Week 1. Exploratory Data Analysis


 Horatio Laurence Brown
 6 years ago
 Views:
Transcription
1 Week 1 Exploratory Data Analysis
2 Practicalities This course ST903 has students from both the MSc in Financial Mathematics and the MSc in Statistics. Two lectures and one seminar/tutorial per week. Exam (for the MSc in Financial Mathematics) in January, plus assessed coursework.
3 Aims and Objectives What s the course about? 1. Describing financial data 2. Modelling financial data 3. Making inferences about financial data
4 Samples and Populations Samples and Populations (Experimental) Unit the object on which measurements are made Population the set of all units about which information is wanted Sample the set of units about which information is available (Simple) random sample a sample such that units in the population have equal chance of inclusion, independent of the inclusion of any other unit Variable a measurable characteristic of a unit Statistic a measurable characteristic of a sample Parameter a measurable characteristic of a population
5 Variation Variation Natural Variation variation due to different units in the population having different values of the same variable Sampling Variation variation due to different samples containing different units and hence producing different values of the same statistic
6 Nature and Structure of Data Primary and Secondary Data Primary and Secondary Data Primary Data are collected specifically for the current study Observational e.g. survey data Intervention e.g. experimental data Secondary Data collected and/or compiled for another purpose can be limitations or problems with quality
7 Nature and Structure of Data Primary and Secondary Data Example: National Unemployment Data Suppose we want to know the UK unemployment figures in 5year age bands to compare with similar figures from China, collected in Published data may be insufficient because only collected from major cities unemployment numbers presented in 10year age bands compiled from a survey 10 years ago
8 Nature and Structure of Data Form of Data Form of Data  Samples Relationship between samples independent samples e.g. unemployment figures from two countries dependent samples e.g. social class of father and son Structure across samples unstructured e.g. unemployment figures from two countries structured e.g. 2 2 factorial experiment
9 Nature and Structure of Data Form of Data Form of Data  Variables Number of variables univariate, bivariate or multivariate Scales of measurement continuous e.g. age discrete e.g. sex (binary), ethnic origin (unordered categorical), social class (ordered categorical)
10 Stages of Data Analysis Stages of Data Analysis 1. Exploratory data analysis using descriptive statistics numerical summaries tabular summaries graphical summaries 2. Formal analysis using statistical techniques, often based on an assumed probability model 3. Presentation and evaluation of results
11 Numerical Summaries Numerical Summaries Numerical summaries help to describe and compare samples give information about corresponding parameters Qualitative data can be summarise by counts or percentages. Quantitative data can be summarised by measures of location, scale and shape.
12 Measures of Location Averages For observations x 1,..., x n, let x (j) denote the j th smallest observation (j th order statistic) Sample mean x = 1 n x i n i=1 Sample median x ( ) n+1 if n is odd 2 x M = [ ] 1 2 x ( ) n + x ( ) n if n is even = x ( ) n Sample mode the value which occurs most frequently in the sample
13 Measures of Location Averages  Advantages and Disadvantages Sample mean adv: conventional average; uses every value, convenient mathematically disadv: rarely corresponds to sample unit, influenced by outliers Sample median reverse adv/disadv of the sample mean Sample mode often not well defined; sample values are often poor values for populations
14 Measures of Location Quantiles Sample Lower Quartile x L = x ( ) n Sample Upper Quartile x U = x ( ) 3n pth Sample Percentile x 100p% = x ( ) pn Five Number Summary ( x(1), x L, x M, x U, x (n) )
15 Measures of Scale Measures of Scale Sample Variance V ar(x) = n j=1 (x j x) 2 n 1 Sample Standard Deviation (SD) V ar(x) InterQuartile Range(IQR) Sample Range x U x L x (n) x (1)
16 Measures of Scale Measures of Scale  Advantages and Disadvantages Variance similar adv/disadv to mean SD in the same units as the data  useful for interpretation IQR robust measure Sample Range sensitive to outliers, sampling variability and data errors
17 Measures of Shape Measures of Shape Modality number of peaks in the sample distribution Skewness a statistic measuring symmetry such that 0 symmetric sample distribution +ve skewed to the right (long righthand tail) ve skewed to the left (long lefthand tail) Kurtosis a statistic measuring peakedness such that 3 same peakedness as the Normal distribution (mesokurtic) > 3 more peaked  slim or longtailed (leptokurtic) < 3 less peaked  flat, fat or shorttailed (platykurtic) Sometimes adjusted to give 0 for mesokurtic distributions.
18 Measures of Shape Skewness and Kurtosis f(x) x f(x) x
19 Measure of Linear Relation Between Two Variables Correlation Coefficient For observations x 1,..., x n ; y 1,..., y n of two variables X and Y Correlation Coefficient n i=1 r = (x i x)(y i ȳ) [ n i=1 (x i x) 2][ n i=1 (y i ȳ) 2] measure of linear relationship correlation does not imply cause may be linked via third variable
20 Tabular Summaries Tabular Summaries Provide succinct display of data set Emphasise the structure of the data Sometimes more powerful than a graph, or may provide record of graphed data Things to consider included data layout (dimensions, ordering, totals) representation of numbers (units, significant figures, percentages)
21 Tabular Summaries Example: Society of Business Economists Salary Survey Age (years) Per cent of responses Median salaries ( k)* & under Over Men Women *Including any London/regional allowance and selfemployment income Source:
22 Graphical Summaries Graphical Summaries Graphical summaries are useful for providing an overall picture of the data exploring relationships e.g. comparing groups, exploring trends over time checking assumptions underlying methods of formal analysis checking for problems with the data, e.g. outliers
23 Graphical Summaries for Qualitative Data Graphical Summaries for Qualitative Data Pie Charts area of slices proportional to frequency  misleading to compare pie charts of different area or based on different sample sizes limited accuracy  rounding can be misleading hard to read with large number of segments Bar Charts height of bars proportional to frequency  more intuitive bars can be segmented to show component parts
24 Graphical Summaries for Qualitative Data Example: Shares of National Income Source: Survey of Current Business (2006) 86(1),
25 Graphical Summaries for Qualitative Data Example: Shares of National Income Other Taxes on production & imports Net interest & misc. payments Corporate profits Rental income of persons Proprietors' income Supplements to wages & salaries Wages and salary accruals
26 Graphical Summaries for Quantitative Data StemandLeaf Plots Tallies data in bins, using values themselves for display E.g. Times (in hours) to first failure of airconditioning unit on Boeing 720, different transformations hours 10 hours log10 hours
27 Graphical Summaries for Quantitative Data StemandLeaf Plots E.g. Carbondating fragments of a prehistoric artefact, different scales 1000 years 100 years 100 years, split (* = 04,. = 59) * * *
28 Graphical Summaries for Quantitative Data Box Plots Represent five number summaries diagrammatically. Most software produce truncated box plots, which exclude outliers  these are usually plotted as isolated points E.g. Inflation rates over 20 year period for five countries USA UK Japan Germany France
29 Graphical Summaries for Quantitative Data Histogram Equivalent of barchart for binned continuous data Area of bars proportional to frequency in each bin  usually choose equal bin widths so height proportional to frequency E.g. GDP per capita for 26 countries Frequency GDP per capita ($)
30 Graphical Summaries for Quantitative Data Graphical Summaries of Distribution for Quantitative Data Stemandleaf adv: good for small data sets  shows all of the data disadv: choice of bins affects display Box plot adv: simple, can split by group, almost any sample size will do disadv: can be too simple, e.g. no good for multimodal data Histogram adv: good for large data sets, shows all characteristics of distribution disadv: choice of bins affects display
31 Graphical Summaries for Quantitative Data Scatterplot Plot of data points in 2D or 3D space with variables as axes Useful for exploring relationships between variables E.g. Standard & Poor (S&P) company s index of 500 common stock prices against the Consumer Price Index (CPI) for SP500 Index CPI
32 Graphical Summaries for Quantitative Data Time Series Plot of data against time Look for seasonality, unusual events, etc E.g. Quarterly personal consumption expenditure (PCE) from (AUS$) PCE Time
Exploratory data analysis (Chapter 2) Fall 2011
Exploratory data analysis (Chapter 2) Fall 2011 Data Examples Example 1: Survey Data 1 Data collected from a Stat 371 class in Fall 2005 2 They answered questions about their: gender, major, year in school,
More informationLecture 2: Descriptive Statistics and Exploratory Data Analysis
Lecture 2: Descriptive Statistics and Exploratory Data Analysis Further Thoughts on Experimental Design 16 Individuals (8 each from two populations) with replicates Pop 1 Pop 2 Randomly sample 4 individuals
More informationDiagrams and Graphs of Statistical Data
Diagrams and Graphs of Statistical Data One of the most effective and interesting alternative way in which a statistical data may be presented is through diagrams and graphs. There are several ways in
More informationExploratory Data Analysis
Exploratory Data Analysis Johannes Schauer johannes.schauer@tugraz.at Institute of Statistics Graz University of Technology Steyrergasse 17/IV, 8010 Graz www.statistics.tugraz.at February 12, 2008 Introduction
More informationVariables. Exploratory Data Analysis
Exploratory Data Analysis Exploratory Data Analysis involves both graphical displays of data and numerical summaries of data. A common situation is for a data set to be represented as a matrix. There is
More informationBNG 202 Biomechanics Lab. Descriptive statistics and probability distributions I
BNG 202 Biomechanics Lab Descriptive statistics and probability distributions I Overview The overall goal of this short course in statistics is to provide an introduction to descriptive and inferential
More informationLecture 2. Summarizing the Sample
Lecture 2 Summarizing the Sample WARNING: Today s lecture may bore some of you It s (sort of) not my fault I m required to teach you about what we re going to cover today. I ll try to make it as exciting
More informationSTATS8: Introduction to Biostatistics. Data Exploration. Babak Shahbaba Department of Statistics, UCI
STATS8: Introduction to Biostatistics Data Exploration Babak Shahbaba Department of Statistics, UCI Introduction After clearly defining the scientific problem, selecting a set of representative members
More informationSummarizing and Displaying Categorical Data
Summarizing and Displaying Categorical Data Categorical data can be summarized in a frequency distribution which counts the number of cases, or frequency, that fall into each category, or a relative frequency
More informationGeostatistics Exploratory Analysis
Instituto Superior de Estatística e Gestão de Informação Universidade Nova de Lisboa Master of Science in Geospatial Technologies Geostatistics Exploratory Analysis Carlos Alberto Felgueiras cfelgueiras@isegi.unl.pt
More informationDescriptive Statistics. Purpose of descriptive statistics Frequency distributions Measures of central tendency Measures of dispersion
Descriptive Statistics Purpose of descriptive statistics Frequency distributions Measures of central tendency Measures of dispersion Statistics as a Tool for LIS Research Importance of statistics in research
More informationLecture 1: Review and Exploratory Data Analysis (EDA)
Lecture 1: Review and Exploratory Data Analysis (EDA) Sandy Eckel seckel@jhsph.edu Department of Biostatistics, The Johns Hopkins University, Baltimore USA 21 April 2008 1 / 40 Course Information I Course
More informationNorthumberland Knowledge
Northumberland Knowledge Know Guide How to Analyse Data  November 2012  This page has been left blank 2 About this guide The Know Guides are a suite of documents that provide useful information about
More informationWhy Taking This Course? Course Introduction, Descriptive Statistics and Data Visualization. Learning Goals. GENOME 560, Spring 2012
Why Taking This Course? Course Introduction, Descriptive Statistics and Data Visualization GENOME 560, Spring 2012 Data are interesting because they help us understand the world Genomics: Massive Amounts
More informationdetermining relationships among the explanatory variables, and
Chapter 4 Exploratory Data Analysis A first look at the data. As mentioned in Chapter 1, exploratory data analysis or EDA is a critical first step in analyzing the data from an experiment. Here are the
More informationDescriptive statistics Statistical inference statistical inference, statistical induction and inferential statistics
Descriptive statistics is the discipline of quantitatively describing the main features of a collection of data. Descriptive statistics are distinguished from inferential statistics (or inductive statistics),
More information430 Statistics and Financial Mathematics for Business
Prescription: 430 Statistics and Financial Mathematics for Business Elective prescription Level 4 Credit 20 Version 2 Aim Students will be able to summarise, analyse, interpret and present data, make predictions
More informationMBA 611 STATISTICS AND QUANTITATIVE METHODS
MBA 611 STATISTICS AND QUANTITATIVE METHODS Part I. Review of Basic Statistics (Chapters 111) A. Introduction (Chapter 1) Uncertainty: Decisions are often based on incomplete information from uncertain
More informationExercise 1.12 (Pg. 2223)
Individuals: The objects that are described by a set of data. They may be people, animals, things, etc. (Also referred to as Cases or Records) Variables: The characteristics recorded about each individual.
More informationExploratory Data Analysis. Psychology 3256
Exploratory Data Analysis Psychology 3256 1 Introduction If you are going to find out anything about a data set you must first understand the data Basically getting a feel for you numbers Easier to find
More informationCenter: Finding the Median. Median. Spread: Home on the Range. Center: Finding the Median (cont.)
Center: Finding the Median When we think of a typical value, we usually look for the center of the distribution. For a unimodal, symmetric distribution, it s easy to find the center it s just the center
More informationDescriptive Statistics
Y520 Robert S Michael Goal: Learn to calculate indicators and construct graphs that summarize and describe a large quantity of values. Using the textbook readings and other resources listed on the web
More informationHow To Write A Data Analysis
Mathematics Probability and Statistics Curriculum Guide Revised 2010 This page is intentionally left blank. Introduction The Mathematics Curriculum Guide serves as a guide for teachers when planning instruction
More informationA Correlation of. to the. South Carolina Data Analysis and Probability Standards
A Correlation of to the South Carolina Data Analysis and Probability Standards INTRODUCTION This document demonstrates how Stats in Your World 2012 meets the indicators of the South Carolina Academic Standards
More informationStatistics Chapter 2
Statistics Chapter 2 Frequency Tables A frequency table organizes quantitative data. partitions data into classes (intervals). shows how many data values are in each class. Test Score Number of Students
More informationSTAT355  Probability & Statistics
STAT355  Probability & Statistics Instructor: Kofi Placid Adragni Fall 2011 Chap 1  Overview and Descriptive Statistics 1.1 Populations, Samples, and Processes 1.2 Pictorial and Tabular Methods in Descriptive
More informationSKEWNESS. Measure of Dispersion tells us about the variation of the data set. Skewness tells us about the direction of variation of the data set.
SKEWNESS All about Skewness: Aim Definition Types of Skewness Measure of Skewness Example A fundamental task in many statistical analyses is to characterize the location and variability of a data set.
More informationDescriptive statistics parameters: Measures of centrality
Descriptive statistics parameters: Measures of centrality Contents Definitions... 3 Classification of descriptive statistics parameters... 4 More about central tendency estimators... 5 Relationship between
More informationThe Big Picture. Describing Data: Categorical and Quantitative Variables Population. Descriptive Statistics. Community Coalitions (n = 175)
Describing Data: Categorical and Quantitative Variables Population The Big Picture Sampling Statistical Inference Sample Exploratory Data Analysis Descriptive Statistics In order to make sense of data,
More informationDescriptive Statistics
Descriptive Statistics Suppose following data have been collected (heights of 99 fiveyearold boys) 117.9 11.2 112.9 115.9 18. 14.6 17.1 117.9 111.8 16.3 111. 1.4 112.1 19.2 11. 15.4 99.4 11.1 13.3 16.9
More informationSampling and Descriptive Statistics
Sampling and Descriptive Statistics Berlin Chen Department of Computer Science & Information Engineering National Taiwan Normal University Reference: 1. W. Navidi. Statistics for Engineering and Scientists.
More informationData Exploration Data Visualization
Data Exploration Data Visualization What is data exploration? A preliminary exploration of the data to better understand its characteristics. Key motivations of data exploration include Helping to select
More informationMULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.
Final Exam Review MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) A researcher for an airline interviews all of the passengers on five randomly
More informationChapter 1: Looking at Data Section 1.1: Displaying Distributions with Graphs
Types of Variables Chapter 1: Looking at Data Section 1.1: Displaying Distributions with Graphs Quantitative (numerical)variables: take numerical values for which arithmetic operations make sense (addition/averaging)
More informationDESCRIPTIVE STATISTICS AND EXPLORATORY DATA ANALYSIS
DESCRIPTIVE STATISTICS AND EXPLORATORY DATA ANALYSIS SEEMA JAGGI Indian Agricultural Statistics Research Institute Library Avenue, New Delhi  110 012 seema@iasri.res.in 1. Descriptive Statistics Statistics
More informationData! Data! Data! I can t make bricks without clay. Sherlock Holmes, The Copper Beeches, 1892.
1. Data: exploratory data analysis Content 1.1 Introduction 1.2 Tables and diagrams 1.3 Describing univariate numerical data Ref: Pagano and Gauvreau, Chapters 2 and 3. Data! Data! Data! I can t make bricks
More informationFairfield Public Schools
Mathematics Fairfield Public Schools AP Statistics AP Statistics BOE Approved 04/08/2014 1 AP STATISTICS Critical Areas of Focus AP Statistics is a rigorous course that offers advanced students an opportunity
More information3: Summary Statistics
3: Summary Statistics Notation Let s start by introducing some notation. Consider the following small data set: 4 5 30 50 8 7 4 5 The symbol n represents the sample size (n = 0). The capital letter X denotes
More informationIntroduction to Statistics for Psychology. Quantitative Methods for Human Sciences
Introduction to Statistics for Psychology and Quantitative Methods for Human Sciences Jonathan Marchini Course Information There is website devoted to the course at http://www.stats.ox.ac.uk/ marchini/phs.html
More informationClassify the data as either discrete or continuous. 2) An athlete runs 100 meters in 10.5 seconds. 2) A) Discrete B) Continuous
Chapter 2 Overview Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Classify as categorical or qualitative data. 1) A survey of autos parked in
More informationbusiness statistics using Excel OXFORD UNIVERSITY PRESS Glyn Davis & Branko Pecar
business statistics using Excel Glyn Davis & Branko Pecar OXFORD UNIVERSITY PRESS Detailed contents Introduction to Microsoft Excel 2003 Overview Learning Objectives 1.1 Introduction to Microsoft Excel
More informationThe Comparisons. Grade Levels Comparisons. Focal PSSM K8. Points PSSM CCSS 912 PSSM CCSS. Color Coding Legend. Not Identified in the Grade Band
Comparison of NCTM to Dr. Jim Bohan, Ed.D Intelligent Education, LLC Intel.educ@gmail.com The Comparisons Grade Levels Comparisons Focal K8 Points 912 prek through 12 Instructional programs from prekindergarten
More informationChapter 1: Exploring Data
Chapter 1: Exploring Data Chapter 1 Review 1. As part of survey of college students a researcher is interested in the variable class standing. She records a 1 if the student is a freshman, a 2 if the student
More information1.3 Measuring Center & Spread, The Five Number Summary & Boxplots. Describing Quantitative Data with Numbers
1.3 Measuring Center & Spread, The Five Number Summary & Boxplots Describing Quantitative Data with Numbers 1.3 I can n Calculate and interpret measures of center (mean, median) in context. n Calculate
More informationUNIT 1: COLLECTING DATA
Core Probability and Statistics Probability and Statistics provides a curriculum focused on understanding key data analysis and probabilistic concepts, calculations, and relevance to realworld applications.
More informationSummary of Formulas and Concepts. Descriptive Statistics (Ch. 14)
Summary of Formulas and Concepts Descriptive Statistics (Ch. 14) Definitions Population: The complete set of numerical information on a particular quantity in which an investigator is interested. We assume
More informationProbability and Statistics Vocabulary List (Definitions for Middle School Teachers)
Probability and Statistics Vocabulary List (Definitions for Middle School Teachers) B Bar graph a diagram representing the frequency distribution for nominal or discrete data. It consists of a sequence
More informationAdditional sources Compilation of sources: http://lrs.ed.uiuc.edu/tseportal/datacollectionmethodologies/jintselink/tselink.htm
Mgt 540 Research Methods Data Analysis 1 Additional sources Compilation of sources: http://lrs.ed.uiuc.edu/tseportal/datacollectionmethodologies/jintselink/tselink.htm http://web.utk.edu/~dap/random/order/start.htm
More informationFirst Midterm Exam (MATH1070 Spring 2012)
First Midterm Exam (MATH1070 Spring 2012) Instructions: This is a one hour exam. You can use a notecard. Calculators are allowed, but other electronics are prohibited. 1. [40pts] Multiple Choice Problems
More informationAlgebra 1 Course Information
Course Information Course Description: Students will study patterns, relations, and functions, and focus on the use of mathematical models to understand and analyze quantitative relationships. Through
More informationMTH 140 Statistics Videos
MTH 140 Statistics Videos Chapter 1 Picturing Distributions with Graphs Individuals and Variables Categorical Variables: Pie Charts and Bar Graphs Categorical Variables: Pie Charts and Bar Graphs Quantitative
More informationCourse Text. Required Computing Software. Course Description. Course Objectives. StraighterLine. Business Statistics
Course Text Business Statistics Lind, Douglas A., Marchal, William A. and Samuel A. Wathen. Basic Statistics for Business and Economics, 7th edition, McGrawHill/Irwin, 2010, ISBN: 9780077384470 [This
More informationOrganizing Your Approach to a Data Analysis
Biost/Stat 578 B: Data Analysis Emerson, September 29, 2003 Handout #1 Organizing Your Approach to a Data Analysis The general theme should be to maximize thinking about the data analysis and to minimize
More informationList of Examples. Examples 319
Examples 319 List of Examples DiMaggio and Mantle. 6 Weed seeds. 6, 23, 37, 38 Vole reproduction. 7, 24, 37 Wooly bear caterpillar cocoons. 7 Homophone confusion and Alzheimer s disease. 8 Gear tooth strength.
More informationMAS131: Introduction to Probability and Statistics Semester 1: Introduction to Probability Lecturer: Dr D J Wilkinson
MAS131: Introduction to Probability and Statistics Semester 1: Introduction to Probability Lecturer: Dr D J Wilkinson Statistics is concerned with making inferences about the way the world is, based upon
More informationAP * Statistics Review. Descriptive Statistics
AP * Statistics Review Descriptive Statistics Teacher Packet Advanced Placement and AP are registered trademark of the College Entrance Examination Board. The College Board was not involved in the production
More informationHISTOGRAMS, CUMULATIVE FREQUENCY AND BOX PLOTS
Mathematics Revision Guides Histograms, Cumulative Frequency and Box Plots Page 1 of 25 M.K. HOME TUITION Mathematics Revision Guides Level: GCSE Higher Tier HISTOGRAMS, CUMULATIVE FREQUENCY AND BOX PLOTS
More informationBusiness Statistics. Successful completion of Introductory and/or Intermediate Algebra courses is recommended before taking Business Statistics.
Business Course Text Bowerman, Bruce L., Richard T. O'Connell, J. B. Orris, and Dawn C. Porter. Essentials of Business, 2nd edition, McGrawHill/Irwin, 2008, ISBN: 9780073319889. Required Computing
More informationIntro to Statistics 8 Curriculum
Intro to Statistics 8 Curriculum Unit 1 Bar, Line and Circle Graphs Estimated time frame for unit Big Ideas 8 Days... Essential Question Concepts Competencies Lesson Plans and Suggested Resources Bar graphs
More informationCA200 Quantitative Analysis for Business Decisions. File name: CA200_Section_04A_StatisticsIntroduction
CA200 Quantitative Analysis for Business Decisions File name: CA200_Section_04A_StatisticsIntroduction Table of Contents 4. Introduction to Statistics... 1 4.1 Overview... 3 4.2 Discrete or continuous
More informationA Picture Really Is Worth a Thousand Words
4 A Picture Really Is Worth a Thousand Words Difficulty Scale (pretty easy, but not a cinch) What you ll learn about in this chapter Why a picture is really worth a thousand words How to create a histogram
More informationPie Charts. proportion of icecream flavors sold annually by a given brand. AMS5: Statistics. Cherry. Cherry. Blueberry. Blueberry. Apple.
Graphical Representations of Data, Mean, Median and Standard Deviation In this class we will consider graphical representations of the distribution of a set of data. The goal is to identify the range of
More informationVisualizing Data. Contents. 1 Visualizing Data. Anthony Tanbakuchi Department of Mathematics Pima Community College. Introductory Statistics Lectures
Introductory Statistics Lectures Visualizing Data Descriptive Statistics I Department of Mathematics Pima Community College Redistribution of this material is prohibited without written permission of the
More informationPractice#1(chapter1,2) Name
Practice#1(chapter1,2) Name Solve the problem. 1) The average age of the students in a statistics class is 22 years. Does this statement describe descriptive or inferential statistics? A) inferential statistics
More informationBASIC STATISTICAL METHODS FOR GENOMIC DATA ANALYSIS
BASIC STATISTICAL METHODS FOR GENOMIC DATA ANALYSIS SEEMA JAGGI Indian Agricultural Statistics Research Institute Library Avenue, New Delhi110 012 seema@iasri.res.in Genomics A genome is an organism s
More informationDATA INTERPRETATION AND STATISTICS
PholC60 September 001 DATA INTERPRETATION AND STATISTICS Books A easy and systematic introductory text is Essentials of Medical Statistics by Betty Kirkwood, published by Blackwell at about 14. DESCRIPTIVE
More information1) Write the following as an algebraic expression using x as the variable: Triple a number subtracted from the number
1) Write the following as an algebraic expression using x as the variable: Triple a number subtracted from the number A. 3(x  x) B. x 3 x C. 3x  x D. x  3x 2) Write the following as an algebraic expression
More informationStatistics. Draft GCSE subject content
Statistics Draft GCSE subject content September 015 Contents The content for statistics GCSE 3 Introduction 3 Aims and objectives 3 Subject content 3 Overview 3 Detailed subject content 4 Appendix 1 
More informationQuantitative Methods for Finance
Quantitative Methods for Finance Module 1: The Time Value of Money 1 Learning how to interpret interest rates as required rates of return, discount rates, or opportunity costs. 2 Learning how to explain
More informationT O P I C 1 2 Techniques and tools for data analysis Preview Introduction In chapter 3 of Statistics In A Day different combinations of numbers and types of variables are presented. We go through these
More informationBernd Klaus, some input from Wolfgang Huber, EMBL
Exploratory Data Analysis and Graphics Bernd Klaus, some input from Wolfgang Huber, EMBL Graphics in R base graphics and ggplot2 (grammar of graphics) are commonly used to produce plots in R; in a nutshell:
More informationStatistics: Descriptive Statistics & Probability
Statistics: Descriptive Statistics & Mediterranean Agronomic Institute of Chania & University of Crete MS.c Program Business Economics and Management 7 October 2013, Vol. 1.1 Statistics: Descriptive Statistics
More informationDongfeng Li. Autumn 2010
Autumn 2010 Chapter Contents Some statistics background; ; Comparing means and proportions; variance. Students should master the basic concepts, descriptive statistics measures and graphs, basic hypothesis
More informationFinal Exam Practice Problem Answers
Final Exam Practice Problem Answers The following data set consists of data gathered from 77 popular breakfast cereals. The variables in the data set are as follows: Brand: The brand name of the cereal
More informationChapter 2: Frequency Distributions and Graphs
Chapter 2: Frequency Distributions and Graphs Learning Objectives Upon completion of Chapter 2, you will be able to: Organize the data into a table or chart (called a frequency distribution) Construct
More informationCOM CO P 5318 Da t Da a t Explora Explor t a ion and Analysis y Chapte Chapt r e 3
COMP 5318 Data Exploration and Analysis Chapter 3 What is data exploration? A preliminary exploration of the data to better understand its characteristics. Key motivations of data exploration include Helping
More informationDescriptive statistics
Overview Descriptive statistics 1. Classification of observational values 2. Visualisation methods 3. Guidelines for good visualisation c Maarten Jansen STATF413 Descriptive statistics p.1 1.Classification
More informationThe right edge of the box is the third quartile, Q 3, which is the median of the data values above the median. Maximum Median
CONDENSED LESSON 2.1 Box Plots In this lesson you will create and interpret box plots for sets of data use the interquartile range (IQR) to identify potential outliers and graph them on a modified box
More informationCurriculum Map Statistics and Probability Honors (348) Saugus High School Saugus Public Schools 20092010
Curriculum Map Statistics and Probability Honors (348) Saugus High School Saugus Public Schools 20092010 Week 1 Week 2 14.0 Students organize and describe distributions of data by using a number of different
More informationIris Sample Data Set. Basic Visualization Techniques: Charts, Graphs and Maps. Summary Statistics. Frequency and Mode
Iris Sample Data Set Basic Visualization Techniques: Charts, Graphs and Maps CS598 Information Visualization Spring 2010 Many of the exploratory data techniques are illustrated with the Iris Plant data
More informationCorrelation Coefficient The correlation coefficient is a summary statistic that describes the linear relationship between two numerical variables 2
Lesson 4 Part 1 Relationships between two numerical variables 1 Correlation Coefficient The correlation coefficient is a summary statistic that describes the linear relationship between two numerical variables
More informationAlgebra 1 2008. Academic Content Standards Grade Eight and Grade Nine Ohio. Grade Eight. Number, Number Sense and Operations Standard
Academic Content Standards Grade Eight and Grade Nine Ohio Algebra 1 2008 Grade Eight STANDARDS Number, Number Sense and Operations Standard Number and Number Systems 1. Use scientific notation to express
More informationName: Date: Use the following to answer questions 23:
Name: Date: 1. A study is conducted on students taking a statistics class. Several variables are recorded in the survey. Identify each variable as categorical or quantitative. A) Type of car the student
More informationData Mining Techniques Chapter 5: The Lure of Statistics: Data Mining Using Familiar Tools
Data Mining Techniques Chapter 5: The Lure of Statistics: Data Mining Using Familiar Tools Occam s razor.......................................................... 2 A look at data I.........................................................
More informationCHAPTER THREE. Key Concepts
CHAPTER THREE Key Concepts interval, ordinal, and nominal scale quantitative, qualitative continuous data, categorical or discrete data table, frequency distribution histogram, bar graph, frequency polygon,
More informationImplications of Big Data for Statistics Instruction 17 Nov 2013
Implications of Big Data for Statistics Instruction 17 Nov 2013 Implications of Big Data for Statistics Instruction Mark L. Berenson Montclair State University MSMESB Mini Conference DSI Baltimore November
More informationDemographics of Atlanta, Georgia:
Demographics of Atlanta, Georgia: A Visual Analysis of the 2000 and 2010 Census Data 36315 Final Project Rachel Cohen, Kathryn McKeough, Minnar Xie & David Zimmerman Ethnicities of Atlanta Figure 1: From
More informationData Mining: Exploring Data. Lecture Notes for Chapter 3. Slides by Tan, Steinbach, Kumar adapted by Michael Hahsler
Data Mining: Exploring Data Lecture Notes for Chapter 3 Slides by Tan, Steinbach, Kumar adapted by Michael Hahsler Topics Exploratory Data Analysis Summary Statistics Visualization What is data exploration?
More information4. Continuous Random Variables, the Pareto and Normal Distributions
4. Continuous Random Variables, the Pareto and Normal Distributions A continuous random variable X can take any value in a given range (e.g. height, weight, age). The distribution of a continuous random
More informationExploratory Data Analysis
Exploratory Data Analysis Learning Objectives: 1. After completion of this module, the student will be able to explore data graphically in Excel using histogram boxplot bar chart scatter plot 2. After
More informationFoundation of Quantitative Data Analysis
Foundation of Quantitative Data Analysis Part 1: Data manipulation and descriptive statistics with SPSS/Excel HSRS #10  October 17, 2013 Reference : A. Aczel, Complete Business Statistics. Chapters 1
More informationTHE BINOMIAL DISTRIBUTION & PROBABILITY
REVISION SHEET STATISTICS 1 (MEI) THE BINOMIAL DISTRIBUTION & PROBABILITY The main ideas in this chapter are Probabilities based on selecting or arranging objects Probabilities based on the binomial distribution
More informationMind on Statistics. Chapter 2
Mind on Statistics Chapter 2 Sections 2.1 2.3 1. Tallies and crosstabulations are used to summarize which of these variable types? A. Quantitative B. Mathematical C. Continuous D. Categorical 2. The table
More informationData exploration with Microsoft Excel: univariate analysis
Data exploration with Microsoft Excel: univariate analysis Contents 1 Introduction... 1 2 Exploring a variable s frequency distribution... 2 3 Calculating measures of central tendency... 16 4 Calculating
More informationCONTENTS PREFACE 1 INTRODUCTION 1 2 DATA VISUALIZATION 19
PREFACE xi 1 INTRODUCTION 1 1.1 Overview 1 1.2 Definition 1 1.3 Preparation 2 1.3.1 Overview 2 1.3.2 Accessing Tabular Data 3 1.3.3 Accessing Unstructured Data 3 1.3.4 Understanding the Variables and Observations
More informationDescribing, Exploring, and Comparing Data
24 Chapter 2. Describing, Exploring, and Comparing Data Chapter 2. Describing, Exploring, and Comparing Data There are many tools used in Statistics to visualize, summarize, and describe data. This chapter
More informationINTRODUCING DATA ANALYSIS IN A STATISTICS COURSE IN ENVIRONMENTAL SCIENCE STUDIES
INTRODUCING DATA ANALYSIS IN A STATISTICS COURSE IN ENVIRONMENTAL SCIENCE STUDIES C. Capilla Technical University of Valencia, Spain CCAPILLA@EIO.UPV.ES Education in methods of applied statistics is important
More informationIntroduction to Statistics and Probability. Michael P. Wiper, Universidad Carlos III de Madrid
Introduction to Michael P. Wiper, Universidad Carlos III de Madrid Course objectives This course provides a brief introduction to statistics and probability. Firstly, we shall analyze the different methods
More informationInstitute of Actuaries of India Subject CT3 Probability and Mathematical Statistics
Institute of Actuaries of India Subject CT3 Probability and Mathematical Statistics For 2015 Examinations Aim The aim of the Probability and Mathematical Statistics subject is to provide a grounding in
More information