Concluding lesson. Student manual. What kind of protein are you? (Basic)
|
|
|
- Dustin Rogers
- 10 years ago
- Views:
Transcription
1 Concluding lesson Student manual What kind of protein are you? (Basic)
2 Part 1 The hereditary material of an organism is stored in a coded way on the DNA. This code consists of four different nucleotides: adenosine (A), cytosine (C), guanine (G) and thymine (T). In the case of RNA, thymine is replaced by uracil (U). The order in which these nucleotides are linked is called a sequence. Groups of three nucleotides that are next to each other in the sequence are called codons. These codons can be translated into amino acids. But what happens when something changes in the sequence, added or removed? This is called a mutation. There are different kinds of mutations of which five are described below. Missense mutation In a missense mutation 1 nucleotide in a codon changes, which can lead to a completely different amino acid. A missing mutation is a point mutation. Example of a disease: Sickle-cell disease ( Nonsense mutation The nonsense mutation changes a codon in the sequence of one amino acid into a STOP codon (TAA, TGA, TAG). This causes the cell to stop the addition of more amino acids to the protein. This point mutation finally causes the protein to be shorter. Example of a disease: Thalassemia ( Silent mutation A silent mutation changes a codon of a amino acid into another codon but does not change the amino acid. There is most of the time more then one codon that codes for one amino acid. So sometimes a small change in the DNA sequence has no effect on how a protein is formed. This is why it is called a silent mutation. Deletion mutation The deletion mutation removes a part of the DNA sequence. Due to the fact that the DNA codes is read in groups of three nucleotides, the deletion mutation also changes the manner of reading the rest of the sequence. Example of a disease: Cystic fibrosis ( Insertion mutation An insertion mutation adds a nucleotide to the DNA sequence. Here too, this has an effect on the groups of three that are formed and therefore the DNA code will be read differently. Example of a disease: Huntington s disease ( Discover the new world of genomics 2
3 Exercise 1 To gain a better insight in the different mutations one can use the mighty mutation maker. In order to use this program follow the steps below. Go to Enter your name and click on decode. On the left you will see the different mutations. Exercise 1.1 Click on the missense mutation. What happens to your name? Exercise 1.2 Click on the nonsense mutation. What happens to your name? Exercise 1.3 Click on the silent mutation. What happens to your name? Exercise 1.4 Click on the deletion mutation. What happens to your name? Discover the new world of genomics 3
4 Exercise 1.5 Click on the insertion mutation. What happens to your name? Exercise 1.6 Do you still recognize your name after all these different mutations? Scheme 1: Name Result missense mutation Result nonsense mutation Result silent mutation Result deletion mutation Result insertion mutation Discover the new world of genomics 4
5 Part 2 DNA can be translated into amino acids. Amino acids then code for proteins. Different mutations can occur in the DNA that can have effects on the proteins. Five different mutations are missense, nonsense, silent, deletion and insertion mutations. The effects of these mutations are clearly visible on the level of DNA (see Part 1). The effect on the protein sequence is more difficult. This part is very interesting for scientific research, because a disturbed protein function can lead to a wide variety of diseases like Cystic Fibrosis and Alzheimer s disease. Figure 1. Representation of DNA. The DNA consists of genes. These genes code for the amino acid sequence. Amino acid sequences can be transcribed into mrna. mrna can be translated by ribosomes that connects amino acids and thereby makes the protein. The shape of a protein after folding is very important for a protein and its function. This is comparable with the specific shape of a key to fit into a lock. If the key does not fit, the lock won t open. The same goes for proteins; if a protein does not fit into a receptor, there will be no signal transduction. To see how proteins are represented in order to do research, you can look at the following movie: But how do you discover how a proteins folds and what its final shape will look like? Then what are the consequences of mutations in the DNA for the shape of the protein? Now make exercise 2. Discover the new world of genomics 5
6 Exercise 2 To go a step further, you are now going to look at the consequences of mutations for protein folding and the threedimensional structure of a protein. In order to do so, follow the steps below. Make a group of 3 or 4 students Connect the names (first name and surname) of the people in your group Translate the names into an amino acid sequence by using the amino acid alphabet on the right Go to Begin with: >groupname Press Enter On the second line enter the amino acid sequence translation of the names as depicted in the print screen at the bottom of this page Check the Server Policy box Click on Submit Alphabet Amino acid Code A Alanine A B Alanine A C Cysteine C D Aspatic acid D E Glutamic acid E F Phenylalanine F G Glycine G H Histidine H I Isoleucine I J Isoleucine I K Lysine K L Leucine L M Methionine M N Asparagine N O Asparagine N P Proline P Q Glutamine Q R Arginine R S Serine S T Threonine T U Threonine T V Valine V W Tryptophan W X Tryptophan W Y Tyrosine Y Z Tyrosine Y >groupname Amino acid sequence Check box Discover the new world of genomics 6
7 The screen will refresh several times until the calculations are done. This might take a few minutes. You can also manually refresh the page. Click on the name of the group when the program is ready. You can find it under Target id (see the screenshot below). Click Scroll down and make the questions below. Exercise 2.1 Which domains are present in your protein groupname? (Hint: look at the legend) The different domains of a protein all have a certain shape. There is a loop form, a helix (α-helix) with the shape of a spiral staircase and the strand (β-sheet) that looks like a flat plate. The transmembrane helices are special because the protein crosses a cellular membrane. The amino acid sequence of your names determines which domains are present in the protein. What might happen when mutations occur in your name? In order to check the effect of mutations on your protein you are going to test some different mutations on it. Exercise 2.2 Remove the first two letters from each name. What is left of the domains? Discover the new world of genomics 7
8 Exercise 2.3 Remove all the vowels. What is left of the domains? Exercise 2.4 Insert in 5 randomly chosen different places a p (amino acid proline). What happens now with the domains? Exercise 2.5 Finally, insert the name of your teacher at a random position. Does this improve the domain structures or not? Discover the new world of genomics 8
PRACTICE TEST QUESTIONS
PART A: MULTIPLE CHOICE QUESTIONS PRACTICE TEST QUESTIONS DNA & PROTEIN SYNTHESIS B 1. One of the functions of DNA is to A. secrete vacuoles. B. make copies of itself. C. join amino acids to each other.
Pipe Cleaner Proteins. Essential question: How does the structure of proteins relate to their function in the cell?
Pipe Cleaner Proteins GPS: SB1 Students will analyze the nature of the relationships between structures and functions in living cells. Essential question: How does the structure of proteins relate to their
From DNA to Protein. Proteins. Chapter 13. Prokaryotes and Eukaryotes. The Path From Genes to Proteins. All proteins consist of polypeptide chains
Proteins From DNA to Protein Chapter 13 All proteins consist of polypeptide chains A linear sequence of amino acids Each chain corresponds to the nucleotide base sequence of a gene The Path From Genes
RNA and Protein Synthesis
Name lass Date RN and Protein Synthesis Information and Heredity Q: How does information fl ow from DN to RN to direct the synthesis of proteins? 13.1 What is RN? WHT I KNOW SMPLE NSWER: RN is a nucleic
Multiple Choice Write the letter that best answers the question or completes the statement on the line provided.
Name lass Date hapter 12 DN and RN hapter Test Multiple hoice Write the letter that best answers the question or completes the statement on the line provided. Pearson Education, Inc. ll rights reserved.
Shu-Ping Lin, Ph.D. E-mail: [email protected]
Amino Acids & Proteins Shu-Ping Lin, Ph.D. Institute te of Biomedical Engineering ing E-mail: [email protected] Website: http://web.nchu.edu.tw/pweb/users/splin/ edu tw/pweb/users/splin/ Date: 10.13.2010
Molecular Genetics. RNA, Transcription, & Protein Synthesis
Molecular Genetics RNA, Transcription, & Protein Synthesis Section 1 RNA AND TRANSCRIPTION Objectives Describe the primary functions of RNA Identify how RNA differs from DNA Describe the structure and
13.2 Ribosomes & Protein Synthesis
13.2 Ribosomes & Protein Synthesis Introduction: *A specific sequence of bases in DNA carries the directions for forming a polypeptide, a chain of amino acids (there are 20 different types of amino acid).
Coding sequence the sequence of nucleotide bases on the DNA that are transcribed into RNA which are in turn translated into protein
Assignment 3 Michele Owens Vocabulary Gene: A sequence of DNA that instructs a cell to produce a particular protein Promoter a control sequence near the start of a gene Coding sequence the sequence of
Ms. Campbell Protein Synthesis Practice Questions Regents L.E.
Name Student # Ms. Campbell Protein Synthesis Practice Questions Regents L.E. 1. A sequence of three nitrogenous bases in a messenger-rna molecule is known as a 1) codon 2) gene 3) polypeptide 4) nucleotide
http://www.life.umd.edu/grad/mlfsc/ DNA Bracelets
http://www.life.umd.edu/grad/mlfsc/ DNA Bracelets by Louise Brown Jasko John Anthony Campbell Jack Dennis Cassidy Michael Nickelsburg Stephen Prentis Rohm Objectives: 1) Using plastic beads, construct
DNA Replication & Protein Synthesis. This isn t a baaaaaaaddd chapter!!!
DNA Replication & Protein Synthesis This isn t a baaaaaaaddd chapter!!! The Discovery of DNA s Structure Watson and Crick s discovery of DNA s structure was based on almost fifty years of research by other
Built from 20 kinds of amino acids
Built from 20 kinds of amino acids Each Protein has a three dimensional structure. Majority of proteins are compact. Highly convoluted molecules. Proteins are folded polypeptides. There are four levels
Name Class Date. Figure 13 1. 2. Which nucleotide in Figure 13 1 indicates the nucleic acid above is RNA? a. uracil c. cytosine b. guanine d.
13 Multiple Choice RNA and Protein Synthesis Chapter Test A Write the letter that best answers the question or completes the statement on the line provided. 1. Which of the following are found in both
Gene mutation and molecular medicine Chapter 15
Gene mutation and molecular medicine Chapter 15 Lecture Objectives What Are Mutations? How Are DNA Molecules and Mutations Analyzed? How Do Defective Proteins Lead to Diseases? What DNA Changes Lead to
Structure and Function of DNA
Structure and Function of DNA DNA and RNA Structure DNA and RNA are nucleic acids. They consist of chemical units called nucleotides. The nucleotides are joined by a sugar-phosphate backbone. The four
Genetic information (DNA) determines structure of proteins DNA RNA proteins cell structure 3.11 3.15 enzymes control cell chemistry ( metabolism )
Biology 1406 Exam 3 Notes Structure of DNA Ch. 10 Genetic information (DNA) determines structure of proteins DNA RNA proteins cell structure 3.11 3.15 enzymes control cell chemistry ( metabolism ) Proteins
Advanced Medicinal & Pharmaceutical Chemistry CHEM 5412 Dept. of Chemistry, TAMUK
Advanced Medicinal & Pharmaceutical Chemistry CHEM 5412 Dept. of Chemistry, TAMUK Dai Lu, Ph.D. [email protected] Tel: 361-221-0745 Office: RCOP, Room 307 Drug Discovery and Development Drug Molecules Medicinal
BOC334 (Proteomics) Practical 1. Calculating the charge of proteins
BC334 (Proteomics) Practical 1 Calculating the charge of proteins Aliphatic amino acids (VAGLIP) N H 2 H Glycine, Gly, G no charge Hydrophobicity = 0.67 MW 57Da pk a CH = 2.35 pk a NH 2 = 9.6 pi=5.97 CH
Mutations and Genetic Variability. 1. What is occurring in the diagram below?
Mutations and Genetic Variability 1. What is occurring in the diagram below? A. Sister chromatids are separating. B. Alleles are independently assorting. C. Genes are replicating. D. Segments of DNA are
IV. -Amino Acids: carboxyl and amino groups bonded to -Carbon. V. Polypeptides and Proteins
IV. -Amino Acids: carboxyl and amino groups bonded to -Carbon A. Acid/Base properties 1. carboxyl group is proton donor! weak acid 2. amino group is proton acceptor! weak base 3. At physiological ph: H
To be able to describe polypeptide synthesis including transcription and splicing
Thursday 8th March COPY LO: To be able to describe polypeptide synthesis including transcription and splicing Starter Explain the difference between transcription and translation BATS Describe and explain
H H N - C - C 2 R. Three possible forms (not counting R group) depending on ph
Amino acids - 0 common amino acids there are others found naturally but much less frequently - Common structure for amino acid - C, -N, and functional groups all attached to the alpha carbon N - C - C
Guidelines for Writing a Scientific Paper
Guidelines for Writing a Scientific Paper Writing an effective scientific paper is not easy. A good rule of thumb is to write as if your paper will be read by a person who knows about the field in general
Amino Acids and Proteins
Amino Acids and Proteins Proteins are composed of amino acids. There are 20 amino acids commonly found in proteins. All have: N2 C α R COO Amino acids at neutral p are dipolar ions (zwitterions) because
Molecular Facts and Figures
Nucleic Acids Molecular Facts and Figures DNA/RNA bases: DNA and RNA are composed of four bases each. In DNA the four are Adenine (A), Thymidine (T), Cytosine (C), and Guanine (G). In RNA the four are
Provincial Exam Questions. 9. Give one role of each of the following nucleic acids in the production of an enzyme.
Provincial Exam Questions Unit: Cell Biology: Protein Synthesis (B7 & B8) 2010 Jan 3. Describe the process of translation. (4 marks) 2009 Sample 8. What is the role of ribosomes in protein synthesis? A.
Name Date Period. 2. When a molecule of double-stranded DNA undergoes replication, it results in
DNA, RNA, Protein Synthesis Keystone 1. During the process shown above, the two strands of one DNA molecule are unwound. Then, DNA polymerases add complementary nucleotides to each strand which results
Bio 102 Practice Problems Genetic Code and Mutation
Bio 102 Practice Problems Genetic Code and Mutation Multiple choice: Unless otherwise directed, circle the one best answer: 1. Beadle and Tatum mutagenized Neurospora to find strains that required arginine
1 Mutation and Genetic Change
CHAPTER 14 1 Mutation and Genetic Change SECTION Genes in Action KEY IDEAS As you read this section, keep these questions in mind: What is the origin of genetic differences among organisms? What kinds
a. Ribosomal RNA rrna a type ofrna that combines with proteins to form Ribosomes on which polypeptide chains of proteins are assembled
Biology 101 Chapter 14 Name: Fill-in-the-Blanks Which base follows the next in a strand of DNA is referred to. as the base (1) Sequence. The region of DNA that calls for the assembly of specific amino
Translation Study Guide
Translation Study Guide This study guide is a written version of the material you have seen presented in the replication unit. In translation, the cell uses the genetic information contained in mrna to
DNA, RNA, Protein synthesis, and Mutations. Chapters 12-13.3
DNA, RNA, Protein synthesis, and Mutations Chapters 12-13.3 1A)Identify the components of DNA and explain its role in heredity. DNA s Role in heredity: Contains the genetic information of a cell that can
CSC 2427: Algorithms for Molecular Biology Spring 2006. Lecture 16 March 10
CSC 2427: Algorithms for Molecular Biology Spring 2006 Lecture 16 March 10 Lecturer: Michael Brudno Scribe: Jim Huang 16.1 Overview of proteins Proteins are long chains of amino acids (AA) which are produced
Thymine = orange Adenine = dark green Guanine = purple Cytosine = yellow Uracil = brown
1 DNA Coloring - Transcription & Translation Transcription RNA, Ribonucleic Acid is very similar to DNA. RNA normally exists as a single strand (and not the double stranded double helix of DNA). It contains
Module 6: Digital DNA
Module 6: Digital DNA Representation and processing of digital information in the form of DNA is essential to life in all organisms, no matter how large or tiny. Computing tools and computational thinking
Part A: Amino Acids and Peptides (Is the peptide IAG the same as the peptide GAI?)
ChemActivity 46 Amino Acids, Polypeptides and Proteins 1 ChemActivity 46 Part A: Amino Acids and Peptides (Is the peptide IAG the same as the peptide GAI?) Model 1: The 20 Amino Acids at Biological p See
Protein Synthesis. Page 41 Page 44 Page 47 Page 42 Page 45 Page 48 Page 43 Page 46 Page 49. Page 41. DNA RNA Protein. Vocabulary
Protein Synthesis Vocabulary Transcription Translation Translocation Chromosomal mutation Deoxyribonucleic acid Frame shift mutation Gene expression Mutation Point mutation Page 41 Page 41 Page 44 Page
Human Tubal Fluid (HTF) Media & Modifi ed Human Tubal Fluid (mhtf) Medium with Gentamicin
Human Tubal Fluid (HTF) Media & Modifi ed Human Tubal Fluid (mhtf) Medium with Gentamicin HTF Media are intended for use in assisted reproductive procedures which include gamete and embryo manipulation
LESSON 4. Using Bioinformatics to Analyze Protein Sequences. Introduction. Learning Objectives. Key Concepts
4 Using Bioinformatics to Analyze Protein Sequences Introduction In this lesson, students perform a paper exercise designed to reinforce the student understanding of the complementary nature of DNA and
2007 7.013 Problem Set 1 KEY
2007 7.013 Problem Set 1 KEY Due before 5 PM on FRIDAY, February 16, 2007. Turn answers in to the box outside of 68-120. PLEASE WRITE YOUR ANSWERS ON THIS PRINTOUT. 1. Where in a eukaryotic cell do you
Lecture Series 7. From DNA to Protein. Genotype to Phenotype. Reading Assignments. A. Genes and the Synthesis of Polypeptides
Lecture Series 7 From DNA to Protein: Genotype to Phenotype Reading Assignments Read Chapter 7 From DNA to Protein A. Genes and the Synthesis of Polypeptides Genes are made up of DNA and are expressed
Basic Concepts of DNA, Proteins, Genes and Genomes
Basic Concepts of DNA, Proteins, Genes and Genomes Kun-Mao Chao 1,2,3 1 Graduate Institute of Biomedical Electronics and Bioinformatics 2 Department of Computer Science and Information Engineering 3 Graduate
Transcription and Translation of DNA
Transcription and Translation of DNA Genotype our genetic constitution ( makeup) is determined (controlled) by the sequence of bases in its genes Phenotype determined by the proteins synthesised when genes
RNA & Protein Synthesis
RNA & Protein Synthesis Genes send messages to cellular machinery RNA Plays a major role in process Process has three phases (Genetic) Transcription (Genetic) Translation Protein Synthesis RNA Synthesis
Genomes and SNPs in Malaria and Sickle Cell Anemia
Genomes and SNPs in Malaria and Sickle Cell Anemia Introduction to Genome Browsing with Ensembl Ensembl The vast amount of information in biological databases today demands a way of organising and accessing
12.1 The Role of DNA in Heredity
12.1 The Role of DNA in Heredity Only in the last 50 years have scientists understood the role of DNA in heredity. That understanding began with the discovery of DNA s structure. In 1952, Rosalind Franklin
Bioinformatics Resources at a Glance
Bioinformatics Resources at a Glance A Note about FASTA Format There are MANY free bioinformatics tools available online. Bioinformaticists have developed a standard format for nucleotide and protein sequences
BioBoot Camp Genetics
BioBoot Camp Genetics BIO.B.1.2.1 Describe how the process of DNA replication results in the transmission and/or conservation of genetic information DNA Replication is the process of DNA being copied before
Proteins and Nucleic Acids
Proteins and Nucleic Acids Chapter 5 Macromolecules: Proteins Proteins Most structurally & functionally diverse group of biomolecules. : o Involved in almost everything o Enzymes o Structure (keratin,
The sequence of bases on the mrna is a code that determines the sequence of amino acids in the polypeptide being synthesized:
Module 3F Protein Synthesis So far in this unit, we have examined: How genes are transmitted from one generation to the next Where genes are located What genes are made of How genes are replicated How
3120-1 - Page 1. Name:
Name: 1) Which series is arranged in correct order according to decreasing size of structures? A) DNA, nucleus, chromosome, nucleotide, nitrogenous base B) chromosome, nucleus, nitrogenous base, nucleotide,
The Steps. 1. Transcription. 2. Transferal. 3. Translation
Protein Synthesis Protein synthesis is simply the "making of proteins." Although the term itself is easy to understand, the multiple steps that a cell in a plant or animal must go through are not. In order
Introduction to Bioinformatics 2. DNA Sequence Retrieval and comparison
Introduction to Bioinformatics 2. DNA Sequence Retrieval and comparison Benjamin F. Matthews United States Department of Agriculture Soybean Genomics and Improvement Laboratory Beltsville, MD 20708 [email protected]
Gene and Chromosome Mutation Worksheet (reference pgs. 239-240 in Modern Biology textbook)
Name Date Per Look at the diagrams, then answer the questions. Gene Mutations affect a single gene by changing its base sequence, resulting in an incorrect, or nonfunctional, protein being made. (a) A
Cellular Respiration Worksheet 1. 1. What are the 3 phases of the cellular respiration process? Glycolysis, Krebs Cycle, Electron Transport Chain.
Cellular Respiration Worksheet 1 1. What are the 3 phases of the cellular respiration process? Glycolysis, Krebs Cycle, Electron Transport Chain. 2. Where in the cell does the glycolysis part of cellular
Lab # 12: DNA and RNA
115 116 Concepts to be explored: Structure of DNA Nucleotides Amino Acids Proteins Genetic Code Mutation RNA Transcription to RNA Translation to a Protein Figure 12. 1: DNA double helix Introduction Long
Structure and properties of proteins. Vladimíra Kvasnicová
Structure and properties of proteins Vladimíra Kvasnicová Chemical nature of proteins biopolymers of amino acids macromolecules (M r > 10 000) Classification of proteins 1) by localization in an organism
Paper: 6 Chemistry 2.130 University I Chemistry: Models Page: 2 of 7. 4. Which of the following weak acids would make the best buffer at ph = 5.0?
Paper: 6 Chemistry 2.130 University I Chemistry: Models Page: 2 of 7 4. Which of the following weak acids would make the best buffer at ph = 5.0? A) Acetic acid (Ka = 1.74 x 10-5 ) B) H 2 PO - 4 (Ka =
Modeling DNA Replication and Protein Synthesis
Skills Practice Lab Modeling DNA Replication and Protein Synthesis OBJECTIVES Construct and analyze a model of DNA. Use a model to simulate the process of replication. Use a model to simulate the process
Bioinformatics, Sequences and Genomes
Bioinformatics, Sequences and Genomes BL4273 Bioinformatics for Biologists Week 1 Daniel Barker, School of Biology, University of St Andrews Email [email protected] BL4273 and 4273π 4273π is a custom
Protein Synthesis How Genes Become Constituent Molecules
Protein Synthesis Protein Synthesis How Genes Become Constituent Molecules Mendel and The Idea of Gene What is a Chromosome? A chromosome is a molecule of DNA 50% 50% 1. True 2. False True False Protein
Regents Biology REGENTS REVIEW: PROTEIN SYNTHESIS
Period Date REGENTS REVIEW: PROTEIN SYNTHESIS 1. The diagram at the right represents a portion of a type of organic molecule present in the cells of organisms. What will most likely happen if there is
Amino Acids, Peptides, Proteins
Amino Acids, Peptides, Proteins Functions of proteins: Enzymes Transport and Storage Motion, muscle contraction Hormones Mechanical support Immune protection (Antibodies) Generate and transmit nerve impulses
Academic Nucleic Acids and Protein Synthesis Test
Academic Nucleic Acids and Protein Synthesis Test Multiple Choice Identify the letter of the choice that best completes the statement or answers the question. 1. Each organism has a unique combination
Preliminary MFM Quiz
Preliminary MFM Quiz 1. The major carrier of chemical energy in all cells is: A) adenosine monophosphate B) adenosine diphosphate C) adenosine trisphosphate D) guanosine trisphosphate E) carbamoyl phosphate
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet
1 UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Exam in: MBV4010 Arbeidsmetoder i molekylærbiologi og biokjemi I MBV4010 Methods in molecular biology and biochemistry I Day of exam:.
Bob Jesberg. Boston, MA April 3, 2014
DNA, Replication and Transcription Bob Jesberg NSTA Conference Boston, MA April 3, 2014 1 Workshop Agenda Looking at DNA and Forensics The DNA, Replication i and Transcription i Set DNA Ladder The Double
2. The number of different kinds of nucleotides present in any DNA molecule is A) four B) six C) two D) three
Chem 121 Chapter 22. Nucleic Acids 1. Any given nucleotide in a nucleic acid contains A) two bases and a sugar. B) one sugar, two bases and one phosphate. C) two sugars and one phosphate. D) one sugar,
Name: Date: Period: DNA Unit: DNA Webquest
Name: Date: Period: DNA Unit: DNA Webquest Part 1 History, DNA Structure, DNA Replication DNA History http://www.dnaftb.org/dnaftb/1/concept/index.html Read the text and answer the following questions.
RNA Structure and folding
RNA Structure and folding Overview: The main functional biomolecules in cells are polymers DNA, RNA and proteins For RNA and Proteins, the specific sequence of the polymer dictates its final structure
Chapter 9. Applications of probability. 9.1 The genetic code
Chapter 9 Applications of probability In this chapter we use the tools of elementary probability to investigate problems of several kinds. First, we study the language of life by focusing on the universal
Grow Taller 4 Idiots 2
1 Grow Taller 4 Idiots 2 Warning and Disclaimer Every effort has been made to make this digital book as complete and as accurate as possible, but no warranty or fitness is implied. The information provided
mrna EDITING Watson et al., BIOLOGIA MOLECOLARE DEL GENE, Zanichelli editore S.p.A. Copyright 2005
mrna EDITING mrna EDITING http://dbb.urmc.rochester.edu/labs/smith/research_2.htm The number of A to I sites in the human transcriptome >15;000 the vast majority of these sites occurring in Alu repeats
Genetics Test Biology I
Genetics Test Biology I Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Avery s experiments showed that bacteria are transformed by a. RNA. c. proteins.
MCAT Organic Chemistry - Problem Drill 23: Amino Acids, Peptides and Proteins
MCAT rganic Chemistry - Problem Drill 23: Amino Acids, Peptides and Proteins Question No. 1 of 10 Question 1. Which amino acid does not contain a chiral center? Question #01 (A) Serine (B) Proline (C)
2006 7.012 Problem Set 3 KEY
2006 7.012 Problem Set 3 KEY Due before 5 PM on FRIDAY, October 13, 2006. Turn answers in to the box outside of 68-120. PLEASE WRITE YOUR ANSWERS ON THIS PRINTOUT. 1. Which reaction is catalyzed by each
Lecture 3: Mutations
Lecture 3: Mutations Recall that the flow of information within a cell involves the transcription of DNA to mrna and the translation of mrna to protein. Recall also, that the flow of information between
Activity 7.21 Transcription factors
Purpose To consolidate understanding of protein synthesis. To explain the role of transcription factors and hormones in switching genes on and off. Play the transcription initiation complex game Regulation
Replication Study Guide
Replication Study Guide This study guide is a written version of the material you have seen presented in the replication unit. Self-reproduction is a function of life that human-engineered systems have
PRESTWICK ACADEMY NATIONAL 5 BIOLOGY CELL BIOLOGY SUMMARY
Name PRESTWICK ACADEMY NATIONAL 5 BIOLOGY CELL BIOLOGY SUMMARY Cell Structure Identify animal, plant, fungal and bacterial cell ultrastructure and know the structures functions. Plant cell Animal cell
ISTEP+: Biology I End-of-Course Assessment Released Items and Scoring Notes
ISTEP+: Biology I End-of-Course Assessment Released Items and Scoring Notes Page 1 of 22 Introduction Indiana students enrolled in Biology I participated in the ISTEP+: Biology I Graduation Examination
From DNA to Protein
Nucleus Control center of the cell contains the genetic library encoded in the sequences of nucleotides in molecules of DNA code for the amino acid sequences of all proteins determines which specific proteins
Specific problems. The genetic code. The genetic code. Adaptor molecules match amino acids to mrna codons
Tutorial II Gene expression: mrna translation and protein synthesis Piergiorgio Percipalle, PhD Program Control of gene transcription and RNA processing mrna translation and protein synthesis KAROLINSKA
Genetics Module B, Anchor 3
Genetics Module B, Anchor 3 Key Concepts: - An individual s characteristics are determines by factors that are passed from one parental generation to the next. - During gamete formation, the alleles for
NO CALCULATORS OR CELL PHONES ALLOWED
Biol 205 Exam 1 TEST FORM A Spring 2008 NAME Fill out both sides of the Scantron Sheet. On Side 2 be sure to indicate that you have TEST FORM A The answers to Part I should be placed on the SCANTRON SHEET.
MUTATION, DNA REPAIR AND CANCER
MUTATION, DNA REPAIR AND CANCER 1 Mutation A heritable change in the genetic material Essential to the continuity of life Source of variation for natural selection New mutations are more likely to be harmful
The Puzzle of Life A Lesson Plan for Life S cien ce Teach ers From: The G reat Lakes S cien ce C ent er, C lev elan d, OH
Introduction: The Puzzle of Life A Lesson Plan for Life S cien ce Teach ers From: The G reat Lakes S cien ce C ent er, C lev elan d, OH In the Puzzle of Life activity, students will demonstrate how the
Lecture 6: Single nucleotide polymorphisms (SNPs) and Restriction Fragment Length Polymorphisms (RFLPs)
Lecture 6: Single nucleotide polymorphisms (SNPs) and Restriction Fragment Length Polymorphisms (RFLPs) Single nucleotide polymorphisms or SNPs (pronounced "snips") are DNA sequence variations that occur
DNA and the Cell. Version 2.3. English version. ELLS European Learning Laboratory for the Life Sciences
DNA and the Cell Anastasios Koutsos Alexandra Manaia Julia Willingale-Theune Version 2.3 English version ELLS European Learning Laboratory for the Life Sciences Anastasios Koutsos, Alexandra Manaia and
Biochemistry - I. Prof. S. Dasgupta Department of Chemistry Indian Institute of Technology, Kharagpur Lecture-11 Enzyme Mechanisms II
Biochemistry - I Prof. S. Dasgupta Department of Chemistry Indian Institute of Technology, Kharagpur Lecture-11 Enzyme Mechanisms II In the last class we studied the enzyme mechanisms of ribonuclease A
Amino Acids, Proteins, and Enzymes. Primary and Secondary Structure Tertiary and Quaternary Structure Protein Hydrolysis and Denaturation
Amino Acids, Proteins, and Enzymes Primary and Secondary Structure Tertiary and Quaternary Structure Protein Hydrolysis and Denaturation 1 Primary Structure of Proteins H 3 N The particular sequence of
Gene Models & Bed format: What they represent.
GeneModels&Bedformat:Whattheyrepresent. Gene models are hypotheses about the structure of transcripts produced by a gene. Like all models, they may be correct, partly correct, or entirely wrong. Typically,
Copyright 2000-2003 Mark Brandt, Ph.D. 35
Amino acid breakdown Amino acids comprise one of the three major energy sources for animals. They are an especially important energy source for carnivorous animals, and for all animals during early starvation
Algorithms in Computational Biology (236522) spring 2007 Lecture #1
Algorithms in Computational Biology (236522) spring 2007 Lecture #1 Lecturer: Shlomo Moran, Taub 639, tel 4363 Office hours: Tuesday 11:00-12:00/by appointment TA: Ilan Gronau, Taub 700, tel 4894 Office
The Organic Chemistry of Amino Acids, Peptides, and Proteins
Essential rganic Chemistry Chapter 16 The rganic Chemistry of Amino Acids, Peptides, and Proteins Amino Acids a-amino carboxylic acids. The building blocks from which proteins are made. H 2 N C 2 H Note:
