# DESCRIPTIVE STATISTICS AND EXPLORATORY DATA ANALYSIS

Size: px
Start display at page:

Transcription

1 DESCRIPTIVE STATISTICS AND EXPLORATORY DATA ANALYSIS SEEMA JAGGI Indian Agricultural Statistics Research Institute Library Avenue, New Delhi Descriptive Statistics Statistics is a set of procedures for gathering, measuring, classifying, computing, describing, synthesizing, analyzing, and interpreting systematically acquired quantitative data. Statistics has major two components: the Descriptive Statistics and the Inferential Statistics. Descriptive Statistics gives numerical and graphic procedures to summarize a collection of data in a clear and understandable way whereas Inferential Statistics provides procedures to draw inferences about a population from a sample. Descriptive statistics help us to simplify large amounts of data in a sensible way. Each descriptive statistic reduces lots of data into a simpler summary. There are two basic methods: numerical and graphical. Using the numerical approach one might compute statistics such as the mean and standard deviation. These statistics convey information about the average. The plots contain detailed information about the distribution. Graphical methods are better suited than numerical methods for identifying patterns in the data. Numerical approaches are more precise and objective. Since the numerical and graphical approaches complement each other, it is wise to use both. There are three major characteristics of a single variable that we tend to look at: Distribution Central Tendency Dispersion 1.1 Distribution The distribution is a summary of the frequency of individual values or ranges of values for a variable. The simplest distribution would list every value of a variable and the number of times each value occurs. One of the most common ways to describe a single variable is with a frequency distribution. Frequency distributions can be depicted in two ways, as a table or as a graph. Distributions may also be displayed using percentages. Frequency distribution organizes raw data or observations that have been collected into ungrouped data and grouped data. The Ungrouped Data provide listing of all possible scores that occur in a distribution and then indicating how often each score occurs. Grouped Data combines all possible scores into classes and then indicating how often each score occurs within each class. It is easier to see patterns in the data, but the information about individual scores is lost. Graphs make it easier to see certain characteristics and trends in a set of data. Graphs for quantitative data include Histogram, Frequency Polygon etc. and graphs for qualitative data include Bar Chart, Pie Chart etc. Shape of the Distribution An important aspect of the "description" of a variable is the shape of its distribution, which tells the frequency of values from different ranges of the variable. Typically, a researcher is interested in how well the distribution can be approximated by the normal

2 distribution. Simple descriptive statistics can provide some information relevant to this issue. For example, if the skewness (which measures the deviation of the distribution from symmetry) is clearly different from 0, then that distribution is asymmetrical, while normal distributions are perfectly symmetrical. If the kurtosis (which measures the peakedness of the distribution) is clearly different from 0, then the distribution is either flatter or more peaked than normal; the kurtosis of the normal distribution is 0. More precise information can be obtained by performing one of the tests of normality to determine the probability that the sample came from a normally distributed population of observations (e.g., the so-called Kolmogorov-Smirnov test, or the Shapiro-Wilks' W test). However, none of these tests can entirely substitute for a visual examination of the data using a histogram (i.e., a graph that shows the frequency distribution of a variable). The graph allows you to evaluate the normality of the empirical distribution because it also shows the normal curve superimposed over the histogram. It also allows to examine various aspects of the distribution qualitatively. For example, the distribution could be bimodal (have 2 peaks). This might suggest that the sample is not homogeneous but possibly its elements came from two different populations, each more or less normally distributed. In such case, in order to understand the nature of the variable in question, one should look for a way to quantitatively identify the two sub-samples. 1.2 Central Tendency The central tendency of a distribution is an estimate of the "center" of a distribution of values. There are three major types of estimates of central tendency: Mean Median Mode The Mean or average is probably the most commonly used method of describing central tendency. It is the most common measure of central tendency.to compute the mean, all the values are added up and divided by the number of values. The Median is the score found at the exact middle of the set of values. One way to compute the median is to list all scores in numerical order, and then locate the score in the center of the sample. For example, if there are 500 scores in the list, score number 250 2

3 would be the median. Let the 8 scores be ordered as 15, 15, 15, 20, 20, 21, 25, 36. Score number 4 and number 5 represent the halfway point. Since both of these scores are 20, the median is 20. If the two middle scores had different values, you would have to interpolate to determine the median. The Mode is the most frequently occurring value in the set of scores. To determine the mode, order the scores as shown above, and then count each one. The most frequently occurring value is the mode. It is used for either numerical or categorical data. In the above example, the value 15 occurs three times and is the mode. In some distributions, there may be more than one modal value. For instance, in a bimodal distribution there are two values that occur most frequently. Further, there may not be a mode. Mode is not affected by extreme value. If the yield of paddy from different fields are 6.0, 4.9, 6.0, 5.8, 6.2, 6.0, 6.3, 4.8, 6.0, 5.7 and 6.0 tonnes per hectare, the modal value is 6.0 tonnes per hectare. For the same set of 8 scores, three different values, , 20, and 15 for the mean, median and mode respectively have been obtained. If the distribution is truly normal (i.e., bell-shaped), the mean, median and mode are all equal to each other. While the mean is the most frequently used measure of central tendency, it does suffer from one major drawback. Unlike other measures of central tendency, the mean can be influenced profoundly by one extreme data point (referred to as an "outlier"). The median and mode clearly do not suffer from this problem. There are certainly occasions where the mode or median might be appropriate. For qualitative and categorical data, the mode makes sense, but the mean and median do not. For example, when we are interested in knowing the typical soil type in a locality or the typical cropping pattern in a region we can use mode. On the other hand, if the data is quantitative one, we can use any one of the averages. If the data is quantitative, then we have to consider the nature of the frequency distribution. When the frequency distribution is skewed (not symmetrical), the median or mode will be proper average. In case of raw data in which extreme values, either small or large, are present, the median or mode is the proper average. In case of a symmetrical distribution either mean or median or mode can be used. However, as seen already, the mean is preferred over the other two. When dealing with rates, speed and prices, use harmonic mean. If interest is in relative change, as in the case of bacterial growth, cell division etc., geometric mean is the most appropriate average. The mean, median, and mode can be related (approximately) to the histogram: the mode is the highest bump, the median is where half the area is to the right and half is to the left, and the mean is where the histogram would balance. 1.3 Dispersion Averages are representatives of a frequency distribution but they fail to give a complete picture of the distribution. They do not tell anything about the scatterness of observations within the distribution. 3

4 Suppose that we have the distribution of the yields (kg per plot) of two paddy varieties from 5 plots each. The distribution may be as follows: Variety I Variety II It can be seen that the mean yield for both varieties is 42 kg. But we can not say that the performance of the two varieties are same. There is greater uniformity of yields in the first variety whereas there is more variability in the yields of the second variety. The first variety may be preferred since it is more consistent in yield performance. From the above example, it is obvious that a measure of central tendency alone is not sufficient to describe a frequency distribution. In addition to it we should have a measure of scatterness of observations. The scatterness or variation of observations from their average is called the dispersion. There are different measures of dispersion like the range, the quartile deviation, the mean deviation and the standard deviation. The Range is simply the highest value minus the lowest value. The Standard Deviation (S.D) is a more accurate and detailed estimate of dispersion because an outlier can greatly exaggerate the range. The Standard Deviation shows the relation that set of scores has to the mean of the sample. The standard deviation is the square root of the sum of the squared deviations from the mean divided by the number of scores minus one. Mean deviation is the mean of the deviations of individual values from their average. The average may be either mean or median. For raw data the mean deviation from the median is the least. Although we can calculate these univariate statistics by hand, it gets quite tedious when you have more than a few values and variables. Every statistics program is capable of calculating them easily for you. Measure of Relative Dispersion Suppose that the two distributions to be compared are expressed in the same units and their means are equal or nearly equal. Then their variability can be compared directly by using their standard deviations. However, if their means are widely different or if they are expressed in different units of measurement, we can not use the standard deviations as such for comparing their variability. We have to use the relative measures of dispersion in such situations. There are relative dispersions in relation to range, the quartile deviation, the mean deviation, and the standard deviation. Of these, the coefficient of variation which is related to the standard deviation is important. The coefficient of variation is given by, S.D C.V. = Mean x 100 The C.V. is a unit-free measure. It is always expressed as percentage. The C.V. will be small if the variation is small. Of the two groups, the one with less C.V. is said to be more consistent. 4

5 The coefficient of variation is unreliable if the mean is near zero. Also it is unstable if the measurement scale used is not ratio scale. The C.V. is informative if it is given along with the mean and standard deviation. Otherwise, it may be misleading. Example 1.1: Consider the distribution of the yields (per plot) of two paddy varieties. For the first variety, the mean and standard deviation are 60 kg and 10 kg, respectively. For the second variety, the mean and standard deviation are 50 kg and 9 kg, respectively. Then we have, for the first variety, C.V. = ( 10 / 60 ) x 100 = 16.7 % For the second variety, C.V. = ( 9 / 50 ) x 100 = 18.0 % It is apparent that the variabilitry in first variety is less as compared to that in the second variety. But in terms of standard deviation the interpretation could be reverse. Example 1.2: Consider the measurements on yield and plant height of a paddy variety. The mean and standard deviation for yield are 50 kg and 10 kg respectively. The mean and standard deviation for plant height are 55 cm and 5 cm, respectively. Here the measurements for yield and plant height are in different units. Hence, the variability can be compared only by using coefficient of variation. For yield, C.V. = ( 10 / 50 ) x 100 = 20 % For plant height, C.V. = ( 5 / 55 ) x 100 = 9.1 % The yield is subject to more variation than the plant height. SPSS for Descriptive Statistics A common first step in data analysis is to summarize information about variables in your dataset, such as the averages and variances of variables. Several summary or descriptive statistics are available under the Descriptives option available from the Analyze and Descriptive Statistics menus: Analyze Descriptive Statistics Descriptives... After selecting the Descriptives option, the following dialog box will appear: 5

6 This dialog box allows to select the variables for which descriptive statistics are desired. To select variables, first click on a variable name in the box on the left side of the dialog box, then click on the arrow button that will move those variables to the Variable(s) box. For example, the variables salbegin and salary have been selected in this manner in the above example. To view the available descriptive statistics, click on the button labeled Options. This will produce the following dialog box: Clicking on the boxes next to the statistics' names will result in these statistics being displayed in the output for this procedure. In the above example, only the default statistics have been selected (mean, standard deviation, minimum, and maximum), however, there are several others that could be selected. After selecting all of the statistics you desire, output can be generated by first clicking on the Continue button in the Options dialog box, then clicking on the OK button in the Descriptives dialog box. The statistics that you selected will be printed in the Output Viewer. For example, the selections from the preceding example would produce the following output: 6

7 This output contains information that is useful in understanding the descriptive qualities of the data. The number of cases in the dataset is recorded under the column labeled N. Information about the range of variables is contained in the Minimum and Maximum columns. For example, beginning salaries ranged from \$9000 to \$79,980 whereas current salaries range from \$15,750 to \$135,000. The average salary is contained in the Mean column. Variability can be assessed by examining the values in the Std. column. The standard deviation measures the amount of variability in the distribution of a variable. Thus, the more that the individual data points differ from each other, the larger the standard deviation will be. Conversely, if there is a great deal of similarity between data points, the standard deviation will be quite small. The standard deviation describes the standard amount variables differ from the mean. For example, a starting salary with the value of \$24, is one standard deviation above the mean in the above example in which the variable, salary has a mean of \$17, and a standard deviation of \$7, Examining differences in variability could be useful for anticipating further analyses: in the above example, it is clear that there is much greater variability in the current salaries than beginning salaries. Because equal variances is an assumption of many inferential statistics, this information is important to a data analyst. Frequencies While the descriptive statistics procedure described above is useful for summarizing data with an underlying continuous distribution, the Descriptives procedure will not prove helpful for interpreting categorical data. Instead, it is more useful to investigate the numbers of cases that fall into various categories. The Frequencies option allows you to obtain the number of people within each education level in the dataset. The Frequencies procedure is found under the Analyze menu: Analyze Descriptive Statistics Frequencies... Selecting this menu item produces the following dialog box: 7

8 Select variables by clicking on them in the left box, then clicking the arrow in between the two boxes. Frequencies will be obtained for all of the variables in the box labeled Variable(s). This is the only step necessary for obtaining frequency tables; however, there are several other descriptive statistics available. The example in the above dialog box would produce the following output: Clicking on the Statistics button produces a dialog box with several additional descriptive statistics. Clicking on the Charts button produces the following box which allows you to graphically examine the data in several different formats: 8

9 Each of the available options provides a visual display of the data. For example, clicking on the Histograms button with its suboption, with normal curve, will provide you with a chart similar to that shown below. This will allow you to assess whether your data are normally distributed, which is an assumption of several inferential statistics. You can also use the Explore procedure, available from the Descriptives menu, to obtain the Kolmogorov-Smirnov test, which is a hypothesis test to determine if your data are normally distributed. 2. Exploratory Data Analysis Exploratory Data Analysis (EDA) is an approach for data analysis that employs a variety of techniques to 9

10 maximize insight into a data set; uncover underlying structure; extract important variables; detect outliers and anomalies; test underlying assumptions; develop parsimonious models; and determine optimal factor settings. Most EDA techniques are graphical in nature with a few quantitative techniques. The reason for the heavy reliance on graphics is that by its very nature the main role of EDA is to open-mindedly explore, and graphics gives the analysts unparalleled power to do so, enticing the data to reveal its structural secrets, and being always ready to gain some new, often unsuspected, insight into the data. In combination with the natural patternrecognition capabilities that we all possess, graphics provides, of course, unparalleled power to carry this out. The particular graphical techniques employed in EDA are often quite simple, consisting of various techniques of: Plotting the raw data (such as data traces, histograms, bihistograms, stem and leaf display, probability plots, lag plots, block plots, Youden plots, scatter plots, character plots, residual plots. Plotting simple statistics such as mean plots, standard deviation plots, box plots, and main effects plots of the raw data. Positioning such plots so as to maximize our natural pattern-recognition abilities, such as using multiple plots per page. For classical analysis, the sequence is Problem => Data => Model => Analysis => Conclusions For EDA, the sequence is Problem => Data => Analysis => Model => Conclusions Thus for classical analysis, the data collection is followed by the imposition of a model (normality, linearity, etc.) and the analysis, estimation, and testing that follows are focused on the parameters of that model. For EDA, the data collection is not followed by a model imposition; rather it is followed immediately by analysis with a goal of inferring what model would be appropriate. Many EDA techniques make little or no assumptions--they present and show the data--all of the data--as is, with fewer encumbering assumptions. Graphical procedures are not just tools that we could use in an EDA context, they are tools that we must use. Such graphical tools are the shortest path to gaining insight into a data set in terms of testing assumptions model selection model validation estimator selection relationship identification factor effect determination outlier detection 10

11 If one is not using statistical graphics, then one is forfeiting insight into one or more aspects of the underlying structure of the data. Box plots are an excellent tool for conveying location and variation information in data sets, particularly for detecting and illustrating location and variation changes between different groups of data. This box plot, comparing four machines for energy output, shows that machine has a significant effect on energy with respect to both location and variation. Machine 3 has the highest energy response (about 72.5); machine 4 has the least variable energy response with about 50% of its readings being within 1 energy unit The box plot can provide answers to the following questions: Is a factor significant? Does the location differ between subgroups? Does the variation differ between subgroups? Are there any outliers? A scatter plot reveals relationships or association between two variables. Such relationships manifest themselves by any non-random structure in the plot. 11

12 This sample plot reveals a linear relationship between the two variables indicating that a linear regression model might be appropriate. Scatter plots can provide answers to the following questions: Are variables X and Y related? Are variables X and Y linearly related? Are variables X and Y non-linearly related? Does the variation in Y change depending on X? Are there outliers? The probability plot is a graphical technique for assessing whether or not a data set follows a given distribution such as the normal. The data are plotted against a theoretical distribution in such a way that the points should form approximately a straight line. Departures from this straight line indicate departures from the specified distribution. The correlation coefficient associated with the linear fit to the data in the probability plot is a measure of the goodness of the fit. Estimates of the location and scale parameters of the distribution are given by the intercept and slope. Probability plots can be generated for several competing distributions to see which provides the best fit, and the probability plot generating the highest correlation coefficient is the best choice since it generates the straightest probability plot. For distributions with shape parameters (not counting location and scale parameters), the shape parameters must be known in order to generate the probability plot. For distributions with a single shape parameter, the probability plot correlation coefficient (PPCC) plot provides an excellent method for estimating the shape parameter. The histogram can be used to answer the following questions: What kind of population distribution do the data come from? Where are the data located? How spread out are the data? Are the data symmetric or skewed? Are there outliers in the data? Another method of displaying a set of data is with a stem-and-leaf plot. A stem-and-leaf plot is a display that organizes data to show its shape and distribution. In a stem-and-leaf plot, each data value is split into a stem and a leaf. The leaf is usually the last digit of the number and the other digits to the left of the leaf form the stem. The number 123 would be split as: stem 12 leaf 3 A stem-and-leaf plot resembles a histogram turned sideways. The stem values could represent the intervals of a histogram, and the leaf values could represent the frequency 12

13 for each interval. One advantage to the stem-and-leaf plot over the histogram is that the stem-and-leaf plot displays not only the frequency for each interval, but also displays all of the individual values within that interval. Example 2.1: Following is the data on temperatures: Enter all the data of temperatures sequentially until stem and leaf plot contains all of the data. The stem and leaf plot is as shown below: Temperatures Tens Ones Example 2.2: An example of the role that graphics play in terms of providing insight into a data is shown in the following data set: X Y If the goal of the analysis is to compute summary statistics plus determine the best linear fit for Y as a function of X, the results might be given as: N = 11 Mean of X = 9.0 Mean of Y = 7.5 Intercept = 3 Slope = 0.5 Residual standard deviation = Correlation = The above quantitative analysis, although valuable, gives only limited insight into the data. In contrast, the following simple scatter plot of the data 13

14 suggests the following: The data set behaves like a linear curve with some scatter; There is no justification for a more complicated model (e.g., quadratic); There are no outliers; The vertical spread of the data appears to be of equal height irrespective of the X- value; this indicates that the data are equally-precise throughout and so a regular (that is, equi-weighted) fit is appropriate. 3. Measurement Scales Variables differ in "how well" they can be measured, i.e., in how much measurable information their measurement scale can provide. There is obviously some measurement error involved in every measurement, which determines the "amount of information" that we can obtain. Another factor that determines the amount of information that can be provided by a variable is its "type of measurement scale." Specifically variables are classified as (a) nominal, (b) ordinal, (c) interval or (d) ratio. Nominal variables allow for only qualitative classification. That is, they can be measured only in terms of whether the individual items belong to some distinctively different categories, but we cannot quantify or even rank order those categories. For example, all we can say is that 2 individuals are different in terms of variable A (e.g., they are of different race), but we cannot say which one "has more" of the quality represented by the variable. Typical examples of nominal variables are soil type, variety, gender, race, color, city, etc. Ordinal variables allow us to rank order the items we measure in terms of which has less and which has more of the quality represented by the variable, but still they do not allow us to say "how much more." A typical example of an ordinal variable is the socioeconomic status of families. For example, we know that upper-middle is higher than middle but we cannot say that it is, for example, 18% higher. Also this very distinction between nominal, ordinal, and interval scales itself represents a good 14

15 example of an ordinal variable. For example, we can say that nominal measurement provides less information than ordinal measurement, but we cannot say "how much less" or how this difference compares to the difference between ordinal and interval scales. Interval variables allow us not only to rank order the items that are measured, but also to quantify and compare the sizes of differences between them. For example, temperature, as measured in degrees Fahrenheit or Celsius, constitutes an interval scale. We can say that a temperature of 40 degrees is higher than a temperature of 30 degrees, and that an increase from 20 to 40 degrees is twice as much as an increase from 30 to 40 degrees. Ratio variables are very similar to interval variables; in addition to all the properties of interval variables, they feature an identifiable absolute zero point, thus they allow for statements such as x is two times more than y. Typical examples of ratio scales are measures of time or space. For example, as the Kelvin temperature scale is a ratio scale, not only can we say that a temperature of 200 degrees is higher than one of 100 degrees, we can correctly state that it is twice as high. Interval scales do not have the ratio property. Most statistical data analysis procedures do not distinguish between the interval and ratio properties of the measurement scales. EXERCISE The following data relate to the grain yield (in gm per plot) of a sorghum variety from 100 experimental plots of equal area: Perform the frequency distribution of the above data by dividing the data into classes of size Find the measures of central tendency. 3. Find the measures of dispersion. 4. Create the stem and leaf display and box plot 15

16 Analysis using SPSS Data Entry, Transform Recode Into same variable Making class intervals 16

17 Measures of central tendency and dispersion Output 17

18 Analyze Descriptive Explore Stem and leaf display 18

### 4.1 Exploratory Analysis: Once the data is collected and entered, the first question is: "What do the data look like?"

Data Analysis Plan The appropriate methods of data analysis are determined by your data types and variables of interest, the actual distribution of the variables, and the number of cases. Different analyses

### STATS8: Introduction to Biostatistics. Data Exploration. Babak Shahbaba Department of Statistics, UCI

STATS8: Introduction to Biostatistics Data Exploration Babak Shahbaba Department of Statistics, UCI Introduction After clearly defining the scientific problem, selecting a set of representative members

### DESCRIPTIVE STATISTICS. The purpose of statistics is to condense raw data to make it easier to answer specific questions; test hypotheses.

DESCRIPTIVE STATISTICS The purpose of statistics is to condense raw data to make it easier to answer specific questions; test hypotheses. DESCRIPTIVE VS. INFERENTIAL STATISTICS Descriptive To organize,

### Diagrams and Graphs of Statistical Data

Diagrams and Graphs of Statistical Data One of the most effective and interesting alternative way in which a statistical data may be presented is through diagrams and graphs. There are several ways in

### IBM SPSS Statistics for Beginners for Windows

ISS, NEWCASTLE UNIVERSITY IBM SPSS Statistics for Beginners for Windows A Training Manual for Beginners Dr. S. T. Kometa A Training Manual for Beginners Contents 1 Aims and Objectives... 3 1.1 Learning

### Lecture 2: Descriptive Statistics and Exploratory Data Analysis

Lecture 2: Descriptive Statistics and Exploratory Data Analysis Further Thoughts on Experimental Design 16 Individuals (8 each from two populations) with replicates Pop 1 Pop 2 Randomly sample 4 individuals

### Exploratory data analysis (Chapter 2) Fall 2011

Exploratory data analysis (Chapter 2) Fall 2011 Data Examples Example 1: Survey Data 1 Data collected from a Stat 371 class in Fall 2005 2 They answered questions about their: gender, major, year in school,

### SPSS for Exploratory Data Analysis Data used in this guide: studentp.sav (http://people.ysu.edu/~gchang/stat/studentp.sav)

Data used in this guide: studentp.sav (http://people.ysu.edu/~gchang/stat/studentp.sav) Organize and Display One Quantitative Variable (Descriptive Statistics, Boxplot & Histogram) 1. Move the mouse pointer

### Foundation of Quantitative Data Analysis

Foundation of Quantitative Data Analysis Part 1: Data manipulation and descriptive statistics with SPSS/Excel HSRS #10 - October 17, 2013 Reference : A. Aczel, Complete Business Statistics. Chapters 1

### Summarizing and Displaying Categorical Data

Summarizing and Displaying Categorical Data Categorical data can be summarized in a frequency distribution which counts the number of cases, or frequency, that fall into each category, or a relative frequency

### How To Write A Data Analysis

Mathematics Probability and Statistics Curriculum Guide Revised 2010 This page is intentionally left blank. Introduction The Mathematics Curriculum Guide serves as a guide for teachers when planning instruction

### MBA 611 STATISTICS AND QUANTITATIVE METHODS

MBA 611 STATISTICS AND QUANTITATIVE METHODS Part I. Review of Basic Statistics (Chapters 1-11) A. Introduction (Chapter 1) Uncertainty: Decisions are often based on incomplete information from uncertain

### Exploratory Data Analysis. Psychology 3256

Exploratory Data Analysis Psychology 3256 1 Introduction If you are going to find out anything about a data set you must first understand the data Basically getting a feel for you numbers Easier to find

### Using SPSS, Chapter 2: Descriptive Statistics

1 Using SPSS, Chapter 2: Descriptive Statistics Chapters 2.1 & 2.2 Descriptive Statistics 2 Mean, Standard Deviation, Variance, Range, Minimum, Maximum 2 Mean, Median, Mode, Standard Deviation, Variance,

T O P I C 1 2 Techniques and tools for data analysis Preview Introduction In chapter 3 of Statistics In A Day different combinations of numbers and types of variables are presented. We go through these

### Data Exploration Data Visualization

Data Exploration Data Visualization What is data exploration? A preliminary exploration of the data to better understand its characteristics. Key motivations of data exploration include Helping to select

### II. DISTRIBUTIONS distribution normal distribution. standard scores

Appendix D Basic Measurement And Statistics The following information was developed by Steven Rothke, PhD, Department of Psychology, Rehabilitation Institute of Chicago (RIC) and expanded by Mary F. Schmidt,

### NCSS Statistical Software Principal Components Regression. In ordinary least squares, the regression coefficients are estimated using the formula ( )

Chapter 340 Principal Components Regression Introduction is a technique for analyzing multiple regression data that suffer from multicollinearity. When multicollinearity occurs, least squares estimates

### Northumberland Knowledge

Northumberland Knowledge Know Guide How to Analyse Data - November 2012 - This page has been left blank 2 About this guide The Know Guides are a suite of documents that provide useful information about

### Exercise 1.12 (Pg. 22-23)

Individuals: The objects that are described by a set of data. They may be people, animals, things, etc. (Also referred to as Cases or Records) Variables: The characteristics recorded about each individual.

### Lecture 1: Review and Exploratory Data Analysis (EDA)

Lecture 1: Review and Exploratory Data Analysis (EDA) Sandy Eckel seckel@jhsph.edu Department of Biostatistics, The Johns Hopkins University, Baltimore USA 21 April 2008 1 / 40 Course Information I Course

### Why Taking This Course? Course Introduction, Descriptive Statistics and Data Visualization. Learning Goals. GENOME 560, Spring 2012

Why Taking This Course? Course Introduction, Descriptive Statistics and Data Visualization GENOME 560, Spring 2012 Data are interesting because they help us understand the world Genomics: Massive Amounts

### Module 2: Introduction to Quantitative Data Analysis

Module 2: Introduction to Quantitative Data Analysis Contents Antony Fielding 1 University of Birmingham & Centre for Multilevel Modelling Rebecca Pillinger Centre for Multilevel Modelling Introduction...

### 1) Write the following as an algebraic expression using x as the variable: Triple a number subtracted from the number

1) Write the following as an algebraic expression using x as the variable: Triple a number subtracted from the number A. 3(x - x) B. x 3 x C. 3x - x D. x - 3x 2) Write the following as an algebraic expression

### Data exploration with Microsoft Excel: analysing more than one variable

Data exploration with Microsoft Excel: analysing more than one variable Contents 1 Introduction... 1 2 Comparing different groups or different variables... 2 3 Exploring the association between categorical

### Describing, Exploring, and Comparing Data

24 Chapter 2. Describing, Exploring, and Comparing Data Chapter 2. Describing, Exploring, and Comparing Data There are many tools used in Statistics to visualize, summarize, and describe data. This chapter

### BASIC STATISTICAL METHODS FOR GENOMIC DATA ANALYSIS

BASIC STATISTICAL METHODS FOR GENOMIC DATA ANALYSIS SEEMA JAGGI Indian Agricultural Statistics Research Institute Library Avenue, New Delhi-110 012 seema@iasri.res.in Genomics A genome is an organism s

### A Correlation of. to the. South Carolina Data Analysis and Probability Standards

A Correlation of to the South Carolina Data Analysis and Probability Standards INTRODUCTION This document demonstrates how Stats in Your World 2012 meets the indicators of the South Carolina Academic Standards

### Descriptive Statistics and Measurement Scales

Descriptive Statistics 1 Descriptive Statistics and Measurement Scales Descriptive statistics are used to describe the basic features of the data in a study. They provide simple summaries about the sample

### Fairfield Public Schools

Mathematics Fairfield Public Schools AP Statistics AP Statistics BOE Approved 04/08/2014 1 AP STATISTICS Critical Areas of Focus AP Statistics is a rigorous course that offers advanced students an opportunity

### Introduction to Regression and Data Analysis

Statlab Workshop Introduction to Regression and Data Analysis with Dan Campbell and Sherlock Campbell October 28, 2008 I. The basics A. Types of variables Your variables may take several forms, and it

### Bill Burton Albert Einstein College of Medicine william.burton@einstein.yu.edu April 28, 2014 EERS: Managing the Tension Between Rigor and Resources 1

Bill Burton Albert Einstein College of Medicine william.burton@einstein.yu.edu April 28, 2014 EERS: Managing the Tension Between Rigor and Resources 1 Calculate counts, means, and standard deviations Produce

### Scatter Plots with Error Bars

Chapter 165 Scatter Plots with Error Bars Introduction The procedure extends the capability of the basic scatter plot by allowing you to plot the variability in Y and X corresponding to each point. Each

### Descriptive Statistics

Y520 Robert S Michael Goal: Learn to calculate indicators and construct graphs that summarize and describe a large quantity of values. Using the textbook readings and other resources listed on the web

### South Carolina College- and Career-Ready (SCCCR) Probability and Statistics

South Carolina College- and Career-Ready (SCCCR) Probability and Statistics South Carolina College- and Career-Ready Mathematical Process Standards The South Carolina College- and Career-Ready (SCCCR)

### Week 1. Exploratory Data Analysis

Week 1 Exploratory Data Analysis Practicalities This course ST903 has students from both the MSc in Financial Mathematics and the MSc in Statistics. Two lectures and one seminar/tutorial per week. Exam

### Descriptive Statistics. Purpose of descriptive statistics Frequency distributions Measures of central tendency Measures of dispersion

Descriptive Statistics Purpose of descriptive statistics Frequency distributions Measures of central tendency Measures of dispersion Statistics as a Tool for LIS Research Importance of statistics in research

### MEASURES OF VARIATION

NORMAL DISTRIBTIONS MEASURES OF VARIATION In statistics, it is important to measure the spread of data. A simple way to measure spread is to find the range. But statisticians want to know if the data are

### Statistics. Measurement. Scales of Measurement 7/18/2012

Statistics Measurement Measurement is defined as a set of rules for assigning numbers to represent objects, traits, attributes, or behaviors A variableis something that varies (eye color), a constant does

### BNG 202 Biomechanics Lab. Descriptive statistics and probability distributions I

BNG 202 Biomechanics Lab Descriptive statistics and probability distributions I Overview The overall goal of this short course in statistics is to provide an introduction to descriptive and inferential

### Simple Predictive Analytics Curtis Seare

Using Excel to Solve Business Problems: Simple Predictive Analytics Curtis Seare Copyright: Vault Analytics July 2010 Contents Section I: Background Information Why use Predictive Analytics? How to use

### Data Analysis Tools. Tools for Summarizing Data

Data Analysis Tools This section of the notes is meant to introduce you to many of the tools that are provided by Excel under the Tools/Data Analysis menu item. If your computer does not have that tool

### GeoGebra Statistics and Probability

GeoGebra Statistics and Probability Project Maths Development Team 2013 www.projectmaths.ie Page 1 of 24 Index Activity Topic Page 1 Introduction GeoGebra Statistics 3 2 To calculate the Sum, Mean, Count,

### Statistics Review PSY379

Statistics Review PSY379 Basic concepts Measurement scales Populations vs. samples Continuous vs. discrete variable Independent vs. dependent variable Descriptive vs. inferential stats Common analyses

### DATA INTERPRETATION AND STATISTICS

PholC60 September 001 DATA INTERPRETATION AND STATISTICS Books A easy and systematic introductory text is Essentials of Medical Statistics by Betty Kirkwood, published by Blackwell at about 14. DESCRIPTIVE

### Curriculum Map Statistics and Probability Honors (348) Saugus High School Saugus Public Schools 2009-2010

Curriculum Map Statistics and Probability Honors (348) Saugus High School Saugus Public Schools 2009-2010 Week 1 Week 2 14.0 Students organize and describe distributions of data by using a number of different

### business statistics using Excel OXFORD UNIVERSITY PRESS Glyn Davis & Branko Pecar

business statistics using Excel Glyn Davis & Branko Pecar OXFORD UNIVERSITY PRESS Detailed contents Introduction to Microsoft Excel 2003 Overview Learning Objectives 1.1 Introduction to Microsoft Excel

CHAPTER 9 ADD-INS: ENHANCING EXCEL This chapter discusses the following topics: WHAT CAN AN ADD-IN DO? WHY USE AN ADD-IN (AND NOT JUST EXCEL MACROS/PROGRAMS)? ADD INS INSTALLED WITH EXCEL OTHER ADD-INS

### MEASURES OF LOCATION AND SPREAD

Paper TU04 An Overview of Non-parametric Tests in SAS : When, Why, and How Paul A. Pappas and Venita DePuy Durham, North Carolina, USA ABSTRACT Most commonly used statistical procedures are based on the

### Module 3: Correlation and Covariance

Using Statistical Data to Make Decisions Module 3: Correlation and Covariance Tom Ilvento Dr. Mugdim Pašiƒ University of Delaware Sarajevo Graduate School of Business O ften our interest in data analysis

### Variables. Exploratory Data Analysis

Exploratory Data Analysis Exploratory Data Analysis involves both graphical displays of data and numerical summaries of data. A common situation is for a data set to be represented as a matrix. There is

### Exploratory Data Analysis

Exploratory Data Analysis Johannes Schauer johannes.schauer@tugraz.at Institute of Statistics Graz University of Technology Steyrergasse 17/IV, 8010 Graz www.statistics.tugraz.at February 12, 2008 Introduction

### List of Examples. Examples 319

Examples 319 List of Examples DiMaggio and Mantle. 6 Weed seeds. 6, 23, 37, 38 Vole reproduction. 7, 24, 37 Wooly bear caterpillar cocoons. 7 Homophone confusion and Alzheimer s disease. 8 Gear tooth strength.

### Business Statistics. Successful completion of Introductory and/or Intermediate Algebra courses is recommended before taking Business Statistics.

Business Course Text Bowerman, Bruce L., Richard T. O'Connell, J. B. Orris, and Dawn C. Porter. Essentials of Business, 2nd edition, McGraw-Hill/Irwin, 2008, ISBN: 978-0-07-331988-9. Required Computing

### Introduction to Quantitative Methods

Introduction to Quantitative Methods October 15, 2009 Contents 1 Definition of Key Terms 2 2 Descriptive Statistics 3 2.1 Frequency Tables......................... 4 2.2 Measures of Central Tendencies.................

### SPSS Explore procedure

SPSS Explore procedure One useful function in SPSS is the Explore procedure, which will produce histograms, boxplots, stem-and-leaf plots and extensive descriptive statistics. To run the Explore procedure,

### Descriptive statistics Statistical inference statistical inference, statistical induction and inferential statistics

Descriptive statistics is the discipline of quantitatively describing the main features of a collection of data. Descriptive statistics are distinguished from inferential statistics (or inductive statistics),

### Data exploration with Microsoft Excel: univariate analysis

Data exploration with Microsoft Excel: univariate analysis Contents 1 Introduction... 1 2 Exploring a variable s frequency distribution... 2 3 Calculating measures of central tendency... 16 4 Calculating

### Describing Data: Measures of Central Tendency and Dispersion

100 Part 2 / Basic Tools of Research: Sampling, Measurement, Distributions, and Descriptive Statistics Chapter 8 Describing Data: Measures of Central Tendency and Dispersion In the previous chapter we

### Geostatistics Exploratory Analysis

Instituto Superior de Estatística e Gestão de Informação Universidade Nova de Lisboa Master of Science in Geospatial Technologies Geostatistics Exploratory Analysis Carlos Alberto Felgueiras cfelgueiras@isegi.unl.pt

### Directions for using SPSS

Directions for using SPSS Table of Contents Connecting and Working with Files 1. Accessing SPSS... 2 2. Transferring Files to N:\drive or your computer... 3 3. Importing Data from Another File Format...

### Statistics Chapter 2

Statistics Chapter 2 Frequency Tables A frequency table organizes quantitative data. partitions data into classes (intervals). shows how many data values are in each class. Test Score Number of Students

### determining relationships among the explanatory variables, and

Chapter 4 Exploratory Data Analysis A first look at the data. As mentioned in Chapter 1, exploratory data analysis or EDA is a critical first step in analyzing the data from an experiment. Here are the

### Lesson 4 Measures of Central Tendency

Outline Measures of a distribution s shape -modality and skewness -the normal distribution Measures of central tendency -mean, median, and mode Skewness and Central Tendency Lesson 4 Measures of Central

### A Picture Really Is Worth a Thousand Words

4 A Picture Really Is Worth a Thousand Words Difficulty Scale (pretty easy, but not a cinch) What you ll learn about in this chapter Why a picture is really worth a thousand words How to create a histogram

### Descriptive statistics parameters: Measures of centrality

Descriptive statistics parameters: Measures of centrality Contents Definitions... 3 Classification of descriptive statistics parameters... 4 More about central tendency estimators... 5 Relationship between

### Directions for Frequency Tables, Histograms, and Frequency Bar Charts

Directions for Frequency Tables, Histograms, and Frequency Bar Charts Frequency Distribution Quantitative Ungrouped Data Dataset: Frequency_Distributions_Graphs-Quantitative.sav 1. Open the dataset containing

### Measurement & Data Analysis. On the importance of math & measurement. Steps Involved in Doing Scientific Research. Measurement

Measurement & Data Analysis Overview of Measurement. Variability & Measurement Error.. Descriptive vs. Inferential Statistics. Descriptive Statistics. Distributions. Standardized Scores. Graphing Data.

### Introduction; Descriptive & Univariate Statistics

Introduction; Descriptive & Univariate Statistics I. KEY COCEPTS A. Population. Definitions:. The entire set of members in a group. EXAMPLES: All U.S. citizens; all otre Dame Students. 2. All values of

### Course Text. Required Computing Software. Course Description. Course Objectives. StraighterLine. Business Statistics

Course Text Business Statistics Lind, Douglas A., Marchal, William A. and Samuel A. Wathen. Basic Statistics for Business and Economics, 7th edition, McGraw-Hill/Irwin, 2010, ISBN: 9780077384470 [This

### SECTION 2-1: OVERVIEW SECTION 2-2: FREQUENCY DISTRIBUTIONS

SECTION 2-1: OVERVIEW Chapter 2 Describing, Exploring and Comparing Data 19 In this chapter, we will use the capabilities of Excel to help us look more carefully at sets of data. We can do this by re-organizing

### DesCartes (Combined) Subject: Mathematics Goal: Data Analysis, Statistics, and Probability

DesCartes (Combined) Subject: Mathematics Goal: Data Analysis, Statistics, and Probability RIT Score Range: Below 171 Below 171 171-180 Data Analysis and Statistics Data Analysis and Statistics Solves

### 4 Other useful features on the course web page. 5 Accessing SAS

1 Using SAS outside of ITCs Statistical Methods and Computing, 22S:30/105 Instructor: Cowles Lab 1 Jan 31, 2014 You can access SAS from off campus by using the ITC Virtual Desktop Go to https://virtualdesktopuiowaedu

### Engineering Problem Solving and Excel. EGN 1006 Introduction to Engineering

Engineering Problem Solving and Excel EGN 1006 Introduction to Engineering Mathematical Solution Procedures Commonly Used in Engineering Analysis Data Analysis Techniques (Statistics) Curve Fitting techniques

### INTRODUCING THE NORMAL DISTRIBUTION IN A DATA ANALYSIS COURSE: SPECIFIC MEANING CONTRIBUTED BY THE USE OF COMPUTERS

INTRODUCING THE NORMAL DISTRIBUTION IN A DATA ANALYSIS COURSE: SPECIFIC MEANING CONTRIBUTED BY THE USE OF COMPUTERS Liliana Tauber Universidad Nacional del Litoral Argentina Victoria Sánchez Universidad

### Statistics I for QBIC. Contents and Objectives. Chapters 1 7. Revised: August 2013

Statistics I for QBIC Text Book: Biostatistics, 10 th edition, by Daniel & Cross Contents and Objectives Chapters 1 7 Revised: August 2013 Chapter 1: Nature of Statistics (sections 1.1-1.6) Objectives

### Chapter 2: Frequency Distributions and Graphs

Chapter 2: Frequency Distributions and Graphs Learning Objectives Upon completion of Chapter 2, you will be able to: Organize the data into a table or chart (called a frequency distribution) Construct

### January 26, 2009 The Faculty Center for Teaching and Learning

THE BASICS OF DATA MANAGEMENT AND ANALYSIS A USER GUIDE January 26, 2009 The Faculty Center for Teaching and Learning THE BASICS OF DATA MANAGEMENT AND ANALYSIS Table of Contents Table of Contents... i

### Visualizing Data. Contents. 1 Visualizing Data. Anthony Tanbakuchi Department of Mathematics Pima Community College. Introductory Statistics Lectures

Introductory Statistics Lectures Visualizing Data Descriptive Statistics I Department of Mathematics Pima Community College Redistribution of this material is prohibited without written permission of the

### EXPLORING SPATIAL PATTERNS IN YOUR DATA

EXPLORING SPATIAL PATTERNS IN YOUR DATA OBJECTIVES Learn how to examine your data using the Geostatistical Analysis tools in ArcMap. Learn how to use descriptive statistics in ArcMap and Geoda to analyze

### CORRELATED TO THE SOUTH CAROLINA COLLEGE AND CAREER-READY FOUNDATIONS IN ALGEBRA

We Can Early Learning Curriculum PreK Grades 8 12 INSIDE ALGEBRA, GRADES 8 12 CORRELATED TO THE SOUTH CAROLINA COLLEGE AND CAREER-READY FOUNDATIONS IN ALGEBRA April 2016 www.voyagersopris.com Mathematical

### Practice#1(chapter1,2) Name

Practice#1(chapter1,2) Name Solve the problem. 1) The average age of the students in a statistics class is 22 years. Does this statement describe descriptive or inferential statistics? A) inferential statistics

There are three kinds of people in the world those who are good at math and those who are not. PSY 511: Advanced Statistics for Psychological and Behavioral Research 1 Positive Views The record of a month

### The Big Picture. Describing Data: Categorical and Quantitative Variables Population. Descriptive Statistics. Community Coalitions (n = 175)

Describing Data: Categorical and Quantitative Variables Population The Big Picture Sampling Statistical Inference Sample Exploratory Data Analysis Descriptive Statistics In order to make sense of data,

### seven Statistical Analysis with Excel chapter OVERVIEW CHAPTER

seven Statistical Analysis with Excel CHAPTER chapter OVERVIEW 7.1 Introduction 7.2 Understanding Data 7.3 Relationships in Data 7.4 Distributions 7.5 Summary 7.6 Exercises 147 148 CHAPTER 7 Statistical

### IBM SPSS Direct Marketing 23

IBM SPSS Direct Marketing 23 Note Before using this information and the product it supports, read the information in Notices on page 25. Product Information This edition applies to version 23, release

### When to use Excel. When NOT to use Excel 9/24/2014

Analyzing Quantitative Assessment Data with Excel October 2, 2014 Jeremy Penn, Ph.D. Director When to use Excel You want to quickly summarize or analyze your assessment data You want to create basic visual

### Normality Testing in Excel

Normality Testing in Excel By Mark Harmon Copyright 2011 Mark Harmon No part of this publication may be reproduced or distributed without the express permission of the author. mark@excelmasterseries.com

### Data analysis process

Data analysis process Data collection and preparation Collect data Prepare codebook Set up structure of data Enter data Screen data for errors Exploration of data Descriptive Statistics Graphs Analysis

### STA-201-TE. 5. Measures of relationship: correlation (5%) Correlation coefficient; Pearson r; correlation and causation; proportion of common variance

Principles of Statistics STA-201-TE This TECEP is an introduction to descriptive and inferential statistics. Topics include: measures of central tendency, variability, correlation, regression, hypothesis

### Analyzing Experimental Data

Analyzing Experimental Data The information in this chapter is a short summary of some topics that are covered in depth in the book Students and Research written by Cothron, Giese, and Rezba. See the end

### Introduction to Statistics for Psychology. Quantitative Methods for Human Sciences

Introduction to Statistics for Psychology and Quantitative Methods for Human Sciences Jonathan Marchini Course Information There is website devoted to the course at http://www.stats.ox.ac.uk/ marchini/phs.html

### SPSS TUTORIAL & EXERCISE BOOK

UNIVERSITY OF MISKOLC Faculty of Economics Institute of Business Information and Methods Department of Business Statistics and Economic Forecasting PETRA PETROVICS SPSS TUTORIAL & EXERCISE BOOK FOR BUSINESS

### Chapter 23. Inferences for Regression

Chapter 23. Inferences for Regression Topics covered in this chapter: Simple Linear Regression Simple Linear Regression Example 23.1: Crying and IQ The Problem: Infants who cry easily may be more easily