman fil ter ing, multi-hypothesis diagnosis, rotating machinery, crack di ag no sis (24 pages, 1998) 4. F.-Th. Lentes, N. Siedow Three-dimensional Radiative Heat Transfer in Glass Cooling Processes For the numerical simulation of 3D radiative heat transfer in glasses and glass melts, practically applicable math e mat i cal methods are needed to handle such prob lems optimal using workstation class computers. Since the ex act solution would require super-computer ca pa bil i ties we concentrate on approximate solutions with a high degree of accuracy. The following approaches are stud ied: 3D diffusion approximations and 3D ray-tracing meth ods. (23 pages, 1998) 5. A. Klar, R. Wegener A hierarchy of models for multilane vehicular traffic Part I: Modeling In the present paper multilane models for vehicular traffic are considered. A mi cro scop ic multilane model based on reaction thresholds is developed. Based on this mod el an Enskog like kinetic model is developed. In particular, care is taken to incorporate the correlations between the ve hi cles. From the kinetic model a fluid dynamic model is de rived. The macroscopic coefficients are de duced from the underlying kinetic model. Numerical simulations are presented for all three levels of description in [10]. More over, a comparison of the results is given there. (23 pages, 1998) Part II: Numerical and stochastic investigations In this paper the work presented in [6] is continued. The present paper contains detailed numerical investigations of the models developed there. A numerical method to treat the kinetic equations obtained in [6] are presented and results of the simulations are shown. Moreover, the stochastic correlation model used in [6] is described and investigated in more detail. (17 pages, 1998) 6. A. Klar, N. Siedow Boundary Layers and Domain De com po s- i tion for Radiative Heat Transfer and Dif fu - sion Equa tions: Applications to Glass Man u - fac tur ing Processes In this paper domain decomposition methods for ra di a tive transfer problems including conductive heat transfer are treated. The paper focuses on semi-transparent ma te ri als, like glass, and the associated conditions at the interface between the materials. Using asymptotic anal y sis we derive conditions for the coupling of the radiative transfer equations and a diffusion approximation. Several test cases are treated and a problem appearing in glass manufacturing processes is computed. The results clearly show the advantages of a domain decomposition ap proach. Accuracy equivalent to the solution of the global radiative transfer solution is achieved, whereas com pu ta tion time is strongly reduced. (24 pages, 1998) 7. I. Choquet Heterogeneous catalysis modelling and numerical simulation in rarified gas flows Part I: Coverage locally at equilibrium A new approach is proposed to model and simulate nu mer i cal ly heterogeneous catalysis in rarefied gas flows. It is developed to satisfy all together the following points: 1) describe the gas phase at the microscopic scale, as required in rarefied flows, 2) describe the wall at the macroscopic scale, to avoid prohibitive computational costs and consider not only crystalline but also amorphous surfaces, 3) reproduce on average macroscopic laws correlated with experimental results and 4) derive analytic models in a systematic and exact way. The problem is stated in the general framework of a non static flow in the vicinity of a catalytic and non porous surface (without aging). It is shown that the exact and systematic resolution method based on the Laplace trans form, introduced previously by the author to model col li sions in the gas phase, can be extended to the present problem. The proposed approach is applied to the mod el ling of the Eley Rideal and Langmuir Hinshel wood re com bi na tions, assuming that the coverage is locally at equilibrium. The models are developed con sid er ing one atomic species and extended to the general case of sev er al atomic species. Numerical calculations show that the models derived in this way reproduce with accuracy be hav iors observed experimentally. (24 pages, 1998) 8. J. Ohser, B. Steinbach, C. Lang Efficient Texture Analysis of Binary Images A new method of determining some characteristics of binary images is proposed based on a special linear fil ter ing. This technique enables the estimation of the area fraction, the specific line length, and the specific integral of curvature. Furthermore, the specific length of the total projection is obtained, which gives detailed information about the texture of the image. The in flu ence of lateral and directional resolution depending on the size of the applied filter mask is discussed in detail. The technique includes a method of increasing di rec tion al resolution for texture analysis while keeping lateral resolution as high as possible. (17 pages, 1998) 9. J. Orlik Homogenization for viscoelasticity of the integral type with aging and shrinkage A multi phase composite with periodic distributed in clu sions with a smooth boundary is considered in this con tri bu tion. The composite component materials are sup posed to be linear viscoelastic and aging (of the non convolution integral type, for which the Laplace trans form with respect to time is not effectively ap pli - ca ble) and are subjected to isotropic shrinkage. The free shrinkage deformation can be considered as a fictitious temperature deformation in the behavior law. The pro ce dure presented in this paper proposes a way to de ter mine average (effective homogenized) viscoelastic and shrinkage (temperature) composite properties and the homogenized stress field from known properties of the components. This is done by the extension of the as ymp tot ic homogenization technique known for pure elastic non homogeneous bodies to the non homogeneous thermo viscoelasticity of the integral non con-
28 volution type. Up to now, the homogenization theory has not covered viscoelasticity of the integral type. Sanchez Palencia (1980), Francfort & Suquet (1987) (see [2], [9]) have considered homogenization for vis coelas - tic i ty of the differential form and only up to the first de riv a tive order. The integral modeled viscoelasticity is more general then the differential one and includes almost all known differential models. The homogenization pro ce dure is based on the construction of an asymptotic so lu tion with respect to a period of the composite struc ture. This reduces the original problem to some auxiliary bound ary value problems of elasticity and viscoelasticity on the unit periodic cell, of the same type as the original non-homogeneous problem. The existence and unique ness results for such problems were obtained for kernels satisfying some constrain conditions. This is done by the extension of the Volterra integral operator theory to the Volterra operators with respect to the time, whose 1 ker nels are space linear operators for any fixed time vari ables. Some ideas of such approach were proposed in [11] and [12], where the Volterra operators with kernels depending additionally on parameter were considered. This manuscript delivers results of the same nature for the case of the space operator kernels. (20 pages, 1998) 10. J. Mohring Helmholtz Resonators with Large Aperture The lowest resonant frequency of a cavity resonator is usually approximated by the clas si cal Helmholtz formula. However, if the opening is rather large and the front wall is narrow this formula is no longer valid. Here we present a correction which is of third or der in the ratio of the di am e ters of aperture and cavity. In addition to the high accuracy it allows to estimate the damping due to ra di a tion. The result is found by applying the method of matched asymptotic expansions. The correction contains form factors de scrib ing the shapes of opening and cavity. They are computed for a number of standard ge om e tries. Results are compared with nu mer i cal computations. (21 pages, 1998) 11. H. W. Hamacher, A. Schöbel On Center Cycles in Grid Graphs Finding good cycles in graphs is a problem of great in ter est in graph theory as well as in locational analysis. We show that the center and median problems are NP hard in general graphs. This result holds both for the vari able cardinality case (i.e. all cycles of the graph are con sid ered) and the fixed cardinality case (i.e. only cycles with a given cardinality p are feasible). Hence it is of in ter est to investigate special cases where the problem is solvable in polynomial time. In grid graphs, the variable cardinality case is, for in stance, trivially solvable if the shape of the cycle can be chosen freely. If the shape is fixed to be a rectangle one can analyze rectangles in grid graphs with, in sequence, fixed di men sion, fixed car di nal i ty, and vari able cardinality. In all cases a complete char ac ter iza tion of the optimal cycles and closed form ex pres sions of the optimal ob jec tive values are given, yielding polynomial time algorithms for all cas es of center rect an gle prob lems. Finally, it is shown that center cycles can be chosen as rectangles for small car di nal i ties such that the center cy cle problem in grid graphs is in these cases complete ly solved. (15 pages, 1998) 12. H. W. Hamacher, K.-H. Küfer Inverse radiation therapy planning - a multiple objective optimisation ap proach For some decades radiation therapy has been proved successful in cancer treatment. It is the major task of clin i cal radiation treatment planning to realize on the one hand a high level dose of radiation in the cancer tissue in order to obtain maximum tumor control. On the other hand it is obvious that it is absolutely necessary to keep in the tissue outside the tumor, particularly in organs at risk, the unavoidable radiation as low as possible. No doubt, these two objectives of treatment planning - high level dose in the tumor, low radiation outside the tumor - have a basically contradictory nature. Therefore, it is no surprise that inverse mathematical models with dose dis tri bu tion bounds tend to be infeasible in most cases. Thus, there is need for approximations compro mis ing between overdosing the organs at risk and un der dos ing the target volume. Differing from the currently used time consuming it er a tive approach, which measures de vi a tion from an ideal (non-achievable) treatment plan us ing re cur sive ly trial-and-error weights for the organs of in ter est, we go a new way trying to avoid a priori weight choic es and con sid er the treatment planning problem as a multiple ob jec tive linear programming problem: with each organ of interest, target tissue as well as organs at risk, we as so ci ate an objective function measuring the maximal de vi a tion from the prescribed doses. We build up a data base of relatively few efficient so lu tions rep re sent ing and ap prox i mat ing the variety of Pare to solutions of the mul ti ple objective linear programming problem. This data base can be easily scanned by phy si cians look ing for an ad e quate treatment plan with the aid of an appropriate on line tool. (14 pages, 1999) 13. C. Lang, J. Ohser, R. Hilfer On the Analysis of Spatial Binary Images This paper deals with the characterization of mi cro - scop i cal ly heterogeneous, but macroscopically homogeneous spatial structures. A new method is presented which is strictly based on integral-geometric formulae such as Crofton s intersection formulae and Hadwiger s recursive definition of the Euler number. The corresponding al go rithms have clear advantages over other techniques. As an example of application we consider the analysis of spatial digital images produced by means of Computer Assisted Tomography. (20 pages, 1999) 14. M. Junk On the Construction of Discrete Equilibrium Distributions for Kinetic Schemes A general approach to the construction of discrete equi lib ri um distributions is presented. Such distribution func tions can be used to set up Kinetic Schemes as well as Lattice Boltzmann methods. The general principles are also applied to the construction of Chapman Enskog dis tri bu tions which are used in Kinetic Schemes for com press ible Navier-Stokes equations. (24 pages, 1999) 15. M. Junk, S. V. Raghurame Rao A new discrete velocity method for Navier- Stokes equations The relation between the Lattice Boltzmann Method, which has recently become popular, and the Kinetic Schemes, which are routinely used in Computational Flu id Dynamics, is explored. A new discrete velocity model for the numerical solution of Navier-Stokes equa tions for incompressible fluid flow is presented by com bin ing both the approaches. The new scheme can be interpreted as a pseudo-compressibility method and, for a particular choice of parameters, this interpretation carries over to the Lattice Boltzmann Method. (20 pages, 1999) 16. H. Neunzert Mathematics as a Key to Key Technologies The main part of this paper will consist of examples, how mathematics really helps to solve industrial problems; these examples are taken from our Institute for Industrial Mathematics, from research in the Tech nomath e mat ics group at my university, but also from ECMI groups and a company called TecMath, which orig i nat ed 10 years ago from my university group and has already a very suc cess ful history. (39 pages (4 PDF-Files), 1999) 17. J. Ohser, K. Sandau Considerations about the Estimation of the Size Distribution in Wicksell s Corpuscle Prob lem Wicksell s corpuscle problem deals with the estimation of the size distribution of a population of particles, all hav ing the same shape, using a lower dimensional sampling probe. This problem was originary formulated for particle systems occurring in life sciences but its solution is of actual and increasing interest in materials science. From a mathematical point of view, Wicksell s problem is an in verse problem where the interesting size distribution is the unknown part of a Volterra equation. The problem is often regarded ill-posed, because the structure of the integrand implies unstable numerical solutions. The ac cu ra cy of the numerical solutions is considered here using the condition number, which allows to compare different numerical methods with different (equidistant) class sizes and which indicates, as one result, that a finite section thickness of the probe reduces the numerical problems. Furthermore, the rel a tive error of estimation is computed which can be split into two parts. One part consists of the relative dis cret i za tion error that increases for in creas ing class size, and the second part is related to the rel a tive statistical error which increases with decreasing class size. For both parts, upper bounds can be given and the sum of them indicates an optimal class width depending on some specific constants. (18 pages, 1999) 18. E. Carrizosa, H. W. Hamacher, R. Klein, S. Nickel Solving nonconvex planar location problems by finite dominating sets It is well-known that some of the classical location prob lems with polyhedral gauges can be solved in poly no mi al time by finding a finite dominating set, i. e. a finite set of candidates guaranteed to contain at least one op ti mal location. In this paper it is first established that this result holds
29 for a much larger class of problems than currently consid ered in the literature. The model for which this result can be prov en includes, for instance, location prob lems with at trac tion and repulsion, and location-al lo ca tion prob lems. Next, it is shown that the ap prox i ma tion of general gaug es by polyhedral ones in the objective function of our gen er al model can be analyzed with re gard to the sub se quent error in the optimal ob jec tive value. For the ap prox i ma tion problem two different ap proach es are described, the sand wich procedure and the greedy al go rithm. Both of these approaches lead - for fixed epsilon - to polyno mial ap prox i ma tion algorithms with accuracy epsilon for solving the general model consid ered in this paper. Keywords: Continuous Location, Polyhedral Gauges, Finite Dom i nat ing Sets, Approximation, Sandwich Al go - rithm, Greedy Algorithm (19 pages, 2000) 19. A. Becker A Review on Image Distortion Measures Within this paper we review image distortion measures. A distortion measure is a criterion that assigns a quality number to an image. We distinguish between math e mat i cal distortion measures and those distortion mea sures in-cooperating a priori knowledge about the im ag ing devices ( e. g. satellite images), image processing al go rithms or the human physiology. We will consider rep re sen ta tive examples of different kinds of distortion mea sures and are going to discuss them. Keywords: Distortion measure, human visual system (26 pages, 2000) 20. H. W. Hamacher, M. Labbé, S. Nickel, T. Sonneborn Polyhedral Properties of the Uncapacitated Multiple Allocation Hub Location Problem We examine the feasibility polyhedron of the un ca - pac i tat ed hub location problem (UHL) with multiple al lo ca tion, which has applications in the fields of air passenger and cargo transportation, telecommunication and postal delivery services. In particular we determine the di men sion and derive some classes of facets of this polyhedron. We develop some general rules about lifting facets from the uncapacitated facility location (UFL) for UHL and pro ject ing facets from UHL to UFL. By applying these rules we get a new class of facets for UHL which dom i nates the inequalities in the original formulation. Thus we get a new formulation of UHL whose constraints are all facet defining. We show its superior computational per for mance by benchmarking it on a well known data set. Keywords: integer programming, hub location, facility location, valid inequalities, facets, branch and cut (21 pages, 2000) 21. H. W. Hamacher, A. Schöbel Design of Zone Tariff Systems in Public Trans por ta tion Given a public transportation system represented by its stops and direct connections between stops, we consider two problems dealing with the prices for the customers: The fare problem in which subsets of stops are already aggregated to zones and good tariffs have to be found in the existing zone system. Closed form solutions for the fare problem are presented for three objective functions. In the zone problem the design of the zones is part of the problem. This problem is NP hard and we there fore propose three heuristics which prove to be very successful in the redesign of one of Germany s trans por ta tion systems. (30 pages, 2001) 22. D. Hietel, M. Junk, R. Keck, D. Teleaga: The Finite-Volume-Particle Method for Conservation Laws In the Finite-Volume-Particle Method (FVPM), the weak formulation of a hyperbolic conservation law is dis cretized by restricting it to a discrete set of test functions. In con trast to the usual Finite-Volume approach, the test func tions are not taken as characteristic functions of the con trol volumes in a spatial grid, but are chosen from a par ti tion of unity with smooth and overlapping partition func tions (the particles), which can even move along pre - scribed velocity fields. The information exchange be tween particles is based on standard numerical flux func tions. Geometrical information, similar to the surface area of the cell faces in the Finite-Volume Method and the cor re spond ing normal directions are given as integral quan ti ties of the partition functions. After a brief der i va tion of the Finite-Volume-Particle Meth od, this work fo cus es on the role of the geometric coefficients in the scheme. (16 pages, 2001) 23. T. Bender, H. Hennes, J. Kalcsics, M. T. Melo, S. Nickel Location Software and Interface with GIS and Supply Chain Management The objective of this paper is to bridge the gap between location theory and practice. To meet this objective focus is given to the development of software capable of ad dress ing the different needs of a wide group of users. There is a very active community on location theory en com pass ing many research fields such as operations re search, computer science, mathematics, engineering, geography, economics and marketing. As a result, people working on facility location problems have a very diverse background and also different needs regarding the soft ware to solve these problems. For those interested in non-commercial applications (e. g. students and re search ers), the library of location algorithms (LoLA can be of considerable assistance. LoLA contains a collection of efficient algorithms for solving planar, network and dis crete facility location problems. In this paper, a de tailed description of the func tion al ity of LoLA is pre sent ed. In the fields of geography and marketing, for in stance, solv ing facility location prob lems requires using large amounts of demographic data. Hence, members of these groups (e. g. urban planners and sales man ag ers) often work with geo graph i cal information too s. To address the specific needs of these users, LoLA was inked to a geo graph i cal information system (GIS) and the details of the com bined functionality are de scribed in the paper. Fi nal ly, there is a wide group of prac ti tio ners who need to solve large problems and require special purpose soft ware with a good data in ter face. Many of such users can be found, for example, in the area of supply chain management (SCM). Lo gis tics activities involved in stra te gic SCM in clude, among others, facility lo ca tion plan ning. In this paper, the development of a com mer cial location soft ware tool is also described. The too is em bed ded in the Ad vanced Planner and Op ti miz er SCM software de vel oped by SAP AG, Walldorf, Germany. The paper ends with some conclusions and an outlook to future ac tiv i ties. Keywords: facility location, software development, geo graph i cal information systems, supply chain manage ment. (48 pages, 2001) 24. H. W. Hamacher, S. A. Tjandra Mathematical Mod el ling of Evacuation Problems: A State of Art This paper details models and algorithms which can be applied to evacuation problems. While it con cen - trates on building evac u a tion many of the results are ap pli ca ble also to regional evacuation. All models consider the time as main parameter, where the travel time between com po nents of the building is part of the input and the over all evacuation time is the output. The paper dis tin guish es between macroscopic and microscopic evac u a tion mod els both of which are able to capture the evac u ees move ment over time. Macroscopic models are mainly used to produce good lower bounds for the evacuation time and do not consid er any individual behavior during the emergency sit u a tion. These bounds can be used to analyze existing build ings or help in the design phase of planning a build ing. Mac ro scop ic approaches which are based on dynamic network flow models (min i mum cost dynamic flow, max i mum dynamic flow, universal maximum flow, quickest path and quickest flow) are described. A special feature of the presented approach is the fact, that travel times of evacuees are not restricted to be constant, but may be density dependent. Using mul ti - cri te ria op ti mi za tion pri or i ty regions and blockage due to fire or smoke may be considered. It is shown how the modelling can be done using time parameter either as discrete or con tin u ous parameter. Microscopic models are able to model the individual evac u ee s char ac ter is tics and the interaction among evac u ees which influence their move ment. Due to the cor re spond ing huge amount of data one uses sim u - la tion ap proach es. Some probabilistic laws for individual evac u ee s move ment are presented. Moreover ideas to mod el the evacuee s movement using cellular automata (CA) and resulting software are presented. In this paper we will focus on macroscopic models and only summarize some of the results of the microscopic approach. While most of the results are applicable to general evacuation situations, we concentrate on building evacuation. (44 pages, 2001) 25. J. Kuhnert, S. Tiwari Grid free method for solving the Poisson equa tion A Grid free method for solving the Poisson equation is presented. This is an it er a tive method. The method is based on the weight ed least squares approximation in which the Poisson equation is enforced to be satisfied in every iterations. The boundary conditions can also be enforced in the it er a tion process. This is a local ap prox i ma tion procedure. The Dirichlet, Neumann and mixed boundary value problems on a unit square are pre sent ed and the analytical so lu tions are compared with the exact so lu tions. Both solutions matched perfectly. Keywords: Poisson equation, Least squares method, Grid free method (19 pages, 2001)
30 26. T. Götz, H. Rave, D. Rei nel-bitzer, K. Steiner, H. Tiemeier Simulation of the fiber spinning process To simulate the influence of pro cess parameters to the melt spinning process a fiber model is used and coupled with CFD calculations of the quench air flow. In the fiber model energy, momentum and mass balance are solved for the polymer mass flow. To calculate the quench air the Lattice Bolt z mann method is used. Sim u la tions and ex per i ments for dif fer ent process parameters and hole con fig u ra tions are com pared and show a good agreement. Keywords: Melt spinning, fiber mod el, Lattice Bolt z mann, CFD (19 pages, 2001) 27. A. Zemitis On interaction of a liquid film with an obstacle In this paper mathematical models for liquid films gen er at ed by impinging jets are discussed. Attention is stressed to the interaction of the liquid film with some obstacle. S. G. Taylor [Proc. R. Soc. London Ser. A 253, 313 (1959)] found that the liquid film generated by impinging jets is very sensitive to properties of the wire which was used as an obstacle. The aim of this presentation is to propose a modification of the Taylor s model, which allows to sim u late the film shape in cases, when the angle between jets is different from 180. Numerical results obtained by dis cussed models give two different shapes of the liquid film similar as in Taylors experiments. These two shapes depend on the regime: either droplets are produced close to the obstacle or not. The difference between two re gimes becomes larger if the angle between jets de creas es. Existence of such two regimes can be very essential for some applications of impinging jets, if the generated liquid film can have a contact with obstacles. Keywords: impinging jets, liquid film, models, numerical solution, shape (22 pages, 2001) 28. I. Ginzburg, K. Steiner Free surface lattice-boltzmann method to model the fill ing of expanding cavities by Bingham Fluids The filling process of viscoplastic metal alloys and plastics in expanding cavities is modelled using the lattice Bolt z mann method in two and three dimensions. These mod els combine the regularized Bingham model for vis co plas tic with a free-interface algorithm. The latter is based on a modified immiscible lattice Boltzmann model in which one species is the fluid and the other one is con sid ered as vacuum. The boundary conditions at the curved liquid-vac u um interface are met without any geo met ri cal front re con struc tion from a first-order Chapman-Enskog expansion. The numerical results obtained with these models are found in good agreement with avail able theoretical and numerical analysis. Keywords: Generalized LBE, free-surface phenomena, interface bound ary conditions, filling processes, Bingham vis co plas tic model, regularized models (22 pages, 2001) 29. H. Neunzert»Denn nichts ist für den Menschen als Menschen etwas wert, was er nicht mit Leidenschaft tun kann«vortrag anlässlich der Verleihung des Akademiepreises des Landes Rheinland-Pfalz am Was macht einen guten Hochschullehrer aus? Auf diese Frage gibt es sicher viele verschiedene, fachbezogene Antworten, aber auch ein paar allgemeine Ge sichts punk te: es bedarf der»leidenschaft«für die Forschung (Max Weber), aus der dann auch die Begeiste rung für die Leh re erwächst. Forschung und Lehre gehören zusammen, um die Wissenschaft als lebendiges Tun vermitteln zu kön nen. Der Vortrag gibt Beispiele dafür, wie in an ge wand ter Mathematik Forschungsaufgaben aus prak ti schen Alltagsproblemstellungen erwachsen, die in die Lehre auf verschiedenen Stufen (Gymnasium bis Gra du ier ten kol leg) einfließen; er leitet damit auch zu einem aktuellen Forschungsgebiet, der Mehrskalenanalyse mit ihren vielfältigen Anwendungen in Bildverarbeitung, Material entwicklung und Strömungsmechanik über, was aber nur kurz gestreift wird. Mathematik erscheint hier als eine moderne Schlüssel technologie, die aber auch enge Beziehungen zu den Geistes- und So zi al wis sen schaf ten hat. Keywords: Lehre, Forschung, angewandte Mathematik, Mehr ska len ana ly se, Strömungsmechanik (18 pages, 2001) 30. J. Kuhnert, S. Tiwari Finite pointset method based on the pro jec - tion method for simulations of the in com - press ible Navier-Stokes equations A Lagrangian particle scheme is applied to the projection method for the incompressible Navier-Stokes equations. The approximation of spatial derivatives is obtained by the weighted least squares method. The pressure Poisson equation is solved by a local iterative procedure with the help of the least squares method. Numerical tests are performed for two dimensional cases. The Couette flow, Poiseuelle flow, decaying shear flow and the driven cavity flow are presented. The numerical solutions are ob tained for stationary as well as instationary cases and are com pared with the analytical solutions for channel flows. Finally, the driven cavity in a unit square is con sid ered and the stationary solution obtained from this scheme is compared with that from the finite element method. Keywords: Incompressible Navier-Stokes equations, Mesh free method, Projection method, Particle scheme, Least squares approximation AMS subject classification: 76D05, 76M28 (25 pages, 2001) 31. R. Korn, M. Krekel Optimal Portfolios with Fixed Consumption or Income Streams We consider some portfolio op ti mi s a tion problems where either the in ves tor has a desire for an a priori spec i fied consumption stream or/and follows a de ter - min is tic pay in scheme while also trying to max i mize expected utility from final wealth. We derive explicit closed form so lu tions for continuous and discrete mone tary streams. The math e mat i cal method used is classi cal stochastic control theory. Keywords: Portfolio optimisation, stochastic con trol, HJB equation, discretisation of control problems. (23 pages, 2002) 32. M. Krekel Optimal portfolios with a loan dependent credit spread If an investor borrows money he generally has to pay high er interest rates than he would have received, if he had put his funds on a savings account. The classical mod el of continuous time portfolio op ti mi s a tion ignores this effect. Since there is ob vi ous ly a connection between the default prob a bil i ty and the total percentage of wealth, which the investor is in debt, we study portfolio optimisation with a control dependent in ter est rate. As sum ing a logarithmic and a power utility func tion, re spec tive ly, we prove ex plic it formulae of the optimal con trol. Keywords: Portfolio op ti mi s a tion, sto chas tic control, HJB equation, credit spread, log utility, power utility, non-linear wealth dynamics (25 pages, 2002) 33. J. Ohser, W. Nagel, K. Schladitz The Euler number of discretized sets - on the choice of adjacency in homogeneous lattices Two approaches for determining the Euler-Poincaré char ac ter is tic of a set observed on lattice points are con sid ered in the context of image analysis { the integral geo met ric and the polyhedral approach. Information about the set is assumed to be available on lattice points only. In order to retain properties of the Euler number and to provide a good approximation of the true Euler number of the original set in the Euclidean space, the ap pro pri ate choice of adjacency in the lattice for the set and its back ground is crucial. Adjacencies are defined using tes sel la tions of the whole space into polyhedrons. In R 3, two new 14 adjacencies are introduced additionally to the well known 6 and 26 adjacencies. For the Euler num ber of a set and its complement, a consistency re la tion holds. Each of the pairs of ad ja cen cies (14:1; 14:1), (14:2; 14:2), (6; 26), and (26; 6) is shown to be a pair of com ple men ta ry adjacencies with respect to this relation. That is, the approximations of the Euler numbers are consistent if the set and its background (complement) are equipped with this pair of adjacencies. Furthermore, sufficient con di tions for the correctness of the ap prox i ma tions of the Euler number are given. The analysis of selected mi cro struc tures and a simulation study illustrate how the es ti mat ed Euler number depends on the cho sen adjacency. It also shows that there is not a unique ly best pair of ad ja cen cies with respect to the estimation of the Euler num ber of a set in Euclidean space. Keywords: image analysis, Euler number, neighborhod relationships, cuboidal lattice (32 pages, 2002) 34. I. Ginzburg, K. Steiner Lattice Boltzmann Model for Free-Surface flow and Its Application to Filling Process in Casting A generalized lattice Boltzmann model to simulate freesurface is constructed in both two and three di men - sions. The proposed model satisfies the interfacial bound ary conditions accurately. A distinctive feature of the model is that the collision processes is carried out only on the points occupied partially or fully by the fluid. To maintain a sharp interfacial front, the method in cludes an anti-diffusion algorithm. The unknown dis tri bu tion functions at the interfacial region are constructed according to the first order Chapman-Enskog analysis. The interfacial bound ary conditions are satis-
31 fied exactly by the co ef fi cients in the Chapman-Enskog expansion. The dis tri bu tion functions are naturally expressed in the local in ter fa cial coordinates. The macroscopic quantities at the in ter face are extracted from the least-square so lu tions of a locally linearized system obtained from the known dis tri bu tion functions. The proposed method does not require any geometric front construction and is robust for any interfacial topology. Simulation results of realistic filling process are presented: rectangular cavity in two di men sions and Hammer box, Campbell box, Shef field box, and Motorblock in three dimensions. To enhance the stability at high Reynolds numbers, various upwind-type schemes are developed. Free-slip and no-slip boundary conditions are also discussed. Keywords: Lattice Bolt z mann models; free-surface phe nom e na; interface bound ary conditions; filling processes; injection molding; vol ume of fluid method; interface bound ary conditions; ad vec tion-schemes; upwind-schemes (54 pages, 2002) 35. M. Günther, A. Klar, T. Materne, R. We ge ner Multivalued fundamental diagrams and stop and go waves for continuum traffic equa tions In the present paper a kinetic model for vehicular traffic leading to multivalued fundamental diagrams is de vel oped and investigated in detail. For this model phase transitions can appear depending on the local density and velocity of the flow. A derivation of associated mac ro scop ic traffic equations from the kinetic equation is given. Moreover, numerical experiments show the ap pear ance of stop and go waves for highway traffic with a bottleneck. Keywords: traffic flow, macroscopic equa tions, kinetic derivation, multivalued fundamental di a gram, stop and go waves, phase transitions (25 pages, 2002) 36. S. Feldmann, P. Lang, D. Prätzel-Wolters Parameter influence on the zeros of network determinants To a network N(q) with determinant D(s;q) depending on a parameter vector q Î R r via identification of some of its vertices, a network N^ (q) is assigned. The paper deals with procedures to find N^ (q), such that its determinant D^ (s;q) admits a factorization in the determinants of appropriate subnetworks, and with the estimation of the deviation of the zeros of D^ from the zeros of D. To solve the estimation problem state space methods are applied. Keywords: Networks, Equicofactor matrix polynomials, Realization theory, Matrix perturbation theory (30 pages, 2002) 37. K. Koch, J. Ohser, K. Schladitz Spectral theory for random closed sets and estimating the covariance via frequency space A spectral theory for stationary random closed sets is developed and provided with a sound mathematical ba sis. Definition and proof of existence of the Bartlett spec trum of a stationary random closed set as well as the proof of a Wiener-Khintchine theorem for the power spectrum are used to two ends: First, well known sec ond order characteristics like the covariance can be es ti mat ed faster than usual via frequency space. Second, the Bartlett spectrum and the power spectrum can be used as second order characteristics in frequency space. Examples show, that in some cases information about the random closed set is easier to obtain from these char ac ter is tics in frequency space than from their real world counterparts. Keywords: Random set, Bartlett spectrum, fast Fourier transform, power spectrum (28 pages, 2002) 38. D. d Humières, I. Ginzburg Multi-reflection boundary conditions for lattice Boltzmann models We present a unified approach of several boundary con di tions for lattice Boltzmann models. Its general frame work is a generalization of previously introduced schemes such as the bounce-back rule, linear or quadrat ic interpolations, etc. The objectives are two fold: first to give theoretical tools to study the existing bound ary conditions and their corresponding accuracy; sec ond ly to design formally third- order accurate boundary conditions for general flows. Using these boundary con di tions, Couette and Poiseuille flows are exact solution of the lattice Boltzmann models for a Reynolds number Re = 0 (Stokes limit). Numerical comparisons are given for Stokes flows in pe ri od ic arrays of spheres and cylinders, linear periodic array of cylinders between moving plates and for Navier-Stokes flows in periodic arrays of cylinders for Re < 200. These results show a significant improvement of the over all accuracy when using the linear interpolations instead of the bounce-back reflection (up to an order of mag ni tude on the hydrodynamics fields). Further im prove ment is achieved with the new multi-reflection bound ary con di tions, reaching a level of accuracy close to the qua si-analytical reference solutions, even for rath er mod est grid res o lu tions and few points in the nar row est chan nels. More important, the pressure and velocity fields in the vicinity of the ob sta cles are much smoother with multi-reflection than with the other boundary con di tions. Finally the good stability of these schemes is highlight ed by some sim u la tions of moving obstacles: a cylin der be tween flat walls and a sphere in a cylinder. Keywords: lattice Boltzmann equation, boudary condistions, bounce-back rule, Navier-Stokes equation (72 pages, 2002) 39. R. Korn Elementare Finanzmathematik Im Rahmen dieser Arbeit soll eine elementar gehaltene Einführung in die Aufgabenstellungen und Prinzipien der modernen Finanzmathematik gegeben werden. Ins be son dere werden die Grundlagen der Modellierung von Aktienkursen, der Bewertung von Optionen und der Portfolio-Optimierung vorgestellt. Natürlich können die verwendeten Methoden und die entwickelte Theorie nicht in voller Allgemeinheit für den Schuluntericht ver wen det werden, doch sollen einzelne Prinzipien so her aus gearbeitet werden, dass sie auch an einfachen Beispielen verstanden werden können. Keywords: Finanzmathematik, Aktien, Optionen, Portfolio-Optimierung, Börse, Lehrerweiterbildung, Math e - ma tikun ter richt (98 pages, 2002) 40. J. Kallrath, M. C. Müller, S. Nickel Batch Presorting Problems: Models and Complexity Results In this paper we consider short term storage systems. We analyze presorting strategies to improve the effiency of these storage systems. The presorting task is called Batch PreSorting Problem (BPSP). The BPSP is a variation of an assigment problem, i. e., it has an assigment problem kernel and some additional constraints. We present different types of these presorting problems, introduce mathematical programming formulations and prove the NP-completeness for one type of the BPSP. Experiments are carried out in order to compare the different model formulations and to investigate the behavior of these models. Keywords: Complexity theory, Integer programming, Assigment, Logistics (19 pages, 2002) 41. J. Linn On the frame-invariant description of the phase space of the Folgar-Tucker equation The Folgar-Tucker equation is used in flow simulations of fiber suspensions to predict fiber orientation depending on the local flow. In this paper, a complete, frame-invariant description of the phase space of this differential equation is presented for the first time. Key words: fiber orientation, Folgar-Tucker equation, injection molding (5 pages, 2003) 42. T. Hanne, S. Nickel A Multi-Objective Evolutionary Algorithm for Scheduling and Inspection Planning in Software Development Projects In this article, we consider the problem of planning inspections and other tasks within a software development (SD) project with respect to the objectives quality (no. of defects), project duration, and costs. Based on a discrete-event simulation model of SD processes comprising the phases coding, inspection, test, and rework, we present a simplified formulation of the problem as a multiobjective optimization problem. For solving the problem (i. e. finding an approximation of the efficient set) we develop a multiobjective evolutionary algorithm. Details of the algorithm are discussed as well as results of its application to sample problems. Key words: multiple objective programming, project management and scheduling, software development, evolutionary algorithms, efficient set (29 pages, 2003) 43. T. Bortfeld, K.-H. Küfer, M. Monz, A. Scherrer, C. Thieke, H. Trinkaus Intensity-Modulated Radiotherapy - A Large Scale Multi-Criteria Programming Problem - Radiation therapy planning is always a tight rope walk between dangerous insufficient dose in the target volume and life threatening overdosing of organs at risk. Finding ideal balances between these inherently contradictory goals challenges dosimetrists and physicians in their daily practice. Today s planning systems are typically based on a single evaluation function that measures the quality of a radiation treatment plan. Unfortunately, such a one dimensional approach can-
32 not satisfactorily map the different backgrounds of physicians and the patient dependent necessities. So, too often a time consuming iteration process between evaluation of dose distribution and redefinition of the evaluation function is needed. In this paper we propose a generic multi-criteria approach based on Pareto s solution concept. For each entity of interest - target volume or organ at risk a structure dependent evaluation function is defined measuring deviations from ideal doses that are calculated from statistical functions. A reasonable bunch of clinically meaningful Pareto optimal solutions are stored in a data base, which can be interactively searched by physicians. The system guarantees dynamical planning as well as the discussion of tradeoffs between different entities. Mathematically, we model the upcoming inverse problem as a multi-criteria linear programming problem. Because of the large scale nature of the problem it is not possible to solve the problem in a 3D-setting without adaptive reduction by appropriate approximation schemes. Our approach is twofold: First, the discretization of the continuous problem is based on an adaptive hierarchical clustering process which is used for a local refinement of constraints during the optimization procedure. Second, the set of Pareto optimal solutions is approximated by an adaptive grid of representatives that are found by a hybrid process of calculating extreme compromises and interpolation methods. Keywords: multiple criteria optimization, representative systems of Pareto solutions, adaptive triangulation, clustering and disaggregation techniques, visualization of Pareto solutions, medical physics, external beam radiotherapy planning, intensity modulated radiotherapy (31 pages, 2003) 44. T. Halfmann, T. Wichmann Overview of Symbolic Methods in Industrial Analog Circuit Design Industrial analog circuits are usually designed using numerical simulation tools. To obtain a deeper circuit understanding, symbolic analysis techniques can additionally be applied. Approximation methods which reduce the complexity of symbolic expressions are needed in order to handle industrial-sized problems. This paper will give an overview to the field of symbolic analog circuit analysis. Starting with a motivation, the state-of-the-art simplification algorithms for linear as well as for nonlinear circuits are presented. The basic ideas behind the different techniques are described, whereas the technical details can be found in the cited references. Finally, the application of linear and nonlinear symbolic analysis will be shown on two example circuits. Keywords: CAD, automated analog circuit design, symbolic analysis, computer algebra, behavioral modeling, system simulation, circuit sizing, macro modeling, differential-algebraic equations, index (17 pages, 2003) 45. S. E. Mikhailov, J. Orlik Asymptotic Homogenisation in Strength and Fatigue Durability Analysis of Composites Asymptotic homogenisation technique and two-scale convergence is used for analysis of macro-strength and fatigue durability of composites with a periodic structure under cyclic loading. The linear damage accumulation rule is employed in the phenomenological micro-durability conditions (for each component of the composite) under varying cyclic loading. Both local and non-local strength and durability conditions are analysed. The strong convergence of the strength and fatigue damage measure as the structure period tends to zero is proved and their limiting values are estimated. Keywords: multiscale structures, asymptotic homogenization, strength, fatigue, singularity, non-local conditions (14 pages, 2003) 46. P. Domínguez-Marín, P. Hansen, N. Mladenovi ć, S. Nickel Heuristic Procedures for Solving the Discrete Ordered Median Problem We present two heuristic methods for solving the Discrete Ordered Median Problem (DOMP), for which no such approaches have been developed so far. The DOMP generalizes classical discrete facility location problems, such as the p-median, p-center and Uncapacitated Facility Location problems. The first procedure proposed in this paper is based on a genetic algorithm developed by Moreno Vega [MV96] for p-median and p-center problems. Additionally, a second heuristic approach based on the Variable Neighborhood Search metaheuristic (VNS) proposed by Hansen & Mladenovic [HM97] for the p-median problem is described. An extensive numerical study is presented to show the efficiency of both heuristics and compare them. Keywords: genetic algorithms, variable neighborhood search, discrete facility location (31 pages, 2003) 47. N. Boland, P. Domínguez-Marín, S. Nickel, J. Puerto Exact Procedures for Solving the Discrete Ordered Median Problem The Discrete Ordered Median Problem (DOMP) generalizes classical discrete location problems, such as the N-median, N-center and Uncapacitated Facility Location problems. It was introduced by Nickel [16], who formulated it as both a nonlinear and a linear integer program. We propose an alternative integer linear programming formulation for the DOMP, discuss relationships between both integer linear programming formulations, and show how properties of optimal solutions can be used to strengthen these formulations. Moreover, we present a specific branch and bound procedure to solve the DOMP more efficiently. We test the integer linear programming formulations and this branch and bound method computationally on randomly generated test problems. Keywords: discrete location, Integer programming (41 pages, 2003) 48. S. Feldmann, P. Lang Padé-like reduction of stable discrete linear systems preserving their stability A new stability preserving model reduction algorithm for discrete linear SISO-systems based on their impulse response is proposed. Similar to the Padé approximation, an equation system for the Markov parameters involving the Hankel matrix is considered, that here however is chosen to be of very high dimension. Although this equation system therefore in general cannot be solved exactly, it is proved that the approximate solution, computed via the Moore-Penrose inverse, gives rise to a stability preserving reduction scheme, a property that cannot be guaranteed for the Padé approach. Furthermore, the proposed algorithm is compared to another stability preserving reduction approach, namely the balanced truncation method, showing comparable performance of the reduced systems. The balanced truncation method however starts from a state space description of the systems and in general is expected to be more computational demanding. Keywords: Discrete linear systems, model reduction, stability, Hankel matrix, Stein equation (16 pages, 2003) 49. J. Kallrath, S. Nickel A Polynomial Case of the Batch Presorting Problem This paper presents new theoretical results for a special case of the batch presorting problem (BPSP). We will show tht this case can be solved in polynomial time. Offline and online algorithms are presented for solving the BPSP. Competetive analysis is used for comparing the algorithms. Keywords: batch presorting problem, online optimization, competetive analysis, polynomial algorithms, logistics (17 pages, 2003) 50. T. Hanne, H. L. Trinkaus knowcube for MCDM Visual and Interactive Support for Multicriteria Decision Making In this paper, we present a novel multicriteria decision support system (MCDSS), called knowcube, consisting of components for knowledge organization, generation, and navigation. Knowledge organization rests upon a database for managing qualitative and quantitative criteria, together with add-on information. Knowledge generation serves filling the database via e. g. identification, optimization, classification or simulation. For finding needles in haycocks, the knowledge navigation component supports graphical database retrieval and interactive, goal-oriented problem solving. Navigation helpers are, for instance, cascading criteria aggregations, modifiable metrics, ergonomic interfaces, and customizable visualizations. Examples from real-life projects, e.g. in industrial engineering and in the life sciences, illustrate the application of our MCDSS. Key words: Multicriteria decision making, knowledge management, decision support systems, visual interfaces, interactive navigation, real-life applications. (26 pages, 2003) 51. O. Iliev, V. Laptev On Numerical Simulation of Flow Through Oil Filters This paper concerns numerical simulation of flow through oil filters. Oil filters consist of filter housing (filter box), and a porous filtering medium, which completely separates the inlet from the outlet. We discuss mathematical models, describing coupled flows in the pure liquid subregions and in the porous filter media, as well as interface conditions between them. Further, we reformulate the problem in fictitious regions method manner, and discuss peculiarities of the numerical algorithm in solving the coupled system. Next, we show numerical results, validating the model and the
33 algorithm. Finally, we present results from simulation of 3-D oil flow through a real car filter. Keywords: oil filters, coupled flow in plain and porous media, Navier-Stokes, Brinkman, numerical simulation (8 pages, 2003) 52. W. Dörfler, O. Iliev, D. Stoyanov, D. Vassileva On a Multigrid Adaptive Refinement Solver for Saturated Non-Newtonian Flow in Porous Media A multigrid adaptive refinement algorithm for non- Newtonian flow in porous media is presented. The saturated flow of a non-newtonian fluid is described by the continuity equation and the generalized Darcy law. The resulting second order nonlinear elliptic equation is discretized by a finite volume method on a cell-centered grid. A nonlinear full-multigrid, full-approximation-storage algorithm is implemented. As a smoother, a single grid solver based on Picard linearization and Gauss-Seidel relaxation is used. Further, a local refinement multigrid algorithm on a composite grid is developed. A residual based error indicator is used in the adaptive refinement criterion. A special implementation approach is used, which allows us to perform unstructured local refinement in conjunction with the finite volume discretization. Several results from numerical experiments are presented in order to examine the performance of the solver. Keywords: Nonlinear multigrid, adaptive refinement, non-newtonian flow in porous media (17 pages, 2003) 53. S. Kruse On the Pricing of Forward Starting Options under Stochastic Volatility We consider the problem of pricing European forward starting options in the presence of stochastic volatility. By performing a change of measure using the asset price at the time of strike determination as a numeraire, we derive a closed-form solution based on Heston s model of stochastic volatility. Keywords: Option pricing, forward starting options, Heston model, stochastic volatility, cliquet options (11 pages, 2003) 54. O. Iliev, D. Stoyanov Multigrid adaptive local refinement solver for incompressible flows A non-linear multigrid solver for incompressible Navier- Stokes equations, exploiting finite volume discretization of the equations, is extended by adaptive local refinement. The multigrid is the outer iterative cycle, while the SIMPLE algorithm is used as a smoothing procedure. Error indicators are used to define the refinement subdomain. A special implementation approach is used, which allows to perform unstructured local refinement in conjunction with the finite volume discretization. The multigrid - adaptive local refinement algorithm is tested on 2D Poisson equation and further is applied to a lid-driven flows in a cavity (2D and 3D case), comparing the results with bench-mark data. The software design principles of the solver are also discussed. Keywords: Navier-Stokes equations, incompressible flow, projection-type splitting, SIMPLE, multigrid methods, adaptive local refinement, lid-driven flow in a cavity (37 pages, 2003) 55. V. Starikovicius The multiphase flow and heat transfer in porous media In first part of this work, summaries of traditional Multiphase Flow Model and more recent Multiphase Mixture Model are presented. Attention is being paid to attempts include various heterogeneous aspects into models. In second part, MMM based differential model for two-phase immiscible flow in porous media is considered. A numerical scheme based on the sequential solution procedure and control volume based finite difference schemes for the pressure and saturation-conservation equations is developed. A computer simulator is built, which exploits object-oriented programming techniques. Numerical result for several test problems are reported. Keywords: Two-phase flow in porous media, various formulations, global pressure, multiphase mixture model, numerical simulation (30 pages, 2003) 56. P. Lang, A. Sarishvili, A. Wirsen Blocked neural networks for knowledge extraction in the software development process One of the main goals of an organization developing software is to increase the quality of the software while at the same time to decrease the costs and the duration of the development process. To achieve this, various decisions e.ecting this goal before and during the development process have to be made by the managers. One appropriate tool for decision support are simulation models of the software life cycle, which also help to understand the dynamics of the software development process. Building up a simulation model requires a mathematical description of the interactions between di.erent objects involved in the development process. Based on experimental data, techniques from the.eld of knowledge discovery can be used to quantify these interactions and to generate new process knowledge based on the analysis of the determined relationships. In this paper blocked neuronal networks and related relevance measures will be presented as an appropriate tool for quanti.cation and validation of qualitatively known dependencies in the software development process. Keywords: Blocked Neural Networks, Nonlinear Regression, Knowledge Extraction, Code Inspection (21 pages, 2003) 57. H. Knaf, P. Lang, S. Zeiser Diagnosis aiding in Regulation Thermography using Fuzzy Logic The objective of the present article is to give an overview of an application of Fuzzy Logic in Regulation Thermography, a method of medical diagnosis support. An introduction to this method of the complementary medical science based on temperature measurements so-called thermograms is provided. The process of modelling the physician s thermogram evaluation rules using the calculus of Fuzzy Logic is explained. Keywords: fuzzy logic,knowledge representation, expert system (22 pages, 2003) Status quo: November 2003
Service -realization. Imported web -service interfaces. Web -service usage interface. Web -service specification. client. build/buy reuse/buy
Ò Å Ø Ó ÓÐÓ Ý ÓÖ Ï Ë ÖÚ Ò Ù Ò ÈÖÓ Å ÈºÈ Ô ÞÓ ÐÓÙ Ò Â Ò Ò ÁÒ ÓÐ Ì Ð ÙÖ ÍÒ Ú Ö ØÝ ÈÇ ÓÜ ¼½ ¼¼¼ Ä Ì Ð ÙÖ Æ Ø ÖÐ Ò Ñ Ô Ò Ù ºÒÐ ØÖ غ ¹ Ù Ò Ø Ò ØØ ÒØ ÓÒ ÖÓÑ ÓÑÔÓÒ ÒØ ØÓ Û ÖÚ ÔÔÐ Ø ÓÒ º ÅÓ Ø ÒØ ÖÔÖ Ô Ò ÑÓ Ø
Best Place to Find Information on Marriage
USENIX Association Proceedings of the 4th Annual Linux Showcase & Conference, Atlanta Atlanta, Georgia, USA October 10 14, 2000 THE ADVANCED COMPUTING SYSTEMS ASSOCIATION 2000 by The USENIX Association
ORB User Sponsor Client Authenticate User Request Principal Create Credentials Authenticator Attributes ORB
Ö Ñ ÛÓÖ ÓÖ ÁÑÔÐ Ñ ÒØ Ò ÊÓÐ ¹ ÓÒØÖÓÐ Í Ò ÇÊ Ë ÙÖ ØÝ Ë ÖÚ ÃÓÒ Ø ÒØ Ò ÞÒÓ ÓÚ Ò Ò ÒØ Ö ÓÖ Ú Ò ØÖ ÙØ ËÝ Ø Ñ Ò Ò Ö Ò Ë ÓÓÐ Ó ÓÑÔÙØ Ö Ë Ò ÐÓÖ ÁÒØ ÖÒ Ø ÓÒ Ð ÍÒ Ú Ö ØÝ ØÖ Ø Ì Ô Ô Ö ÓÛ ÓÛ ÖÓÐ ¹ ÓÒØÖÓÐ Ê µ ÑÓ Ð ÓÙÐ
Ò ÐÝÞ Ò ÔÐÓÊ ÓÛÒÐÓ ÈÖÓ Ð Û Ø ÁÒ¹ Ø ÐÐ ÒØ Å Ò Ö À Þ Ö ËÓ Ý Ò Ò Ü Ð Ï ÖÛ ØÞ ½ ½ ÁÒ Ø ØÙØ ĐÙÖ ËØ Ø Ø ÙÒ ĐÇ ÓÒÓÑ ØÖ ÀÙÑ ÓÐ Ø ÍÒ Ú Ö ØĐ Ø ÞÙ ÖÐ Ò ËÔ Ò Ù Ö ËØÖº ½ ½¼½ ÖÐ Ò ËÙÑÑ ÖÝ Ì Ô Ô Ö Ò Ü ÑÔÐ Ó Ø Ñ Ò Ò Ò
Ø Å Ò Ò Û Ø ËØÖÙØÙÖ ÔØ Ò Æ ÙÖ Ð Æ ØÛÓÖ Ý Ä ÔÖ Ý ÑÑ Ò Ð ÓÓÒ Ëº ÀÓÒ µ Ø Ù Ñ ØØ Ò ÙÐÐ ÐÑ ÒØ Ó Ø Ö ÕÙ Ö Ñ ÒØ ÓÖ Ø Ö Ó ÓØÓÖ Ó È ÐÓ ÓÔ Ý Ë ÓÓÐ Ó ÓÑÔÙØ Ö Ë Ò Ò ËÓ ØÛ Ö Ò Ò Ö Ò ÅÓÒ ÍÒ Ú Ö ØÝ Å Ö ¾¼¼¼ ÌÓ ÑÑ ² Ì
ØÓÖ Ò Ê Ø ÓÒ Ð ÈÓÐÝÒÓÑ Ð ÓÚ Ö Ø ÓÑÔÐ Ü ÆÙÑ Ö Ò Ö Ø ÂÓ Ò ÒÒÝ Ý Ì ÓÑ ÖÖ ØÝ Þ ÂÓ Ï ÖÖ Ò Ü ÖÙ ÖÝ ½ ØÖ Ø Æ Ð ÓÖ Ø Ñ Ö Ú Ò ÓÖ Ø ÖÑ Ò Ò Ø ÒÙÑ Ö Ò Ö Ó Ø ØÓÖ ÖÖ Ù Ð ÓÚ Ö Ø ÓÑÔÐ Ü ÒÙÑ Ö Ó ÑÙÐØ ¹ Ú Ö Ø ÔÓÐÝÒÓÑ Ð
b c d bidirectional link unidirectional link
Ï Ö Ð Æ ØÛÓÖ ¼ ¾¼¼½µ ß ½ ÊÓÙØ Ò Ð ÓÖ Ø Ñ ÓÖ Ï Ö Ð ÀÓ Æ ØÛÓÖ Û Ø ÍÒ Ö Ø ÓÒ Ð Ä Ò Ê Ú ÈÖ Ô ÖØÑ ÒØ Ó ÓÑÔÙØ Ö Ë Ò ÍÒ Ú Ö ØÝ Ó Ì Ü Ø ÐÐ Ê Ö ÓÒ Ì ¼ ¹¼ º ¹Ñ Ð Ö Ú ÔÙØ ÐÐ º Ù ÅÓ Ø Ó Ø ÖÓÙØ Ò Ð ÓÖ Ø Ñ ÓÖ Ó Ò ØÛÓÖ
Networks of Collaboration in Oligopoly
TI 2000-092/1 Tinbergen Institute Discussion Paper Networks of Collaboration in Oligopoly Sanjeev Goyal Sumit Joshi Tinbergen Institute The Tinbergen Institute is the institute for economic research of
IPsec (enc) IPsec extensions Ethernet Driver. etherip_input() bridge_input()
ÌÖ Ò Ô Ö ÒØ Æ ØÛÓÖ Ë ÙÖ ØÝ ÈÓÐ Ý Ò ÓÖ Ñ ÒØ Ò ÐÓ º à ÖÓÑÝØ ØÖ ÙØ ËÝ Ø Ñ Ä ÍÒ Ú Ö ØÝ Ó È ÒÒ ÝÐÚ Ò Ò ÐÓ ÓÔ Ò ºÓÖ Â ÓÒ Äº ÏÖ Ø Æ ØÛÓÖ Ë ÙÖ ØÝ Ì ÒÓÐÓ ÁÒº Æ ÌË µ ÓÒÓÔ Ò ºÓÖ ØÖ Ø ÓÖ ÓÒ ÙÖ Ø ÓÒ Ò Ò Ø ÔÖÓØ Ø ÒÓ
N servers. Load-Balancing. A(t) speed s. clients. αn servers. (i) speed s. N servers speed αs. (ii)
ËÀÊ ÆÃ Ò Ï Ë ÖÚ Ö ÖÑ Å Ø Ó ÓÖ Ë Ð Ð È Ö ÓÖÑ Ò ÈÖ Ø ÓÒ Ò Å ÙÖ Ñ ÒØ ÃÓÒ Ø ÒØ ÒÓ È ÓÙÒ Ô ÖØÑ ÒØ Ó Ð ØÖ Ð Ò Ò Ö Ò Ò ÓÑÔÙØ Ö Ë Ò ÍÒ Ú Ö ØÝ Ó ËÓÙØ ÖÒ Ð ÓÖÒ Ñ Ð Ô ÓÙÒ Ù º Ù Ô ÓÒ ¼¼½¹¾½ ¹ ¼ Ö ¼ Å Ð ÒØÓ Ú º ¼ ÄÓ
ÓÒ ÙÖ Ø ÓÒ ËÔ Å Ò ÓÖ Ù Ñ ÒØ Ò ÀÙÑ Ò È Ö ÓÖÑ Ò Ò Ì Ð ÓÔ Ö Ø ÓÒ Ì Áº ÁÚ Ò Ú Ò Îº ÄÙÑ Ð Ý ÊÓ ÓØ Ä ÍÒ Ú Ö ØÝ Ó Ï ÓÒ Ò¹Å ÓÒ Å ÓÒ Ï ÓÒ Ò ¼ ÍË ÓÖ ºÛ º Ù ØÖ Ø Ì Ô Ô Ö ÓÒ Ö Ò ÔÔÖÓ ØÓ ÓÔ Ö ØÓÖ¹ Ù Ö Ð Ø Ñ ÑÓØ ÓÒ
Ò ÐÝ Ó ÎÓ ÇÚ Ö ÁÈ ÌÖ Æ Â Ñ ÙÖØ ÇØÓ Ö ½ ØÖ Ø ÎÓ ÓÚ Ö ÁÈ ÔÔÐ Ø ÓÒ ÐÐÓÛ Ø Ð Ô ÓÒ ÓÒÚ Ö Ø ÓÒ ÓÚ Ö Ø Ò Ö ÁÒØ ÖÒ Ø ÓÒÒ Ø ÓÒº Ì Ò Ü Ø Ò Ò Û Ù Ó Ø ÁÒØ ÖÒ Ø ÓÖ ÑÓ Ø Ù Ö Ò Ò Ö ÙÐØ Ò Ð Ö Ó Ø Ú Ò ÓÖ ÐÓÒ Ø Ò ØÓÐÐ ÐÐ
<<program>> Internet Trader. <<user>> user interface
Ò ÓÖ ÂÌÖ Ö Ò ÁÒØ ÖÒ Ø ÌÖ Ò Ö Ø ÓÒ Å Ö ÐÓ ³ ÑÓÖ Ñ ÖÐÓ ÖÖ Þ Ñ ÒºÙ Ô º Ö ÍÒ Ú Ö Ö Ð È ÖÒ Ñ ÙÓ ÒØÖÓ ÁÒ ÓÖÑ Ø Ü ÈÓ Ø Ð ½ ¼ ¼¹ ¼ Ê ¹È Ö Þ Ð ØÖ Ø Ý Ù Ò Ø ÑÔÐ Ø ÓÖ ÖÚ Ö Ò Ë ÖÚ ÓÚ ÖÝ ÈÖÓØÓÓÐ Ë Èµ Ò Ð ÙØÓÑ Ø ÓÚ
ÈÖ ÔÖ ÒØ ¼ ¾¼¼¼µ ß ½ ¹ÓÑÑ Ö Ò Ø ÁÒ Ò ÁÒ ÙÖ Ò ÁÒ Ù ØÖÝ ÈÖÓ Ô Ø Ò ÙØÙÖ ÈÖ Ø Ú Ö ÙÔØ Ô ÖØÑ ÒØ Ó Ð ØÖ Ð Ò ÓÑÔÙØ Ö Ò Ò Ö Ò ÍÒ Ú Ö ØÝ Ó Ð ÓÖÒ Ë ÒØ Ö Ö ½¼ ÍË º ¹Å Ð Ô ÐÔ º ºÙ º Ù Ü ½ ¼ µ ¾ ¾º à ØÙÖ Ë Ò ÙÔØ Å
ÑÔ Ö Ð Ø ÖÑ Ò ÒØ Ó ÑÔÐÓÝ Ê Ø Ò Ò Ø ÁÒÒÓÚ Ø ÓÒ Ì ÓÑ Û ÒØÖ ÓÖ ÙÖÓÔ Ò ÓÒÓÑ Ê Ö Ïµ ȺǺ ÓÜ ½¼ ½ ½ Å ÒÒ Ñ ÖÑ ÒÝ ¹Ñ Ð ÞÛ Þ Ûº ÆÓÚ Ñ Ö ¾¼¼¼ Á Û ÒØ ØÓ Ø Ò Å Ð Ö Ø À Ò ÓÖ ÑĐÙÒ Ò Ë Ò Ö ÓØØ Ð È Ø Ö Â ¹ Ó Ò Ù Å Ø
Ë ÓÖØ Ì ÖÑ Ú ÓÙÖ Ó È Ò Å ÙÖ Ñ ÒØ Ø Ù Ñ ØØ Ò Ô ÖØ Ð ÙÐ ÐÑ ÒØ Ó Ø Ö ÕÙ Ö Ñ ÒØ ÓÖ Ø Ö Ó Å Ø Ö Ó Ë Ò Ò ÓÑÔÙØ Ö Ë Ò Ø Ø ÍÒ Ú Ö ØÝ Ó Ï ØÓ Ý ÁÆ Æ ÍÒ Ú Ö ØÝ Ó Ï ØÓ ÂÙÐÝ ½ ØÖ Ø ÁÒ Ø ØÙ Ý Á ÅÈ ÁÒØ ÖÒ Ø ÓÒØÖÓÐ Å
ÌÓÛ Ö Ò Ý¹ØÓ¹Ð ÖÒ Ò ÜØ Ò Ð ÈÐ Ø ÓÖÑ ÓÖ Ë ÒØ Î Ù Ð Þ Ø ÓÒ À ÖÚ Ë Ò Ð Ö ÓÑÔÙØ Ö Ë Ò Ô ÖØÑ ÒØ ÍÒ Ú Ö ØÝ Ó Æ Ù Ø Ð À¹¾¼¼ Æ Ù Ø Ð ÖÚ º Ò Ð Ö ÙÒ Ò º Å Ý ¾¼¼½ Ñ ÙÜ Ö ÝÓÒ ÓÐ Ð Î ÖÓÒ ÕÙ Ø ÂÙ Ø Ò Ú Ê Ñ Ö Ñ ÒØ ØØ
NON-COMPRESSED PGP MESSAGE L E N G T H M O D E C T B NAME LENGTH SEDP PACKET
ÁÑÔÐ Ñ ÒØ Ø ÓÒ Ó Ó Ò¹ Ô ÖØ ÜØ ØØ Ò Ø È È Ò ÒÙÈ Ã Ð Â ÐÐ ½ ÂÓÒ Ø Ò Ã ØÞ ¾ ÖÙ Ë Ò Ö ¾ ½ Ì ÓÒ ÓÑÔ ÒÝ Ð ÓÒÓÑÔ ÒݺÓÑ Ô ÖØÑ ÒØ Ó ÓÑÔÙØ Ö Ë Ò ÍÒ Ú Ö ØÝ Ó Å ÖÝÐ Ò ÓÐÐ È Ö µ ØÞ ºÙÑ º Ù ÓÙÒØ ÖÔ Ò ÁÒØ ÖÒ Ø Ë ÙÖ ØÝ
ÌÖ Ò ÓÒ Ø Ò Ø ÓÐ Ï Ö Ö Ò ÑÔ Ö Ð Ò ÐÝ Í Ò Ö Ø Ý Æ Ø Ò Ð Ò Å ØØ Û ÙÑ Ô ÖØÑ ÒØ Ó ÈÓÐ Ø Ð Ë Ò ÍÒ Ú Ö ØÝ Ó Ð ÓÖÒ Ë Ò Ó Ä ÂÓÐÐ ¾¼ Ù º Ù ½ ÈÖ Ô Ö ÓÖ Ð Ú ÖÝ Ø Ø ÏÓÖ ÓÔ ÓÒ ÌÖ Ò ÓÒ Ø Ó Ø ¾¼¼¼ ÈÊ ÂÓ ÒØ ÏÓÖ ÓÔ ÓÔ
Universitat Autònoma de Barcelona Ö ÏÓÖ Ø Ø ÓÒ Ò ÝÒ Ñ ÅÓ Ð ØÓ Ø Ò ÓÖÓÒ ÖÝ ÌÖ Ò ÐÝ ÖØ Ø ÓÒ Ù Ñ ØØ Ý Ê Ö Ó ÌÓÐ Ó ÅÓÖ Ð Ø ÍÒ Ú Ö Ø Ø ÙØ ÓÒÓÑ Ö ÐÓÒ ØÓ ÙÐ Ð Ø Ö Ó ÓØÓÖ Ò ÁÒ ÓÖÑ Ø º ÐÐ Ø ÖÖ ÂÙÒ ½ ¾¼¼½ Ö ØÓÖ
Ï Ö Ð Æ ØÛÓÖ ¼ ¾¼¼½µ ß ½ ÄÓ ¹ Ð Ò ÄÓ Ø ÓÒ Å Ò Ñ ÒØ ÓÖ ÐÐÙÐ Ö ÅÓ Ð ËÝ Ø Ñ Ù Ò ÉÙÓÖÙÑ Ò ÝÒ Ñ À Ò Ê Ú ÈÖ Ý ÑÙÒØ À Ò ÅÙ Ë Ò Ð Ô ÖØÑ ÒØ Ó ÓÑÔÙØ Ö Ë Ò ÍÒ Ú Ö ØÝ Ó Ì Ü Ø ÐÐ Ê Ö ÓÒ Ì ¼ ¹¼ º ¹Ñ Ð Ö Ú ÔÙØ ÐÐ º Ù
Ë ÓÖØ¹ÖÙÒ Ö ØÙÖÒ ÖÓÙÒ Ø ÌÖ Ó ÓÖÔÓÖ Ø ÁÒ Ö ÓÒ Ø ÄÓÒ ÓÒ ËØÓ Ü Ò ËÝÐÚ Ò Ö Ö Ð Ò Ö ÓÖÝ ÂÓ Ò Å Ø Ø Ó Ò Á Ò ÌÓÒ º Ý Â ÒÙ ÖÝ ¾¼¼½ ØÖ Ø ÈÖ Ú ÓÙ ÛÓÖ Ü Ñ Ò Ø ÐÓÒ ¹ÖÙÒ ÔÖÓ Ø Ð ØÝ Ó ØÖ Ø Ñ Ñ Ò Ø ØÖ Ó ÓÑÔ ÒÝ Ö ØÓÖ
Å Ø ÓÑÔÙØ Ò ÓÒ ÓÑÑÓ ØÝ ÓÑÔÙØ Ö Ý Ö Ö ØÐÓÓ ÖØ Ø ÓÒ Ù Ñ ØØ Ò Ô ÖØ Ð ÙÐ ÐÐÑ ÒØ Ó Ø Ö ÕÙ Ö Ñ ÒØ ÓÖ Ø Ö Ó ÓØÓÖ Ó È ÐÓ ÓÔ Ý Ô ÖØÑ ÒØ Ó ÓÑÔÙØ Ö Ë Ò Æ Û ÓÖ ÍÒ Ú Ö ØÝ Å Ý ½ ÔÔÖÓÚ Ú Åº Ã Ñ ÌÓ ÑÝ Ñ ÐÝ Ò Ö Ò Û Ó
ÙÒØ ÓÒ Ð ÈÖÓ Ö ÑÑ Ò ÈÖÓ Ö Ñ ÌÖ Ò ÓÖÑ Ø ÓÒ Ò ÓÑÔ Ð Ö ÓÒ ØÖÙØ ÓÒ ÓÚ Ö Ä Ñ ÔÖ Ò Ð Ô Ô ÐÓ ÓÔ Ó ÙÖ Ø Ñ Ð Ñ Ø Ò ÅÙ ÙÑ À Ö¹ Ñ Ø ÙÑ Ö Ò ÙÖØ ½ Ôº º ÙÒØ ÓÒ Ð ÈÖÓ Ö ÑÑ Ò ÈÖÓ Ö Ñ ÌÖ Ò ÓÖÑ Ø ÓÒ Ò ÓÑÔ Ð Ö ÓÒ ØÖÙØ ÓÒ
Ð ØÖÓÒ ÆÓØ Ò Ì ÓÖ Ø Ð ÓÑÔÙØ Ö Ë Ò ÆÓº ¾ ¾¼¼½µ ÍÊÄ ØØÔ»»ÛÛÛº Ð Ú ÖºÒлÐÓ Ø» ÒØ»ÚÓÐÙÑ º ØÑÐ ½ Ô ÓÐÐ Ø Ò Ò Ò ÐÝÞ Ò Ø ÖÓÑ ØÖ ÙØ ÓÒØÖÓÐ ÈÖÓ Ö Ñ Ú ÃÓÖØ Ò ÑÔ Ò ÌÓ Å Ð Ñ Å ØÖ ÁÒº»ÌÊ Ä ½¼½¾ À ÖÙÐ ÀÓÙ ØÓÒ Ì ÍË ¼
ÁÒ Ø ØÙØ ĐÙÖ ÁÒ ÓÖÑ Ø Ö Ì Ò Ò ÍÒ Ú Ö ØĐ Ø ÅĐÙÒ Ò Æ ÒØ ÇÔ Ö Ø ÓÒ Ü ÙØ ÓÒ ÓÒ ÅÙÐØ Ñ Ò ÓÒ Ð ÖÖ Ý Ø ÆÓÖ ÖØ Ï Ñ ÒÒ ÁÒ Ø ØÙØ ĐÙÖ ÁÒ ÓÖÑ Ø Ö Ì Ò Ò ÍÒ Ú Ö ØĐ Ø ÅĐÙÒ Ò Æ ÒØ ÇÔ Ö Ø ÓÒ Ü ÙØ ÓÒ ÓÒ ÅÙÐØ Ñ Ò ÓÒ Ð ÖÖ
Halloween Costume Ideas for the Wii Game
ÁÒØ ÐÐ ÒØ Ì Ö Ø Ë Ð Ø ÓÒ ÓÖ Ö Ø Å Ö Ø Ò Ë Ó Ö Ú Ò ÐÓÚ Ò ¾ ÔÖ Ð ¾¼¼¾ ÈÖ Ì Ö ÔÓÖØ Ø Ö ÔØ ÓÒ Ó Ø Ø ÔÖÓ Ø ÁÒØ ÐÐ ÒØ Ì Ö Ø Ë Ð Ø ÓÒ Ò Ö Ø Å Ö Ø Ò Ø Ò Ð ÔÖÓ Ø Ó Ø Ð ØÖ Ð Ò Ò Ö Ò ÙÖÖ ÙÐÙÑ Ú Ò Ø Ø ÙÐØÝ ÁÒ ÓÖÑ
ËØ Ö Ó È Ö ÓÒ ÌÖ Ò Û Ø ÔØ Ú ÈÐ Ò¹Î Û Ì ÑÔÐ Ø Ó À Ø Ò ÇÙÔ ÒÝ ËØ Ø Ø Å Ð À ÖÚ ÐÐ À ÛÐ ØØ¹È Ö Ä ÓÖ ØÓÖ ½ ¼½ È Å ÐÐ Ê º Ñ ½½ ½ È ÐÓ ÐØÓ ¼ ÍÒ Ø ËØ Ø ØÖ Ø Ø Ó Ø Ó ÓÑÔÙØ Ò Ô Ö¹Ô Ü Ð ÔØ Ñ ÖÝ ÖÓÑ Ø Ö Ó Ñ Ö Ò Ö
Æ ÙÖ Ð Ö Ø ØÙÖ ÓÖ Ó ËÙÔÔÖ ÓÒ ÙÖ Ò ËÓÙÒ ËÓÙÖ ÄÓ Ð Þ Ø ÓÒ ÓÒ ËÔ Ò Æ ÙÖ Ð ÐÐ ÅÓ Ð ÖØ Ø ÓÒ ÞÙÖ ÖÐ Ò ÙÒ Ñ Ò Ö Ó ØÓÖ Ò Ò ÙÖ Öº¹ÁÒ ºµ Ò Ö ÙÐØØ Ö ÁÒ ÓÖÑ Ø ÙÒ ÙØÓÑ Ø ÖÙÒ Ö Ì Ò Ò ÍÒÚ Ö ØØ ÁÐÑ Ò Ù ÚÓÖ Ð Ø Ñ ½ºÇ ØÓ
ÈÊÇ Ê ËË ÁÆ ÌÇÅÁ ÇÊ ÅÁ ÊÇË ÇÈ À Ð Ø Ø ÓÒ Ö Ø ĐÙÖ ÜÔ Ö Ñ ÒØ ÐÔ Ý Ö Å Ø Ñ Ø ¹Æ ØÙÖÛ Ò ØÐ Ò ÙÐØĐ Ø Ö ÍÒ Ú Ö ØĐ Ø Ù ÙÖ ÚÓÖ Ð Ø ÚÓÒ Öº Ö Öº Ò Øº Ö ÒÞ Âº Ð Ù ÙÖ ÆÓÚ Ñ Ö ¾¼¼¼ ÒÓÛÐ Ñ ÒØ Ì Ò ØÓ Ö Ø Ò Ë Ú Ö Ò ÓÖ
Link 1 Link 2 Sender. Link 1 Link 2. Receiver. Receiver. Sender
½ ÌÖ Ò ÔÓÖØ Ò Ê Ð¹Ø Ñ Î Ó ÓÚ Ö Ø ÁÒØ ÖÒ Ø ÐÐ Ò Ò ÔÔÖÓ Ô Ò ÏÙ ËØÙ ÒØ Å Ñ Ö Á Û Ì ÓÑ ÀÓÙ Å Ñ Ö Á Ò ¹É Ò Ò ÐÐÓÛ Á ØÖ Ø Ð Ú Ö Ò Ö Ð¹Ø Ñ Ú Ó ÓÚ Ö Ø ÁÒØ ÖÒ Ø Ò ÑÔÓÖØ ÒØ ÓÑÔÓÒ ÒØ Ó Ñ ÒÝ ÁÒØ ÖÒ Ø ÑÙÐØ Ñ Ô¹ ÔÐ
HowHow to Choose a Good Stock Broker For 2008
Î Ð Ö Ö ÐÐ Ò ÍÒ Ú Ö Ø ÊÓÑ ÌÓÖ Î Ö Ø ÊÓÑ Á¹¼¼½ Ö ÐÐ Ò ÙÒ ÖÓÑ ¾º Ø ÝÒ Ñ ÄÓ Ð Ò Ò ÓÒ Ï ¹ ÖÚ Ö ËÝ Ø Ñ È Ð Ô Ëº Ù Á Š̺º Ï Ø ÓÒ Ê Ö ÒØ Ö ÓÖ ØÓÛÒ À Ø Æ ½¼ Ô ÝÙÙ º ѺÓÑ Å Ð ÓÐ ÒÒ ÍÒ Ú Ö Ø ÅÓ Ò Ê Ó Ñ Ð ÅÓ Ò
Proceedings of the FREENIX Track: 2001 USENIX Annual Technical Conference
USENIX Association Proceedings of the FREENIX Track: 2001 USENIX Annual Technical Conference Boston, Massachusetts, USA June 25 30, 2001 THE ADVANCED COMPUTING SYSTEMS ASSOCIATION 2001 by The USENIX Association
XML-GL WRT LOREL IT LACKS: different mgmnt of IDREFs. universal quantification. Skolem functions nested queries abstract data types type coercion
ÅÄ ÙÖÖ ÒØ Ú ÐÓÔÑ ÒØ Ò ÙØÙÖ ÐÐ Ò ÓÖ Ø Ø ÓÑÑÙÒ ØÝ ËØ ÒÓ Ö È ÖÓ Ö Ø ÖÒ Ð Ò ËØ ÒÓ È Ö Ó Ô ÖØ Ñ ÒØÓ Ð ØØÖÓÒ ÁÒ ÓÖÑ Þ ÓÒ ÈÓÐ Ø Ò Ó Å Ð ÒÓ È ÞÞ Ä ÓÒ Ö Ó Î Ò ¾ Å Ð ÒÓ ÁØ ÐÝ Á¹¾¼½ Ö» Ö Ø ÖÒ»Ô Ö Ó Ð ØºÔÓÐ Ñ º Ø
Foreign Network. Correspondent. Host. Internet. Mobile. Host. Home Network. Agent
ÌÓ ÔÔ Ö Ò Å» ÐØÞ Ö ÂÓÙÖÒ Ð ÓÒ ËÔ Ð ÌÓÔ Ò ÅÓ Ð Æ ØÛÓÖ Ò ÔÔÐ Ø ÓÒ ÅÇÆ ̵ Ö Ø ÕÙ ÖØ Ö ¾¼¼½µ Ð Ü Ð Æ ØÛÓÖ ËÙÔÔÓÖØ ÓÖ ÅÓ Ð ÀÓ Ø Ò Ù Ó Ð Ù Ø ÐÐÙ Å ÖÝ Ö ÓÑÔÙØ Ö Ë Ò Ô ÖØÑ ÒØ ËØ Ò ÓÖ ÍÒ Ú Ö ØÝ ËØ Ò ÓÖ ¼ ÁÆÊÁ Ê
Ò ÒØ Ò ØÖ Ò Ô Ö ÒØ Ø Ö Ñ Ö Ø ÓÒ Ñ Ò Ø Èž ÖÙÒØ Ñ Ý Ø Ñ Ö ÒØÓÒ Ù ÄÙ ÓÙ Ò Ê ÝÑÓÒ Æ ÑÝ Ø ÄÁÈ ÆË ÄÝÓÒ ³ÁØ ÄÝÓÒ Ü ¼ Ö Ò º ÓÒØ Ø Ö º ÒØÓÒ Ù ÄÙº ÓÙ Ê ÝÑÓÒ ºÆ ÑÝ Ø Ò ¹ÝÓÒº Öº ØÖ غ Ì Ô Ô Ö Ö Ò Û Ó¹ Ö ÔÔÖÓ ØÓ Ø
¾Á ÁÒØ Ö Þ ÓÒ Ï Ö ÓÙ Ò Å Ò Ò ÓÖ ÒØ Ø ÖÓ Ò ÈÖÓ Ö ÑÑ Ö Ö Ó Ò ÒÞ ØÓ Ð ÅÍÊËÌ Ö Þ Ó ¾¼¼¼µ Ò ÐÝ Ò ÓÑÔ Ö ÓÒ Ó Ñ Ø Ó Ò Ð ÓÖ Ø Ñ ÓÖ Ø Ñ Ò Ò Ì Þ Ò Ø Ö È ÓÐÓ ÓÚ Ñ ØØ Ø Á ÒÒ ËØ ÒÓ ÄÓ ÄÙ È ÐÓÔÓÐ Å ÖÓ È Ø ÐÐ Ð Ù Ó Ë
Ý Ø Ð Ñ ÔÖÓ Ò Û Ó Ø ÒÑ Ò Ù ØÑ ÒØÓ Ø Ò ÓÖÑ Ø ÓÒÓÒØ Ò Ò Ò Ñ Û Ø Ø ÑÓ ÙÑ Ò ÔØ Ø ÓÒÓ Ø Ò ÓÖÑ Ø ÓÒÓÒØ Ò Ò ÒØ ÖÔÖ Ø Ø ÓÒ Ñ ÔÖÓ Ò µ ÒØ ÖÔÖ Ø Ø ÓÒ Ñ Ò ÐÝ µ Ò Ñ Û Ø Ø ÑÓ ÙØÓÑ Ø Ì Ò Ð Ò Ó Ñ ÓÖ Ò Ø Ò ÑÓÚ Ò Ò ØÓÖ
ËÓ Ö Ø ¹ Ë Ð Ð ÅÙÐØ ÔÖÓ ÓÖ ËÝ Ø Ñ ÇÒ Ô ÙØ ÓÖ Å Ð ÓÐÐ Ò ÅÐ Ò Æ ØÓÚ Ò Ê ÑÓ À Ù Ð Ø Ñ ÑÒ Ö Ñ º ËÙÔ ÖÚ ÓÖ ÂÓ Ò ËØĐ ÖÒ Ö Ò ÂÓ Ñ ÓÑ Ø Ü Ñ Ò ØÓÖ Ä ÒÒ ÖØ Ä Ò Ô ÖØÑ ÒØ Ó ÓÑÔÙØ Ö Ò Ò Ö Ò ÓÑÔÙØ Ö Ö Ø ØÙÖ Ä ÅĐ Ð Ö
Scaling Question Answering to the Web
Scaling Question Answering to the Web Cody C. T. Kwok University of Washington Seattle, WA, USA ctkwok@cs. washington.edu Oren Etzioni University of Washington Seattle, WA, USA etzioni@cs. washington.edu
Proceedings of the 5 th Annual Linux Showcase & Conference
USENIX Association Proceedings of the 5 th Annual Linux Showcase & Conference Oakland, California, USA November 5 10, 2001 THE ADVANCED COMPUTING SYSTEMS ASSOCIATION 2001 by The USENIX Association All
Ź ÒØ Ð Ó Ö Ö Ø ØÙÖ ÓÖ Ø ÁÒØ Ö Ø ÓÒ Ó Ê ÓÒ Ò Ì Ò ÕÙ ÒØÓ ÈÖÓÓ ÈÐ ÒÒ Ò ÎÓÐ Ö ËÓÖ ÖØ Ø ÓÒ ÞÙÖ ÖÐ Ò ÙÒ Ö Ó ØÓÖ Ö ÁÒ Ò ÙÖÛ Ò Ø Ò Ö Æ ØÙÖÛ Ò ØÐ ¹Ì Ò Ò ÙÐØĐ Ø Á Ö ÍÒ Ú Ö ØĐ Ø Ë ÖÐ Ò Ë Ö ÖĐÙ Ò Þ Ñ Ö ¾¼¼½ Ò ÈÖÓ
ÌÝÔ ¹ Ö Ø È ÖØ Ð Ú ÐÙ Ø ÓÒ ÇÐ Ú Ö ÒÚÝ ÊÁ Ë Ô ÖØÑ ÒØ Ó ÓÑÔÙØ Ö Ë ÍÒ Ú Ö ØÝ Ó Ö Ù Ù Ð ¼ ÆÝ ÅÙÒ Ã¹ ¼¼¼ Ö Ù ÒÑ Ö ¹Ñ Ð ÒÚÝ Ø Ô Ö º ÀÓÑ Ô ØØÔ»»ÛÛÛº Ö º» ÒÚÝ Ø Ô ØÖ غ ÌÝÔ ¹ Ö Ø Ô ÖØ Ð Ú ÐÙ Ø ÓÒ Ù ÒÓÖÑ Ð Þ Ø
Impact of Interference on Multi-hop Wireless Network Performance
Impact of Interference on Multi-hop Wireless Network Performance Kamal Jain Jitendra Padhye Venkat Padmanabhan Lili Qiu Microsoft Research One Microsoft Way, Redmond, WA 98052. kamalj, padhye, padmanab,
Ù ØÓÑ Ö Ö ÔÓÒ Ð Ø À Ú Ð Ö À Ú Ø Ñ ØÓ Ù Ú ÁÒ Ø Ø Ñ Ø Ò Ä Ñ Ø ÔÖÓ Ø ÐÛ Ý Ú Ø Ñ ½¹½ Ì Ù ØÓÑ Ö ÓÙÐ ººº ß Ú Ð Ö ÙØ Ñ Ý ÒÓØ ÓÑÔÐ Ø µ Ó Û Ø» Û ÒØ º ß Ú Ø Ñ ØÓ Ù Ø Ö ÕÙ Ö Ñ ÒØ Û Ø Ø ÖÓÙÔ ÙÖ Ò Ø ÔÖÓ Øº ß Ð ØÓ Ú
Theme. Theme Ordering. Sentence Fusion. Theme ...
Ë ÒØ Ò Ù ÓÒ ÓÖ ÅÙÐØ ÓÙÑ ÒØ Æ Û ËÙÑÑ Ö Þ Ø ÓÒ Ê Ò ÖÞ Ð Ý Å Ù ØØ ÁÒ Ø ØÙØ Ó Ì ÒÓÐÓ Ý Ã Ø Ð Ò Êº Åà ÓÛÒ Ý ÓÐÙÑ ÍÒ Ú Ö ØÝ Ý Ø Ñ Ø Ø Ò ÔÖÓ Ù Ò ÓÖÑ Ø Ú ÙÑÑ Ö Ð Ø Ò ÓÑÑÓÒ Ò ÓÖÑ ¹ Ø ÓÒ ÓÙÒ Ò Ñ ÒÝ ÓÒÐ Ò ÓÙÑ ÒØ
Ê ØÖ Ú Ð Æ Ø ÅÓ Ð ÓÖ Ù Ð Ò Ð Ü Ð ÁÒ ÓÖÑ Ø ÓÒ ËÝ Ø Ñ ÖØ Ø ÓÒ ÞÙÖ ÖÐ Ò ÙÒ Ñ Ò Ö Öº Ö Öº Ò Øº Ñ ÁÒ ÓÖÑ Ø Ò Ö Ø Ò Ö Å Ø Ñ Ø ¹Æ ØÙÖÛ Ò ØÐ Ò ÙÐØĐ Ø ÁÁ Ö ÀÙÑ ÓРعÍÒ Ú Ö ØĐ Ø ÞÙ ÖÐ Ò ÚÓÒ ÔÐÓѹÁÒ ÓÖÑ Ø Ö Å Ö Ó
Æ ØÛÓÖ ÌÖ Æ Ú ÓÙÖ Ò ËÛ Ø Ø ÖÒ Ø ËÝ Ø Ñ ÌÓÒÝ Ð ÍÐ À Ö Ö ² È Ø Ö À ÖÖ ÓÒ ½ Ô ÖØÑ ÒØ Ó ÓÑÔÙØ Ò ÁÑÔ Ö Ð ÓÐÐ Ó Ë Ò Ì ÒÓÐÓ Ý Ò Å Ò ÀÙÜÐ Ý Ù Ð Ò ½ ¼ ÉÙ Ò³ Ø ÄÓÒ ÓÒ ËÏ ¾ Ò Ð Ò ØÖ Ø Å ÙÖ Ñ ÒØ ÓÒ ¹Ô Ö ÓÖÑ Ò Û Ø
Æ Û È Ö Ñ ÓÖ Ù Ó ÓÒ Ö Ò Ò ÓÒ ÎÓ ÓÚ Ö ÁÈ ÎÓÁȵ Ì ËÙ Ñ ØØ ÓÖ Ø Ö Ó ÓØÓÖ Ó È ÐÓ ÓÔ Ý Ò Ø ÙÐØÝ Ó Ò Ò Ö Ò Ý Êº Î Ò Ø ÈÖ ÒØÖ ÓÖ Ð ØÖÓÒ Ò Ò Ì ÒÓÐÓ Ý ÁÒ Ò ÁÒ Ø ØÙØ Ó Ë Ò Ò ÐÓÖ ß ¼ ¼½¾ ÁÒ ÂÙÐÝ ¾¼¼ ÓÒ ÓÒ Á ÒÓÛ Ø
½ È Ø¹Ä Ú Ð ÌÖ Æ Å ÙÖ Ñ ÒØ ÖÓÑ Ì Ö¹½ ÁÈ ÓÒ Ù Ö Ð ËÙ ÅÓÓÒ ÖÝ Ò ÄÝÐ ÓØØÓÒ ÅÙ Ã Ò ÅÓÐÐ ÊÓ ÊÓ ÐÐ Ì Ë ÐÝ Ö ØÓÔ ÓØ ØÖ Ø Æ ØÛÓÖ ØÖ Æ Ñ ÙÖ Ñ ÒØ ÔÖÓÚ ÒØ Ð Ø ÓÖ Ò ØÛÓÖ Ò Ö Ö Ò Ò ØÛÓÖ Ñ Ò Ñ ÒØº ÁÒ Ø Ô Ô Ö Û Ö Ô Ú
Working Paper 2000-17 / Document de travail 2000-17
Working Paper 2000-17 / Document de travail 2000-17 A Practical Guide to Swap Curve Construction by Uri Ron Bank of Canada Banque du Canada ISSN 1192-5434 Printed in Canada on recycled paper Bank of Canada
Protecting Web Servers from Distributed Denial of Service Attacks
Protecting Web Servers from Distributed Denial of Service Attacks Frank Kargl Department of Multimedia Computing University of Ulm Germany frank.kargl@ Joern Maier Department of Multimedia Computing University
DL reasoner Ontology Store
ËÙÔÔÓÖØ Ò ÔÔÐ Ø ÓÒ Ú ÐÓÔÑ ÒØ Ò Ø Ë Ñ ÒØ Ï ÆÁ Ä Ç ÊÄ ËÌ Æ ËÌ ÊÍ Á ËÌÍ Ê Ê ÈÀ Ä ÎÇÄ ÍÒ Ú Ö ØÝ Ó Ã ÖÐ ÖÙ ÖÑ ÒÝ ÁÒ Ø ØÙØ ÓÖ ÔÔÐ ÁÒ ÓÖÑ Ø Ò ÓÖÑ Ð Ö ÔØ ÓÒ Å Ø Ó Á µ Ì Ë Ñ ÒØ Ï Ù Ñ ÒØ Ø ÙÖÖ ÒØ ÏÏÏ Ý Ú Ò Ò ÓÖÑ
VU Amsterdam. 6 Mbit/s ATM. UvA Amsterdam
Ì ØÖ ÙØ Ë Á ËÙÔ ÖÓÑÔÙØ Ö ÈÖÓ Ø À ÒÖ Ð Ê ÓÙÐ Ó Ò ÊÙØ Ö ÀÓ Ñ Ò Ö Ð Â Ó Ì ÐÓ Ã ÐÑ ÒÒ Â ÓÒ Å Ò ÊÓ Ú Ò Æ ÙÛÔÓÓÖØ ÂÓ Ò ÊÓÑ Ò ÄÙ Ê Ò Ñ ÓØ Ì Ñ ÊĐÙ Ð ÊÓÒ Ð Î Ð Ñ Ã Î Ö ØÓ Ô Ð Ò Ó ÖÓ ÐÐ ÒØ Ò Á ÓÖ ÃÙÞ Ù ÐÐ ÙÑ È ÖÖ
AND -split. AND -join
ÏÓÖ ÓÛ Å Ò Ò Ï ÔÖÓ Ò Ö ÓÚ Ö ÏºÅºÈº Ú Ò Ö Ð Ø ºÂºÅºÅº Ï Ø Ö Ò Äº Å ÖÙ Ø Ö Ô ÖØÑ ÒØ Ó Ì ÒÓÐÓ Ý Å Ò Ñ ÒØ Ò ÓÚ Ò ÍÒ Ú Ö ØÝ Ó Ì ÒÓÐÓ Ý ÈºÇº ÓÜ ½ ÆÄ¹ ¼¼ Å Ò ÓÚ Ò Ì Æ Ø ÖÐ Ò º ۺѺԺں º Ð ØØÑºØÙ ºÒÐ ØÖ غ ÓÒØ
BASE: Using Abstraction to Improve Fault Tolerance
BASE: Using Abstraction to Improve Fault Tolerance Rodrigo Rodrigues Ý, Miguel Castro Ü, and Barbara Liskov Ý Ý MIT Laboratory for Computer Science 2 Technology Sq., Cambridge MA 239, USA Ü Microsoft Research
Ï Ö Ð ÁÒØ ÖÒ Ø Ø Û Ý ÏÁÆ µ ÓÖ Ì ÁÒØ ÖÒ Ø Ò Ð Ì Ò Ð Ê ÔÓÖØ Ö ÒØ ÆÓ ¼ ¹ ¹ ¹ ½ ÇØÓ Ö ¾¾ ¾¼¼½ ÈÖ Ô Ö ÓÖ Ò Ú Ò Ê Ö ÈÖÓ Ø ÒÝ»ÁÌÇ ¼½ ÆÓÖØ Ö Ü Ö Ú ÖÐ Ò ØÓÒ Î ¾¾¾¼ ¹½ ½ ËÙ Ñ ØØ Ý Ì Ê ÒØ Ó Ì ÍÒ Ú Ö ØÝ Ó Ð ÓÖÒ Ë
Web Usage Mining: Discovery and Applications of Usage Patterns from Web Data
Web Usage Mining: Discovery and Applications of Usage Patterns from Web Data Jaideep Srivastava Ý, Robert Cooley Þ, Mukund Deshpande, Pang-Ning Tan Department of Computer Science and Engineering University
ÜÔ Ö Ñ ÒØ ÓÒ Å Ó ÓÔ Ð ØÖÓÒ ÌÖ Ò ÔÓÖØ Ò Ö ÓÒ Æ ÒÓØÙ È º º Ì ÙÐØÝ Ó Ë Ò ÍÒ Ú Ö ØÝ Ó ÓÔ Ò Ò ¾¼¼¼ Â Ô Ö ÆÝ Ö Ö Ø Ä ÓÖ ØÓÖÝ Æ Ð Ó Ö ÁÒ Ø ØÙØ ÓÖ ØÖÓÒÓÑÝ È Ý Ò ÓÔ Ý ÜÔ Ö Ñ ÒØ ÓÒ Å Ó ÓÔ Ð ØÖÓÒ ÌÖ Ò ÔÓÖØ Ò Ö ÓÒ
Ä Ò Ö Ò ÒØ ÖÓÔØ Ñ Þ Ø ÓÒÛ Ø ÔÔÐ Ø ÓÒ ÅÎ ½»ÅÅ ½ Å Ò ÑÙÑÓ Ø ÓÛÑÓ Ð Ò Ð ÓÖ Ø Ñ Ä ØÙÖ ½¼ ÒÒ¹ Ö Ø ËØÖ Ñ Ö ¾¼½ ¼ ¼¾ Ä ØÙÖ Ä Ò Ö Ò ÒØ ÖÓÔØ Ñ Þ Ø ÓÒÛ Ø ÔÔÐ Ø ÓÒ Å Ü ÑÙÑ ÓÛÑÓ Ð ÓÒ Ö ØÖ Ø Ø Ò Ò ØÛÓÖ Û Ø Ô Ô Ð Ò
Ì Ö Ø ÅÝÈÓÐ È Ý Ç Ý Ý ÁÒ ØÝØÙØ ÞÝ Ö Ò ÏÝ ÓÙÖÒ ¾  ÒÙ Öݾ¼¼¾ ÍÒ Û Ö ÝØ ØÅ Ó ÃÓÔ ÖÒ ¹ÈÓÐ Ò Ø ÓÒ Ú ÒØÙÖÓÙ ÓÙÖÒ Ý Ó Ý Ý»Ó»ÒÓÙÒ ÔÐ Ý µ ÐÓÒ Ò Ú ÒØ ÙÐÓÖ ¹ÇÊÁ ÁÆÄ Ø ½ Ø ÒØ Ú Ä Ø Ò ÖÓÑ Ö Ç Ù Ì Æ ÏÇ ÇÊ Ø ÓÒ ÖÝÓ
ÈÙ Ð Ø ÓÒ ¾¼¼¼ ÖØ Ð Ò ÁÒØ ÖÒ Ø ÓÒ Ð ÂÓÙÖÒ Ð ½º º Ñ º Â Ò º ÃÖÞÝ Þ Âº È Ò Ð Èº ÃÓÞ ÐÓÛ Èº Ë ÒÓÛ Ïº Ï Ð ÖÞ È Ø ÓÑÓÖÔ ÓÐÓ Ý Ó ÈÓ ØØÖ ÙÑ Ø Ò Ò ËÔ Ò Ð ÓÖ Ó Ê Ø Ò Ê Ð Ø ÓÒ ØÓ ÅÊ «Ù ÓÒ ÁÑ Ò ÅÓк È Ý º Ê Ôº ¾
Ì ÓÑ ØÖÝÓ Ø ÛÓÖ ÔÖÓ Ð Ñ ½ ÁÒØÖÓ ÙØ ÓÒ Å ÖØ Òʺ Ö ÓÒ Ô Ò ÓÒÑÓ Ø ÓÑ Ø Ö ³Ð Ú ß ÓÖÑ ÒÝ ØÖ Ñ Ò Ò ÔÔ Ö ÒØÐÝ Ö Ò Ö ÓÒ Ì ØÙ ÝÓ ÓÒÔÖÓ Ð Ñ Ò ÖÓÙÔØ ÓÖÝ Ù ØØ Ø Ó ÒÓØ ѹ Ó Ñ Ø Ñ Ø Ò ÖØ ÓÖ Ö Ó ÖÓÙÔØ ÓÖÝ Ò ÐÓ Ó Ò Û
ÔØÖ ÑÓÐ ÓÖ Ò Ö Ò Ø Ð «Ø Ó ØÐ Ò ØÝ ÙÖÖÒØ ÁÒ ÔØÖ ¾ Ø ÝÒÑ Ó Ø ÑÐÐ ÔÖØÙÖØÓÒ Ó ØØ ÓÒ ØÒ Ò ØÝ ÐÓÒ ÓÖ ÙÖÖÒØ ÓÒ ÐÓÔÒ ÓØØÓÑ Ò ØÙº ÐØÓÙ Ø ÑÓÐ ÔÖØ ÓÖÑ ÛØ Ø Ô Ò Ø ÐÓÒ ÓÖ Ô Ó Ø ÓÖßÓÒÒØ Ò Ö ÑÓÐ ØØ ÒÐÙ Ø «Ø Ó Ø ØÐ ÙÖÖÒØ
ÌÆ ÄÁÁÄÁÌ ÇÊ ÆÎÁÊÇÆÅÆÌÄ ÁÆÌË ÏÀÌ ÇÍ Ë ÁË ÏÀÌ ÇÍ Ì ÑÑ ÀÙØÒ ÓÒ ÃÐ ÚÒ ³Ø ÎÐ ÔØÑÒØ Ó ÓÒÓÑ ÍÒÚ ØÝ Ó ÅÒ ÅÝ ¾¼¼¾ ØØ Ì Ù Ó ÛÓ ÓÙÐ ÐÐ Ó Ñ Ò ÓÑ ÒÚÓÒÑÒØÐ ÒØ Ó ÙÒÑÒØÐ ÑÔÓØÒ ØÓ ÔÓÐÝ Ñ º ÏÒ Ñ ÒÙÔØ Ý Ò ÒÚÓÒÑÒØÐ ÒØ ÙÒØ
GEOMETRY AND TOPOLOGY OF MANIFOLDS BANACH CENTER PUBLICATIONS, VOLUME 76 INSTITUTE OF MATHEMATICS POLISH ACADEMY OF SCIENCES WARSZAWA 2007
GEOMETRY AND TOPOLOGY OF MANIFOLDS BANACH CENTER PUBLICATIONS, VOLUME 76 INSTITUTE OF MATHEMATICS POLISH ACADEMY OF SCIENCES WARSZAWA 2007 ÈÊ Ø Ò Å Ø Ñ Ø Ð ÒØ ÖÓ Ø ÈÓÐ ÑÝÓ Ë Ò Ò Ð ÛÓ ÈÓÐ Ò Ì ÓÒ Ö Ò ÓÑ
Simulation of the fiber spinning process
T. Götz, H. Rave, D. Reinel-Bitzer, K. Steiner, H. Tiemeier Simulation of the fiber spinning process Berichte des Fraunhofer ITWM, Nr. 26 (2001) Fraunhofer-Institut für Techno- und Wirtschaftsmathematik
ËÑÔйËÞ ÓÖÑÙÐ ÓÖ ÐÙ ØÖ ËÙÖÚÚÐ Ø Í Ò ÏØ ÄÓ¹ÖÒ ËØØ Ø ÊÓÒÐ º ÒÒÓÒ ÔÖØÑÒØ Ó Ó ØØ Ø Ò ÅÐ ÁÒÓÖÑØ ÍÒÚÖ ØÝ Ó Ï ÓÒ ÒßÅ ÓÒ ½ ƺ ÏÐÒÙØ ËØÖØ Å ÓÒ Ï ÓÒ Ò ÍºËºº ÑÐ ÖÓÒÐÓ ØØºÛ ºÙ Ò ÅРʺ ÃÓ ÓÖÓ ÔÖØÑÒØ Ó ËØØ Ø Ò Ó ØØ
Design of Zone Tariff Systems in Public Transportation
H. W. Hamacher, A. Schöbel Design of Zone Tariff Systems in Public Transportation Berichte des Fraunhofer ITWM, Nr. 21 (2001) Fraunhofer-Institut für Techno- und Wirtschaftsmathematik ITWM 2001 ISSN 1434-9973
ÄÆ ˹Ⱦ½» ¹ ½ ÊÆ»ËÈË ¹ ËÈË»È ½ º½ ÆÓÚ Ñ Ö ½ ½ Á ÆÇ ½ ÈÖ Ð Ñ Ò ÖÝ Ì Ò Ð Ò ² Ó Ø Ø Ñ Ø Ì Á ÊÍË ² ÆÇ ÓÐÐ ÓÖ Ø ÓÒ ÁÒ Ò ½ Ð ÑÓ Ö Ò Ðг Ö ÙÒ Ø ØØÓ ÙÒ Ù ØÓ Ô Ù ÓÔÖ Ð Ø ÖÑ Ò Ö ºººµÐ Ö ÓÒ ÙÒ Ô ÒÓ Ò Ö ÓÖ ÙÒ ÓÒ Ó
ËØØ Ø Ó ÆØÙÖÐ ÁÑ Ò ÅÓÐ Ý ÂÒÒ ÀÙÒ ËºÅº ÖÓÛÒ ÍÒÚÖ ØÝ ½ ˺ź ÍÒÚÖ ØÝ ÓÁÓÛ ½ ˺ź ÆÒ ÍÒÚÖ ØÝ ½¾ ˺º ÆÒ ÍÒÚÖ ØÝ ½ Ì ËÙÑØØ Ò ÔÖØÐ ÙÐ ÐÐÑÒØ Ó Ø ÖÕÙÖÑÒØ ÓÖ Ø Ö Ó ÓØÓÖ Ó ÈÐÓ ÓÔÝ Ò Ø Ú ÓÒ Ó ÔÔÐ ÅØÑØ Ø ÖÓÛÒ ÍÒÚÖ
Ò¹ÒÛØ ÖØÖ Ø Ó ÌÒ ÚÐÒ ÈÓØÓÓ Å Åº ÀÝØ ËÒÓÖ ÅÑÖ Á ǹÀÝÙÒ ÃÛÓÒ ÈÒ ËÒÓÖ ÅÑÖ Á ÈÙÐ ËÓØÖÐ ÅÑÖ Á ÂÓ º ÑÔÐÐ ÐÐÓÛ Á º º ËÐ ÐÐÓÛ Á Ò ÅÐÚÒ º Ì ÐÐÓÛ Á ØÖغ Ì ÖÕÙÒÝ¹Ö ÔÓÒ ÖØÖ Ø Ó ÚÐÒ ÔÓØÓÓ È µ ÛØ ØÒ ÑÙÐØÔÐØÓÒ ÐÝÖ Ö
ÉÙÒØ ØÓÒ Ó ÉÙÐØØÚ Ø Í Ò ÇÖÖ ÈÖÓØ ÅÓÐ ÛØ Ò ÔÔÐØÓÒ ØÓ Ù Ò ËÙÖÚÝ Ò Ø ÖÑÒ ËÖÚ ËØÓÖ Ü Ý ÍÐÖ Ã Ö Ò ÐÜÒÖ ËÔØÞ ÆÓÚÑÖ ¾¼¼¼ ØÖØ Ì ÔÔÖ Ñ Ø ÔÖÓÚÒ Ù Ò ÙÖÚÝ ÒÐÝ Ø ÛØ ÑÔÐ ÓÒÓÑØ¹ Ö ØÓÓÐ ØÓ ÕÙÒØÝ ÕÙÐØØÚ ÙÖÚÝ Øº Ï ÜØÒ Ø
Å ÙÖÒ ÓÙÒØÖÔÖØÝ ÖØ Ê ÖÓÑ ÊÒ ÙÖÒ Ê ÅÒÑÒØ ÏÒØÖØÙÖ ÁÒ ÙÖÒ ÖØ ËÙ ÖÓÙÔ ÒÒÐ Ê ÓÒØÖÓÐ ËÒÖÓ ÅÖÒÓ ÅÖ ¾¼¼¼ ØÖØ ÖØ Ò ÙÖÖ Ö ÜÔÓ ØÓ ÖØ Ö ÛÒ ÒØÖÒ ÒØÓ ÖÒ ÙÖÒ ÓÒØÖØ Ì ÔÖØÙÐÖ ÓÖÑ Ó ÖØ Ö Û ÓÑØÑ ÖÖÖ ØÓ ÙÖØÝ Ö Ù Ò ÑØÓÓÐÓÝ
<-337. true, (1114) 2 ), (168) 2 ) f(y i
ÑÖØ Ô ÙØÓÖÖ Ú ÌÖ ÅÓÐ ÓÖ ÌѹËÖ ÒÐÝ º Å ºÅº ÖÒ Ò º ÀÖÑÒ ½ ÁÒØÖÓÙØÓÒ Ì ÒÐÝ Ò ÑÓÐÒ Ó ØÑ¹ Ö Ø Ò ÑÔÓÖØÒØ Ö Ó Ö Ö ÓÖ ÑÒÝ ÓÑÑÙÒØ º ÁÒ Ø ÔÔÖ ÓÙÖ ÓÐ ØÓ ÒØÝ ÑÓÐ ÓÖ ÓÒØÒÙÓÙ ¹ ÚÐÙ ØÑ¹ Ö Ø ØØ Ö Ù ÙÐ ÓÖ Ø ÑÒÒ Ò ØØ ØÝ
ÒÓ¹ØÒ¹ÒÔÖ ÒÖÝÔØÓÒ ÀÓÛ ØÓ ÜÔÐÓØ ÒÓÒ ÓÖ ÖÙÒÒÝ Ò ÔÐÒØÜØ ÓÖ ÆÒØ ÖÝÔØÓÖÔÝ ½ ÅÖ ÐÐÖ ½ Ò ÈÐÐÔ ÊÓÛÝ ¾ ÔØº Ó ÓÑÔÙØÖ ËÒ ² ÒÒÖÒ ÍÒÚÖ ØÝ Ó ÐÓÖÒ Ø ËÒ Ó ¼¼ ÐÑÒ ÖÚ Ä ÂÓÐÐ ¾¼ ÍË ¹ÅÐ ÑÖ ºÙ ºÙ ÍÊÄ ÛÛÛ¹ ºÙ ºÙ»Ù Ö»ÑÖ ¾ ÔØº
import on display extract edges write
ÌÖ¹ÑÒ ÓÒÐ ÊÇÁ Ò ÖÒ ÈÌ ÂÓÙÒ ÅÝĐÒÒ Ý ÅÖØØ ÂÙÓÐ Ý Ò ÍÐÐ ÊÙÓØ ÐÒÒ Þ Ý ÔÖØÑÒØ Ó ÓÑÔÙØÖ ËÒ ÍÒÚÖ ØÝ Ó ÌÑÔÖ ÈºÇºÓÜ ¼ Áƹ ½¼½ ÌÑÔÖ ÒÐÒ ¹ÑÐ Ñ ºÙغ Þ ÌÙÖÙ ÈÌ ÒØÖ ÍÒÚÖ ØÝ Ó ÌÙÖÙ ÒÐÒ ØÖØ Ñ¹ÙØÓÑØ Ý ØÑ ÓÖ ØÖÑÒÒ ÚÓÐÙÑ
Ë Á ÆÌÁ Á ÁËËÍ Ë Â Æ Í ÇË ÍÆÁÎ ÊËÁÌ ÁÆ ËÌÇ ÀÇÏ Å ÌÀ Å ÌÁ Ë Î ¾¼½¼ Ë ÒØ ØÓÖ ÙÖ Ý ÈÇÎËÌ ÆÃÇ ÈÖÓÓ Ö Ö ÍÖ ÞÙÐ Ê Ç ÇÏËÃ ÓÑÔÙØ Ö ÌÝÔ ØØ Ò Ò Å Ò ¹ÙÔ ÍÖ ÞÙÐ Ê Ç ÇÏËÃ Ö Ô Ð ÈÖÓ Ø Ó ÓÚ Ö Ë ÛÓÑ Ö Ë ÇÏËÃÁ ÁË Æ ¹ ¹
Ñ ÈÓ ØÓÒ ÅÓÒØÓÖ ÓÖ Ø Ì Ð ÐÖØÓÖ ÓÑÔÐÜ º ÅÒ ËÐÝ ÖÒ Åº ÏÒØ Ý ÀÑÙÖ ÖÑÒÝ ÑÖ ¾¼¼¼ ØÖØ Ò ÓÚÖÚÛ ÓÒ Ñ ÔÓ ØÓÒ ÑÓÒØÓÖÒ Ø Ø Ì Ð ÐÒÖ ÓÐÐÖ ÚÒº ÔÖÒÔÐ Ò ØÒÓÐÓÝ ØÐ Ó ÈÅ ÔÙÔ³ Ò ØÖ Ö¹ÓÙØ ÐØÖÓÒ Ö Ù º ÜÔÖÒ ÛØ «ÖÒØ ØÝÔ Ó ÈÅ
Franke, Günter; Stapleton, Richard C.; Subrahmanyam, Marti G.
econstor www.econstor.eu Der Open-Access-Publikationsserver der ZBW Leibniz-Informationszentrum Wirtschaft The Open Access Publication Server of the ZBW Leibniz Information Centre for Economics Franke,
ÝÒÑ ØÖÙØÓÒ ÅÓÐ ÓÖ ÓÑØ ÄÓ Ø ÃÚÒ Êº Ù ÖÙØ ËÓÓÐ Ó Ù Ò ² ÈÙÐ ÈÓÐÝ ÆÚÐ ÈÓ ØÖÙØ ËÓÓÐ ÅÓÒØÖÝ ËØØÑÒØ Ó ÓÔ Ò ÔÙÖÔÓ ÄÓ Ø ÙÔÔÓÖØ ÓÖ ÑÔÓÙ ÛÖÖ ØÖØÓÒÐÐÝ ÖÐ ÓÒ ÐÖ ÐÒ¹ ÒÖ ØÖÙØÙÖ ÛØ ØÖÙ ÓÑÔÐ Ò ÑÓ Ø Ó Ø ØÖÙØÓÒº ÆÛ ÛÖ ØÒ
ÆÓÚº ¾¼¼ ÎÓк½ ÆÓº ÔÔºß Âº ÓÑÔÙØº ˺ ² ÌÒÓк ½ ÊйØÑ ÊÝ ØÒ ÊÒÖÒ Ó ÎÓÐÙÑ ÐÔÔÒ Ò ÅÐ Î ÙÐÞØÓÒ ÀÆ Ï µ ÀÍ Ï µ Ç ÀÙÂÙÒ µ Ò ÈÆ ÉÙÒËÒ µ Ì ËØØ ÃÝ Ä Ç ² Ò ÍÒÚÖ ØÝ ÀÒÞÓÙ ½¼¼¾ Ⱥʺ Ò ØÖØ ¹ÑÐ ÒÛ ÙÛ Ó ÔÒºÞÙºÙºÒ ÊÚ ÂÙÒ
0.2. Taxon 14 0.1 0.2. Taxon 15 0.1 0.2. Taxon 33 0.1 0.2. Taxon 34 0.1 0.2. Taxon 36 0.1 0.2. Taxon 40 0.1 0.2. Taxon 41 0.1 0.2. Taxon 42 0.1 0.
Í Ò ËÑÓÓØÒ ØÓ ÊÓÒ ØÖÙØ Ø ÀÓÐÓÒ ÌÑÔÖØÙÖ Ò ÄÔÐÒ Ä ÀÓÐÑ ØÖĐÓÑ ÈÒÙ ÖĐ ØĐÓ ÒÈØÖ ÃÓ ØÒÒ ÊÓÐ ÆÚÒÐÒÒ ÁÒ ØØÙØ ÍÒÚÖ ØÝ Ó ÀÐ Ò ÀÐ Ò ÒÐÒ ÂÒ Ï ØÖĐÓÑ Ò ØØ ÃÓÖÓÐ Ý ÔÖØÑÒØ Ó ÓÐÓÝ Ò ËÝ ØÑØ ÍÒÚÖ ØÝ Ó ÀÐ Ò ÀÐ Ò ÒÐÒ ØÖØ ËÑÐÐ
Å ÙÖÒ Ø ÙÖÝ Ó Ë ÓÒÞÖ ÓÖ Ï Í ÒÐÝ ØØÒ ÖÒØ Ñ ÅÓ Ö ÅÝÖ ËÔÐÓÔÓÙÐÓÙ ÂÑ ÏÐØ Ö ÀÙÑÓÐØ¹ÍÒÚÖ ØÝ ÖÐÒ ÁÒ Øº Ó ÈÓÝ Ò ÁÒÓÖÑØ ÖÒØÙØºÙ¹ÖÐÒº ÈÙÐ ÍÒÚÖ ØÝ ÔØº Ó ÓÑÔÙØÖ ËÒ ÑÓ Ö ºÔÙк٠ÀÙÑÓÐØ¹ÍÒÚÖ ØÝ ÖÐÒ º Ó ÓÒÓÑ ÁÒ Øº Ó ÁÒÓÖÑØÓÒ
ËÐ ÓÒÓÑ ËÓÔ ÓÒÓÑ Ò ÌÒÐ Ò Ò ÖÐ Ê ÖÚ ÈÝÑÒØ ÈÖÓ Ò ÊÓÖØ ź Ñ ÈÙРϺ ÙÖ Ý Ò ÊÓÒ º ËÐ Þ ÓÖ Ó ÓÚÖÒÓÖ Ó Ø ÖÐ Ê ÖÚ ËÝ ØÑ Ï ÒØÓÒ ¾¼½ ÍË Ý ÖÐ Ê ÖÚ Ò Ó ÐÚÐÒ ÐÚÐÒ ÇÓ ½¼½ ÍË Þ ÔÖØÑÒØ Ó ÓÒÓÑ Ê ÍÒÚÖ ØÝ ÀÓÙ ØÓÒ ÌÜ ¼¼ ÍË
Best Places to Find Information About Wine
ÅÙÐØ¹ØÓÖ ÇÔØÓÒ ÈÖÒ ÈÙРĺ ÐÖ Ö Ø ÖØ ÇØÓÖ ½¾ ½ ÙÖÖÒØ ÖÚ ÓÒ ÂÙÒ ½ ¾¼¼¼ ÂÙÒ ½ ¾¼¼¼ ØÖØ ÅÙÐØ¹ØÓÖ ÑÓÐ ÔÖÓÚ ÓÒ ÖÐ ÜÐØÝ Ò ÖÔÖ ÒØÒ Ø Ý¹ ÒÑ ÚÓÖ Ó Ø ÔÖ º ÙÖÓÔÒ ÓÔØÓÒ Ò ÛÖØØÒ Ò ØÖÑ Ó Ø ÔÖ Ó Ø Ó ÔÓ ÐÝ ÖØ е Ø Ò ÔÖÓÐØ
Planning for home health care services
S. Nickel, M. Schröder, J. Steeg Planning for home health care services Berichte des Fraunhofer ITWM, Nr. 173 (2009) Fraunhofer-Institut für Techno- und Wirtschaftsmathematik ITWM 2009 ISSN 1434-9973 Bericht
Steer axis. Twist axis. rider upper body. y z p13. p10. p1 aero. p8 main p5. p12. p11. p14
ÆÁÅÌÁÇÆ Ç ÌÀ Ëľ¼¼½ ÅÇÌÇÊÄ ÅÇÄ ËÑÓ ÚÒÐÓÙ Ò Ú ÂºÆº ÄÑÖ ÔÖØÑÒØ Ó ÐØÖÐ Ò ÐØÖÓÒ ÒÒÖÒ ÁÑÔÖÐ ÓÐÐ Ó ËÒ ÌÒÓÐÓÝ Ò ÅÒ ÜØÓÒ ÊÓ ÄÓÒÓÒ ËÏ ¾Ì Íú ¹ÑкÐÑÖººÙ Û Ô ØØÔ»»ÛÛÛººººÙ»ÓÒØÖÓлÑÓØÓÖÝÐ ËÙÑÑÖÝ Ì Ø Ó Ò ÒÑØÓÖ ØÓ ÒÖØ
NOC ERS. decision engine. mining engine. intrusion. customer network. pre-filtering. customer. confirmed. resolution info. alarm.
Ø ÅÒÒ ÒÐÝ Ó ÊÌÁ ÐÖÑ ËØÒÓ ÅÒÒÖ ÅÖÚÒ Ö ØÒ Ò Ò ÖÐ ÃØ ÀÖÑÞ ÁÒØÖÒØÓÒÐ Ù Ò ÅÒ ÓÖÔÓÖØÓÒ ½ ÄÙÖ Ø ÓÙÖØ Ê Ö ÌÖÒÐ ÈÖ Æ ¾½ ØÒÓ ÑÖÚÒ ÞÖÐ ÖÑÞÙ ºÑºÓÑ ØÖØ Áų ÑÖÒÝ Ê ÔÓÒ ËÖÚ ÔÖÓÚ ÖйØÑ ÒØÖÙ ÓÒ ØØÓÒ ÊÌÁµ ÖÚ ØÖÓÙ Ø ÁÒØÖÒØ
