Structure and properties of proteins. Vladimíra Kvasnicová
|
|
|
- Kerrie Newman
- 10 years ago
- Views:
Transcription
1 Structure and properties of proteins Vladimíra Kvasnicová
2 Chemical nature of proteins biopolymers of amino acids macromolecules (M r > )
3 Classification of proteins 1) by localization in an organism intra- / extracellular 2) by function structural / biological active 3) by shape globular / fibrous 4) by chemical composition simple / complex (conjugated) proteins
4 conjugated proteins contein polypeptide chain + prosthetic group: glycoproteins + saccharide metalloproteins hemoproteins phosphoproteins nucleoproteins (lipoproteins) + metal ion + heme + phosphoric acid + nucleic acid + lipids
5 Proteins are synthesized from L-α-amino acids 21 proteinogenic AAs other AAs are non-proteinogenic The figure was adopted from: J.Koolman, K.H.Röhm / Color Atlas of Biochemistry, 2 nd edition, Thieme 2005
6 Side chains of AAs determine final properties of proteins Isoelectric point (pi) = ph value at which the net charge of a compound is zero pi = (pk COOH + pk NH3+ ) / 2 Solutions of AAs belong among ampholytes AMPHION (= amphoteric electrolytes)
7
8 pk a Henderson-Hasselbalch equation: acid base + H + (for example: R-COOH R-COO - + H + ) If ph of a solution (e.g. cytosol) is higher than pk a (i.e. more basic) the structure of base predominates: acid base + H + The figure was adopted from: J.Koolman, K.H.Röhm / Color Atlas of Biochemistry, 2 nd edition, Thieme 2005
9 The figure was adopted from: J.Koolman, K.H.Röhm / Color Atlas of Biochemistry, 2 nd edition, Thieme 2005
10 Functional groups of amino acids -COOH -COO - + H + -COOH -CO- -NH 2 + H + -NH + 3 -CONH 2 (not basic) -OH (not acidic in H 2 O) -SH (not acidic in H 2 O) -SeH -S- -HN-C(=NH)-NH 2 carboxyl group anion carboxyl group acyl amino group cation amide group alcohol group thiol group selenol group sulfide group guanidine group
11 Important reactions of AAs 1) dissociation bases 2) decarboxylation biogenic amines 3) transamination 2-oxoacids 4) deamination 2-oxoacids 5) formation of peptide bonds peptides or proteins H H peptide bond
12 Amino acids in proteins L-α-aminocarboxylic acids 21 proteinogenic AAs other AAs are formed by a posttranslational modification
13
14
15 Modified amino acids The figure was adopted from: Devlin, T. M. (editor): Textbook of Biochemistry with Clinical Correlations, 4th ed. Wiley-Liss, Inc., New York, ISBN
16 Important groups of proteinogenic amino acids branched chain AAs: valine, leucine, isoleucine aromatic AAs: phenylalanine, tyrosine, tryptophane, histidine sulfur-containing AAs: methionine, cysteine alcohol group containing AAs: serine, threonine, tyrosine basic AAs: lysine, arginine, histidine acidic AAs: aspartic acid (aspartate), glutamic acid (glutamate) amide group containing: asparagine, glutamine not optically active: glycine rare amino acid: selenocysteine abundant in blood: glutamine, alanine
17 Essential amino acids essential in a diet, they are not synthetized in a human body 1) branched chain AAs (Val, Leu, Ile) 2) aromatic AAs (Phe, Trp) 3) basic AAs (Lys, Arg, His) 4) secondary-oh (Thr), sulfide group (Met)
18 Peptides and proteins contain 2 or more AAs bound by peptide bond(s) common names are used systematic names: AA 1 -yl-aa 2 -yl-aa 3 oligopeptides: polypeptides: 2 10 AA > 10 AA proteins: polypeptides of M r >
19 border: polypeptide /protein is not sharp (~ 50 AAs) AAs are bound by peptide bonds the order of AAs in a chain (= primary structure) is given by a genetic information the order of AAs is reported from N- to C- terminal
20 Description of structure of proteins the macromolecule contains various AAs, in an exactly defined order and quantity spacial arrangement and biological function are DEPENDENT on the amino acid composition native protein biological active conformation
21 Side chains of AAs influence a final structure of proteins: polar side chain nonpolar side chain final conformation of the protein in water unfolded protein
22 the peptide chain has a special spatial arrangement: only some proteins are composed of subunits (= quaternary structure)
23 Bonds found in proteins 1) covalent peptide bond disulfide bond -CO-NH- -S-S- 2) noncovalent interactions hydrogen bonds -H... O- -H... N- hydrophobic interactions nonpolar side chains ionic interactions -COO - / + H 3 N-
24 Primary structure of proteins = order of amino acids read: from N-to C- end it is coded on a genetic level stabilization: peptide bonds
25 Secondary structure of proteins = spatial arrangement of the polypeptide chain given by rotation of the planar peptide bonds around α-carbons stabilization: hydrogen bonds between CO- and -NHof the peptide bonds α-helix β-pleated sheet β-turn real proteins: different parts of the polypeptide chain exist in various secondary structures
26
27 Helical structure (helix) various types of the spiral: different steepness, direction of rotation, number of AAs per turn peptide bond planes are parallel to the axis of the helix with R- perpendicular to it H-bonds are formed between AAs found above and below themselves the most common: α-helix (right-handed) collagen helix (left-handed, steeper)
28 β-pleated sheet (β-structure) direction of parts of the polypeptide chain is either parallel or antiparallel N C N C N C C N R- are placed above or below the plane of the sheet H-bonds are formed between peptide bonds of the neighboring parts of the polypeptide chain it brings strength to proteins
29
30 β-bend (reverse or β-turn) reverse the direction of a polypeptide chain, helping it form a compact, globular shape often connect successive strands of antiparallel sheets Nonrepetitive secondary structure loop or coil conformation not random but less regular structure than α- or β- one half of a protein molecule exist in it
31 Tertiary structure of proteins = spatial arrangement of the secondary structures (folding of domains) stabilization: between side chains of AAs 1) hydrogen bonds 2) ionic (electrostatic) interactions 3) hydrophobic interactions 4) disulfide bonds
32 tertiary structure secondary structures
33 α-helix β-sheet motif: barrel
34 Classification of proteins according to their tertiary structure 1) globular proteins (spheroproteins) spheroidal shape both secondary structures are abundant 2) fibrous proteins (scleroproteins) rod-like shape one secondary structure predominates e.g. α-keratin, collagen
35 Quaternary structure of proteins = oligomeric structure of a protein (2 or more subunits ~ monomers) i.e. the structure is found only in proteins composed from 2 or more chains (subunits) stabilization: noncovalent interactions the proteins have an allosteric effect
36
37 SUMMARY of protein structure description
38 properties and functions of proteins are related to their spatial arrangement IT DEPENDS ON AMINO ACIDS COMPOSITION funkční domény
39 Physicochemical properties water solubility depends on the structure proteins form colloidal solutions (viscosity, sedimentation, light dispersion) colloidal-osmotic pressure = onkotic pressure proteins can be salting-out of the solution (~ water sheet removing)
40 proteins can be denaturated heat, whipping, shaking, radiation strong ph changes, salt of heavy metals, organic solvents, detergents
41 proteins strongly absorb UV radiation
42 proteins are ampholytes -COOH -COO - + H + -NH 2 + H + -NH 3 + under physiological ph proteins are negatively charged ANIONS
Advanced Medicinal & Pharmaceutical Chemistry CHEM 5412 Dept. of Chemistry, TAMUK
Advanced Medicinal & Pharmaceutical Chemistry CHEM 5412 Dept. of Chemistry, TAMUK Dai Lu, Ph.D. [email protected] Tel: 361-221-0745 Office: RCOP, Room 307 Drug Discovery and Development Drug Molecules Medicinal
IV. -Amino Acids: carboxyl and amino groups bonded to -Carbon. V. Polypeptides and Proteins
IV. -Amino Acids: carboxyl and amino groups bonded to -Carbon A. Acid/Base properties 1. carboxyl group is proton donor! weak acid 2. amino group is proton acceptor! weak base 3. At physiological ph: H
A. A peptide with 12 amino acids has the following amino acid composition: 2 Met, 1 Tyr, 1 Trp, 2 Glu, 1 Lys, 1 Arg, 1 Thr, 1 Asn, 1 Ile, 1 Cys
Questions- Proteins & Enzymes A. A peptide with 12 amino acids has the following amino acid composition: 2 Met, 1 Tyr, 1 Trp, 2 Glu, 1 Lys, 1 Arg, 1 Thr, 1 Asn, 1 Ile, 1 Cys Reaction of the intact peptide
Amino Acids and Proteins
Amino Acids and Proteins Proteins are composed of amino acids. There are 20 amino acids commonly found in proteins. All have: N2 C α R COO Amino acids at neutral p are dipolar ions (zwitterions) because
Built from 20 kinds of amino acids
Built from 20 kinds of amino acids Each Protein has a three dimensional structure. Majority of proteins are compact. Highly convoluted molecules. Proteins are folded polypeptides. There are four levels
Pipe Cleaner Proteins. Essential question: How does the structure of proteins relate to their function in the cell?
Pipe Cleaner Proteins GPS: SB1 Students will analyze the nature of the relationships between structures and functions in living cells. Essential question: How does the structure of proteins relate to their
Amino Acids, Peptides, Proteins
Amino Acids, Peptides, Proteins Functions of proteins: Enzymes Transport and Storage Motion, muscle contraction Hormones Mechanical support Immune protection (Antibodies) Generate and transmit nerve impulses
The Organic Chemistry of Amino Acids, Peptides, and Proteins
Essential rganic Chemistry Chapter 16 The rganic Chemistry of Amino Acids, Peptides, and Proteins Amino Acids a-amino carboxylic acids. The building blocks from which proteins are made. H 2 N C 2 H Note:
Part A: Amino Acids and Peptides (Is the peptide IAG the same as the peptide GAI?)
ChemActivity 46 Amino Acids, Polypeptides and Proteins 1 ChemActivity 46 Part A: Amino Acids and Peptides (Is the peptide IAG the same as the peptide GAI?) Model 1: The 20 Amino Acids at Biological p See
Paper: 6 Chemistry 2.130 University I Chemistry: Models Page: 2 of 7. 4. Which of the following weak acids would make the best buffer at ph = 5.0?
Paper: 6 Chemistry 2.130 University I Chemistry: Models Page: 2 of 7 4. Which of the following weak acids would make the best buffer at ph = 5.0? A) Acetic acid (Ka = 1.74 x 10-5 ) B) H 2 PO - 4 (Ka =
18.2 Protein Structure and Function: An Overview
18.2 Protein Structure and Function: An Overview Protein: A large biological molecule made of many amino acids linked together through peptide bonds. Alpha-amino acid: Compound with an amino group bonded
Shu-Ping Lin, Ph.D. E-mail: [email protected]
Amino Acids & Proteins Shu-Ping Lin, Ph.D. Institute te of Biomedical Engineering ing E-mail: [email protected] Website: http://web.nchu.edu.tw/pweb/users/splin/ edu tw/pweb/users/splin/ Date: 10.13.2010
H H N - C - C 2 R. Three possible forms (not counting R group) depending on ph
Amino acids - 0 common amino acids there are others found naturally but much less frequently - Common structure for amino acid - C, -N, and functional groups all attached to the alpha carbon N - C - C
http://faculty.sau.edu.sa/h.alshehri
http://faculty.sau.edu.sa/h.alshehri Definition: Proteins are macromolecules with a backbone formed by polymerization of amino acids. Proteins carry out a number of functions in living organisms: - They
Chemistry 110. Bettelheim, Brown, Campbell & Farrell. Introduction to General, Organic and Biochemistry Chapter 22 Proteins
hemistry 110 Bettelheim, Brown, ampbell & Farrell Ninth Edition Introduction to General, rganic and Biochemistry hapter 22 Proteins Step-growth polyamide (polypeptide) polymers or oligomers of L-α-aminoacids.
Amino Acids, Proteins, and Enzymes. Primary and Secondary Structure Tertiary and Quaternary Structure Protein Hydrolysis and Denaturation
Amino Acids, Proteins, and Enzymes Primary and Secondary Structure Tertiary and Quaternary Structure Protein Hydrolysis and Denaturation 1 Primary Structure of Proteins H 3 N The particular sequence of
BOC334 (Proteomics) Practical 1. Calculating the charge of proteins
BC334 (Proteomics) Practical 1 Calculating the charge of proteins Aliphatic amino acids (VAGLIP) N H 2 H Glycine, Gly, G no charge Hydrophobicity = 0.67 MW 57Da pk a CH = 2.35 pk a NH 2 = 9.6 pi=5.97 CH
Chapter 16 Amino Acids, Proteins, and Enzymes
Chapter 16 Amino Acids, Proteins, and Enzymes 1 Functions of Proteins Proteins in the body are polymers made from 20 different amino acids differ in characteristics and functions that depend on the order
Ch18_PT MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.
Ch18_PT MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) All of the following can be classified as biomolecules except A) lipids. B) proteins. C)
Lecture 13-14 Conformation of proteins Conformation of a protein three-dimensional structure native state. native condition
Lecture 13-14 Conformation of proteins Conformation of a protein refers to the three-dimensional structure in its native state. There are many different possible conformations for a molecule as large as
Chapter 26 Biomolecules: Amino Acids, Peptides, and Proteins
John E. McMurry www.cengage.com/chemistry/mcmurry Chapter 26 Biomolecules: Amino Acids, Peptides, and Proteins Proteins Amides from Amino Acids Amino acids contain a basic amino group and an acidic carboxyl
Structure of proteins
Structure of proteins Primary structure: is amino acids sequence or the covalent structure (50-2500) amino acids M.Wt. of amino acid=110 Dalton (56 110=5610 Dalton). Single chain or more than one polypeptide
Biological Molecules
Biological Molecules I won t lie. This is probably the most boring topic you have ever done in any science. It s pretty much as simple as this: learn the material deal with it. Enjoy don t say I didn t
Nafith Abu Tarboush DDS, MSc, PhD [email protected] www.facebook.com/natarboush
Nafith Abu Tarboush DDS, MSc, PhD [email protected] www.facebook.com/natarboush α-keratins, bundles of α- helices Contain polypeptide chains organized approximately parallel along a single axis: Consist
CSC 2427: Algorithms for Molecular Biology Spring 2006. Lecture 16 March 10
CSC 2427: Algorithms for Molecular Biology Spring 2006 Lecture 16 March 10 Lecturer: Michael Brudno Scribe: Jim Huang 16.1 Overview of proteins Proteins are long chains of amino acids (AA) which are produced
Ionization of amino acids
Amino Acids 20 common amino acids there are others found naturally but much less frequently Common structure for amino acid COOH, -NH 2, H and R functional groups all attached to the a carbon Ionization
Proteins. Proteins. Amino Acids. Most diverse and most important molecule in. Functions: Functions (cont d)
Proteins Proteins Most diverse and most important molecule in living i organisms Functions: 1. Structural (keratin in hair, collagen in ligaments) 2. Storage (casein in mother s milk) 3. Transport (HAEMOGLOBIN!)
MCAT Organic Chemistry - Problem Drill 23: Amino Acids, Peptides and Proteins
MCAT rganic Chemistry - Problem Drill 23: Amino Acids, Peptides and Proteins Question No. 1 of 10 Question 1. Which amino acid does not contain a chiral center? Question #01 (A) Serine (B) Proline (C)
Chapter 12 - Proteins
Roles of Biomolecules Carbohydrates Lipids Proteins 1) Catalytic 2) Transport 3) Regulatory 4) Structural 5) Contractile 6) Protective 7) Storage Nucleic Acids 12.1 -Amino Acids Chapter 12 - Proteins Amino
Biochemistry - I. Prof. S. Dasgupta Department of Chemistry Indian Institute of Technology, Kharagpur Lecture-11 Enzyme Mechanisms II
Biochemistry - I Prof. S. Dasgupta Department of Chemistry Indian Institute of Technology, Kharagpur Lecture-11 Enzyme Mechanisms II In the last class we studied the enzyme mechanisms of ribonuclease A
Recap. Lecture 2. Protein conformation. Proteins. 8 types of protein function 10/21/10. Proteins.. > 50% dry weight of a cell
Lecture 2 Protein conformation ecap Proteins.. > 50% dry weight of a cell ell s building blocks and molecular tools. More important than genes A large variety of functions http://www.tcd.ie/biochemistry/courses/jf_lectures.php
Amino Acids. Amino acids are the building blocks of proteins. All AA s have the same basic structure: Side Chain. Alpha Carbon. Carboxyl. Group.
Protein Structure Amino Acids Amino acids are the building blocks of proteins. All AA s have the same basic structure: Side Chain Alpha Carbon Amino Group Carboxyl Group Amino Acid Properties There are
Invariant residue-a residue that is always conserved. It is assumed that these residues are essential to the structure or function of the protein.
Chapter 6 The amino acid side chains have polar and nonpolar properties, and the relative hydrophobicity of the amino acid side chains is critical for the folding and stability of a protein. The more hydrophobic
Helices From Readily in Biological Structures
The α Helix and the β Sheet Are Common Folding Patterns Although the overall conformation each protein is unique, there are only two different folding patterns are present in all proteins, which are α
I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í
I V E S T I E D Z V J E V Z D Ě L Á V Á Í AMIAIDS PEPTIDES AMIAIDS = substitutional/functional derivatives of carboxylic acids = basic units of proteins (2-aminoacids) General formula of 2-aminoacids (α-aminoacids):
Combinatorial Biochemistry and Phage Display
Combinatorial Biochemistry and Phage Display Prof. Valery A. Petrenko Director - Valery Petrenko Instructors Galina Kouzmitcheva and I-Hsuan Chen Auburn 2006, Spring semester COMBINATORIAL BIOCHEMISTRY
The peptide bond Peptides and proteins are linear polymers of amino acids. The amino acids are
Introduction to Protein Structure Proteins are large heteropolymers usually comprised of 50 2500 monomer units, although larger proteins are observed 7. The monomer units of proteins are amino acids. The
The peptide bond is rigid and planar
Level Description Bonds Primary Sequence of amino acids in proteins Covalent (peptide bonds) Secondary Structural motifs in proteins: α- helix and β-sheet Hydrogen bonds (between NH and CO groups in backbone)
8/20/2012 H C OH H R. Proteins
Proteins Rubisco monomer = amino acids 20 different amino acids polymer = polypeptide protein can be one or more polypeptide chains folded & bonded together large & complex 3-D shape hemoglobin Amino acids
Carbohydrates, proteins and lipids
Carbohydrates, proteins and lipids Chapter 3 MACROMOLECULES Macromolecules: polymers with molecular weights >1,000 Functional groups THE FOUR MACROMOLECULES IN LIFE Molecules in living organisms: proteins,
CHAPTER 29 AMINO ACIDS, POLYPEPTIDES, AND PROTEINS SOLUTIONS TO REVIEW QUESTIONS
APTER 29 AMI AIDS, PLYPEPTIDES, AD PRTEIS SLUTIS T REVIEW QUESTIS 1. The designation, α, means that the amine group in common amino acids is connected to the carbon immediately adjacent to the carboxylic
INTRODUCTION TO PROTEIN STRUCTURE
Name Class: Partner, if any: INTRODUCTION TO PROTEIN STRUCTURE PRIMARY STRUCTURE: 1. Write the complete structural formula of the tripeptide shown (frame 10). Circle and label the three sidechains which
AMINO ACIDS & PEPTIDE BONDS STRUCTURE, CLASSIFICATION & METABOLISM
AMINO ACIDS & PEPTIDE BONDS STRUCTURE, CLASSIFICATION & METABOLISM OBJECTIVES At the end of this session the student should be able to, recognize the structures of the protein amino acid and state their
Peptide bonds: resonance structure. Properties of proteins: Peptide bonds and side chains. Dihedral angles. Peptide bond. Protein physics, Lecture 5
Protein physics, Lecture 5 Peptide bonds: resonance structure Properties of proteins: Peptide bonds and side chains Proteins are linear polymers However, the peptide binds and side chains restrict conformational
(c) How would your answers to problem (a) change if the molecular weight of the protein was 100,000 Dalton?
Problem 1. (12 points total, 4 points each) The molecular weight of an unspecified protein, at physiological conditions, is 70,000 Dalton, as determined by sedimentation equilibrium measurements and by
Exam 4 Outline CH 105 Spring 2012
Exam 4 Outline CH 105 Spring 2012 You need to bring a pencil and your ACT card. Chapter 24: Lipids 1. Describe the properties and types of lipids a. All are hydrophobic b. Fatty acid-based typically contain
Proteins and Nucleic Acids
Proteins and Nucleic Acids Chapter 5 Macromolecules: Proteins Proteins Most structurally & functionally diverse group of biomolecules. : o Involved in almost everything o Enzymes o Structure (keratin,
Previously published in Biophysical Society On-line Textbook PROTEINS CHAPTER 1. PROTEIN STRUCTURE. Section 1. Primary structure, secondary motifs,
Previously published in Biophysical Society On-line Textbook PROTEINS CHAPTER 1. PROTEIN STRUCTURE Section 1. Primary structure, secondary motifs, tertiary architecture, and quaternary organization Jannette
Disulfide Bonds at the Hair Salon
Disulfide Bonds at the Hair Salon Three Alpha Helices Stabilized By Disulfide Bonds! In order for hair to grow 6 inches in one year, 9 1/2 turns of α helix must be produced every second!!! In some proteins,
PROTEINS STRUCTURE AND FUNCTION (DR. TRAISH)
Introduction to Proteins - Proteins are abundant and functionally diverse molecules - They participate in cell regulation at all levels - They share a common structural feature: all are linear polymers
NO CALCULATORS OR CELL PHONES ALLOWED
Biol 205 Exam 1 TEST FORM A Spring 2008 NAME Fill out both sides of the Scantron Sheet. On Side 2 be sure to indicate that you have TEST FORM A The answers to Part I should be placed on the SCANTRON SHEET.
4. Which carbohydrate would you find as part of a molecule of RNA? a. Galactose b. Deoxyribose c. Ribose d. Glucose
1. How is a polymer formed from multiple monomers? a. From the growth of the chain of carbon atoms b. By the removal of an OH group and a hydrogen atom c. By the addition of an OH group and a hydrogen
Introduction to Chemical Biology
Professor Stuart Conway Introduction to Chemical Biology University of xford Introduction to Chemical Biology ecommended books: Professor Stuart Conway Department of Chemistry, Chemistry esearch Laboratory,
Food Proteins. Prof. Dr. Mohamed Fawzy Ramadan Hassanien Zagazig University, Egypt
Food Proteins Prof. Dr. Mohamed Fawzy Ramadan Hassanien Zagazig University, Egypt -Amino Acid Sequence -Protein Conformation -Levels of Protein Structure -Primary structure -Secondary structure -Tertiary
Protein Physics. A. V. Finkelstein & O. B. Ptitsyn LECTURE 1
Protein Physics A. V. Finkelstein & O. B. Ptitsyn LECTURE 1 PROTEINS Functions in a Cell MOLECULAR MACHINES BUILDING BLOCKS of a CELL ARMS of a CELL ENZYMES - enzymatic catalysis of biochemical reactions
LECTURE-2. Basics of Amino acids and Proteins HANDOUT. Proteins are the most complex and versatile macromolecules comprised of amino acids
LECTURE-2 Basics of Amino acids and Proteins HANDOUT PREAMBLE Proteins are the most complex and versatile macromolecules comprised of amino acids as the building blocks. There are 20 standard amino acids
Chemistry: Introduction to General, Organic & Biological Chemistry (Timberlake) Chapter 16: Amino Acids, Proteins, and Enzymes
Chemistry: Introduction to General, Organic & Biological Chemistry (Timberlake) Chapter 16: Amino Acids, Proteins, and Enzymes MULTIPLE CHOICE 1) Which of the following is NOT a function of proteins? A)
THE CHEMICAL SYNTHESIS OF PEPTIDES
TE EMIAL SYTESIS F PEPTIDES Peptides are the long molecular chains that make up proteins. Synthetic peptides are used either as drugs (as they are biologically active) or in the diagnosis of disease. Peptides
Peptide Bond Amino acids are linked together by peptide bonds to form polypepetide chain.
Peptide Bond Peptide Bond Amino acids are linked together by peptide bonds to form polypepetide chain. + H 2 O 2 Peptide bonds are strong and not broken by conditions that denature proteins, such as heating.
Concluding lesson. Student manual. What kind of protein are you? (Basic)
Concluding lesson Student manual What kind of protein are you? (Basic) Part 1 The hereditary material of an organism is stored in a coded way on the DNA. This code consists of four different nucleotides:
Preliminary MFM Quiz
Preliminary MFM Quiz 1. The major carrier of chemical energy in all cells is: A) adenosine monophosphate B) adenosine diphosphate C) adenosine trisphosphate D) guanosine trisphosphate E) carbamoyl phosphate
Polypeptides and Proteins
Polypeptides and Proteins These molecules are composed, at least in part, of chains of amino acids. Each amino acid is joined to the next one through an amide or peptide bond from the carbonyl carbon of
Covalent bonds are the strongest chemical bonds contributing to the protein structure A peptide bond is formed between with of the following?
MCAT Question Covalent bonds are the strongest chemical bonds contributing to the protein structure A peptide bond is formed between with of the following? A. Carboxylic group and amino group B. Two carboxylic
Chapter 5. The Structure and Function of Macromolecule s
Chapter 5 The Structure and Function of Macromolecule s Most Macromolecules are polymers: Polymer: (poly: many; mer: part) Large molecules consisting of many identical or similar subunits connected together.
How To Understand The Chemistry Of Organic Molecules
CHAPTER 3 THE CHEMISTRY OF ORGANIC MOLECULES 3.1 Organic Molecules The chemistry of carbon accounts for the diversity of organic molecules found in living things. Carbon has six electrons, four of which
A disaccharide is formed when a dehydration reaction joins two monosaccharides. This covalent bond is called a glycosidic linkage.
CH 5 Structure & Function of Large Molecules: Macromolecules Molecules of Life All living things are made up of four classes of large biological molecules: carbohydrates, lipids, proteins, and nucleic
In addition to being shorter than a single bond, the double bonds in ethylene don t twist the way single bonds do. In other words, the other atoms
In addition to being shorter than a single bond, the double bonds in ethylene don t twist the way single bonds do. In other words, the other atoms attached to the carbons (hydrogens in this case) can no
Worksheet 13.1. Chapter 13: Human biochemistry glossary
Worksheet 13.1 Chapter 13: Human biochemistry glossary α-helix Refers to a secondary structure of a protein where the chain is twisted to form a regular helix, held by hydrogen bonds between peptide bonds
2007 7.013 Problem Set 1 KEY
2007 7.013 Problem Set 1 KEY Due before 5 PM on FRIDAY, February 16, 2007. Turn answers in to the box outside of 68-120. PLEASE WRITE YOUR ANSWERS ON THIS PRINTOUT. 1. Where in a eukaryotic cell do you
AP BIOLOGY 2008 SCORING GUIDELINES
AP BIOLOGY 2008 SCORING GUIDELINES Question 1 1. The physical structure of a protein often reflects and affects its function. (a) Describe THREE types of chemical bonds/interactions found in proteins.
Chapter 3 Molecules of Cells
Bio 100 Molecules of cells 1 Chapter 3 Molecules of Cells Compounds containing carbon are called organic compounds Molecules such as methane that are only composed of carbon and hydrogen are called hydrocarbons
Lecture Overview. Hydrogen Bonds. Special Properties of Water Molecules. Universal Solvent. ph Scale Illustrated. special properties of water
Lecture Overview special properties of water > water as a solvent > ph molecules of the cell > properties of carbon > carbohydrates > lipids > proteins > nucleic acids Hydrogen Bonds polarity of water
Proteins the primary biological macromolecules of living organisms
Proteins the primary biological macromolecules of living organisms Protein structure and folding Primary Secondary Tertiary Quaternary structure of proteins Structure of Proteins Protein molecules adopt
Disaccharides consist of two monosaccharide monomers covalently linked by a glycosidic bond. They function in sugar transport.
1. The fundamental life processes of plants and animals depend on a variety of chemical reactions that occur in specialized areas of the organism s cells. As a basis for understanding this concept: 1.
Protein Structure and Function
Jones & Bartlett Learning, LL. T F SALE DISTIBUTI Protein Structure and Function SETI I APTE 2 APTE 3 Protein Structure Protein Function 27 Jones & Bartlett Learning, LL. T F SALE DISTIBUTI 2 Protein Structure
Amino Acids as Acids, Bases and Buffers:
Amino Acids as Acids, Bases and Buffers: - Amino acids are weak acids - All have at least 2 titratable protons (shown below as fully protonated species) and therefore have 2 pka s o α-carboxyl (-COOH)
Conformational Properties of Polypeptide Chains
Conformational Properties of Polypeptide Chains Levels of Organization Primary structure Amino acid sequence of the protein Secondary structure H bonds in the peptide chain backbone α helix and β sheets
Myoglobin and Hemoglobin
Myoglobin and Hemoglobin Myoglobin and hemoglobin are hemeproteins whose physiological importance is principally related to their ability to bind molecular oxygen. Myoglobin (Mb) The oxygen storage protein
Structures of Proteins. Primary structure - amino acid sequence
Structures of Proteins Primary structure - amino acid sequence Secondary structure chain of covalently linked amino acids folds into regularly repeating structures. Secondary structure is the result of
Introduction to Protein Folding
Introduction to Protein Folding Chapter 4 Proteins: Three Dimensional Structure and Function Conformation - three dimensional shape Native conformation - each protein folds into a single stable shape (physiological
UNIT (11) MOLECULES OF LIFE: LIPIDS AND PROTEINS
UNIT (11) MOLECULES OF LIFE: LIPIDS AND PROTEINS 11.1 Types of Lipids Lipids are also biochemical compounds that contain carbon, hydrogen, and oxygen. But lipids, unlike carbohydrates, share no common
Chapter 3: Biological Molecules. 1. Carbohydrates 2. Lipids 3. Proteins 4. Nucleic Acids
Chapter 3: Biological Molecules 1. Carbohydrates 2. Lipids 3. Proteins 4. Nucleic Acids Elements in Biological Molecules Biological macromolecules are made almost entirely of just 6 elements: Carbon (C)
The Chemical Basis of Life. Chemical Bonds
The Chemical Basis of Life white=hydrogen red=oxygen gray=carbon yellow=phosphorus blue=nitrogen green=sulfur All organisms are made up of water, inorganic ions, small molecules (77% by weight) and macromolecules
Acidic amino acids: Those whose side chains can carry a negative charge at certain ph values. Typically aspartic acid, glutamic acid.
A Acidic amino acids: Those whose side chains can carry a negative charge at certain ph values. Typically aspartic acid, glutamic acid. Active site: Usually applied to catalytic site of an enzyme or where
Chapter 2: Biochemistry Problems
hapter 2: Biochemistry Problems Biochemistry Problems If you were a biochemist, you would study chemical substances and vital processes that occur in living organisms. You might study macromolecules such
Chapter 2 Chemical Principles
Chapter 2 Chemical Principles I. Chemistry. [Students should read this section on their own]. a. Chemistry is the study of the interactions between atoms and molecules. b. The atom is the smallest unit
Chemical Basis of Life Module A Anchor 2
Chemical Basis of Life Module A Anchor 2 Key Concepts: - Water is a polar molecule. Therefore, it is able to form multiple hydrogen bonds, which account for many of its special properties. - Water s polarity
Chapter 5: The Structure and Function of Large Biological Molecules
Name Period Concept 5.1 Macromolecules are polymers, built from monomers 1. The large molecules of all living things fall into just four main classes. Name them. 2. Circle the three classes that are called
Papers listed: Cell2. This weeks papers. Chapt 4. Protein structure and function
Papers listed: Cell2 During the semester I will speak of information from several papers. For many of them you will not be required to read these papers, however, you can do so for the fun of it (and it
Peptide Design Strategy: Basics, Optimization, and Application. Presented by: Tiffany Gupton Campolongo, Ph.D.
Peptide Design Strategy: Basics, Optimization, and Application Presented by: Tiffany Gupton Campolongo, Ph.D. Presentation overview 1 2 3 4 Introduction Peptide Design Basics Advanced Design Strategy Strategy
This class deals with the fundamental structural features of proteins, which one can understand from the structure of amino acids, and how they are
This class deals with the fundamental structural features of proteins, which one can understand from the structure of amino acids, and how they are put together. 1 A more detailed view of a single protein
Non-Covalent Bonds (Weak Bond)
Non-Covalent Bonds (Weak Bond) Weak bonds are those forces of attraction that, in biological situations, do not take a large amount of energy to break. For example, hydrogen bonds are broken by energies
Recognizing Organic Molecules: Carbohydrates, Lipids and Proteins
Recognizing Organic Molecules: Carbohydrates, Lipids and Proteins Oct 15 8:05 PM What is an Organic Molecule? An Organic Molecule is a molecule that contains carbon and hydrogen and oxygen Carbon is found
The Molecules of Cells
The Molecules of Cells I. Introduction A. Most of the world s population cannot digest milk-based foods. 1. These people are lactose intolerant because they lack the enzyme lactase. 2. This illustrates
Sickle cell anemia: Altered beta chain Single AA change (#6 Glu to Val) Consequence: Protein polymerizes Change in RBC shape ---> phenotypes
Protein Structure Polypeptide: Protein: Therefore: Example: Single chain of amino acids 1 or more polypeptide chains All polypeptides are proteins Some proteins contain >1 polypeptide Hemoglobin (O 2 binding
Biological molecules:
Biological molecules: All are organic (based on carbon). Monomers vs. polymers: Monomers refer to the subunits that, when polymerized, make up a larger polymer. Monomers may function on their own in some
Human Tubal Fluid (HTF) Media & Modifi ed Human Tubal Fluid (mhtf) Medium with Gentamicin
Human Tubal Fluid (HTF) Media & Modifi ed Human Tubal Fluid (mhtf) Medium with Gentamicin HTF Media are intended for use in assisted reproductive procedures which include gamete and embryo manipulation
Oxygen-Binding Proteins
Oxygen-Binding Proteins Myoglobin, Hemoglobin, Cytochromes bind O 2. Oxygen is transported from lungs to various tissues via blood in association with hemoglobin In muscle, hemoglobin gives up O 2 to myoglobin
Chemistry 201. Practical aspects of buffers. NC State University. Lecture 15
Chemistry 201 Lecture 15 Practical aspects of buffers NC State University The everyday ph scale To review what ph means in practice, we consider the ph of everyday substances that we know from experience.
Peptide Bonds: Structure
Peptide Bonds: Structure Peptide primary structure The amino acid sequence, from - to C-terminus, determines the primary structure of a peptide or protein. The amino acids are linked through amide or peptide
