w = COI EYE view direction vector u = w ( 010,, ) cross product with y-axis v = w u up vector
|
|
|
- Melina Williams
- 10 years ago
- Views:
Transcription
1 . w COI EYE view direction vector u w ( 00,, ) cross product with -ais v w u up vector (EQ ) Computer Animation: Algorithms and Techniques 29
2 up vector view vector observer center of interest 30 Computer Animation: Algorithms and Techniques
3 Object Space Object transformed into world space Yon Clipping Distance Hither Clipping Distance Up Vector Observer Angle of View View Vector Center of Interest World Space View Frustum FIGURE 7. Object to world space transformation and the view frustum in world space. Computer Animation: Algorithms and Techniques 3
4 Object Space World Space lines of sight emanating from observer Ee Space ee at negative infinit parallel lines of sight Image Space Screen Space FIGURE 8. Displa pipeline showing transformation between spaces. 32 Computer Animation: Algorithms and Techniques
5 . virtual frame buffer Object Space ra constructed through piel center World Space Screen Space FIGURE 9. Transformation through spaces using ra casting. Computer Animation: Algorithms and Techniques 33
6 --- w w ---,, --- [,,, w] w (EQ 2). (,, ) [,,, ] (EQ 3) (EQ 4) (EQ 5). P' M M 2 M 3 M 4 M 5 M 6 P M M M 2 M 3 M 4 M 5 M 6 P' MP (EQ 6) P' PM T 6 M T 5 M T 4 M T 3 M T T 2 M M T M T 6 M T 5 M T 4 M T 3 M T T 2 M P' PM T (EQ 7) ' ' ' abcd e f g h i j k m 000 (EQ 8) t t t 00t 00t 00t 000 (EQ 9) 34 Computer Animation: Algorithms and Techniques
7 S S S S S S (EQ 0) S S S -- S S -- (EQ ) ' ' ' cosθ sinθ 0 0 sinθ cosθ (EQ 2) ' ' ' cosθ 0 sinθ sinθ 0 cosθ (EQ 3) ' ' ' cosθ sinθ 0 0 sinθ cosθ (EQ 4) Computer Animation: Algorithms and Techniques 35
8 up vector (23,-4,40) (20, -0, 35) a) Object space definition b) World space position and orientation of aircraft FIGURE 0. Desired Position and Orientation. 36 Computer Animation: Algorithms and Techniques
9 . Y Z -4 5 ψ (-4,5) FIGURE. Projection of desired orientation vector onto - plane. Computer Animation: Algorithms and Techniques 37
10 . Z 3 5 φ (3,5) X FIGURE 2. Projection of desired orientation vector onto - plane. 38 Computer Animation: Algorithms and Techniques
11 Y X,, - global coordinate sstem Z X,Y,Z - deisred orientation defined b unit coordinate sstem FIGURE 3. Global coordinate sstem and unit coordinate sstem to be transformed. Computer Animation: Algorithms and Techniques 39
12 X M Y M Z M X X X M 0 0 Y Y Y M 0 0 Z Z Z M 0 0 (EQ 5) X Y Z X Y Z X Y Z M X Y Z X Y Z M (EQ 6) X Y Z ' ' ' A A 2 A 3 A 4 A 2 A 22 A 23 A 24 A 3 A 32 A 33 A (EQ 7) 40 Computer Animation: Algorithms and Techniques
13 . (r,0,0) FIGURE 4. Translation of moon out to its initial position on the -ais. Computer Animation: Algorithms and Techniques 4
14 3 (r,0,0) 2 for each point P of the moon { P P } R d -ais rotation of 5 degrees repeat until (done) { for each point P of the moon { P R d *P } record a frame of the animation } FIGURE 5. Rotation b appling incremental rotation matrices to points. 42 Computer Animation: Algorithms and Techniques
15 3 R identit matri R d -ais rotation of 5 degrees 2 repeat until (done) { for each point P of the moon { P R*P } record a frame of the animation R R*R d } (r,0,0) FIGURE 6. Rotation b incrementall updating the rotation matri. Computer Animation: Algorithms and Techniques 43
16 3 (r,0,0) 2 0 repeat until (done) { R -ais rotation matri of degrees for each point P of the moon { P R*P } record a frame of the animation +5 } FIGURE 7. Rotation b forming the rotation matri new for each frame. 44 Computer Animation: Algorithms and Techniques
17 . Step :Normalie one of the vectors the original unit orthogonal vectors have ceased to be orthogonal from each other due to repeated transformations Step 2: Form vector perpendicular (orthogonal) to the vector just normalied and to one of the other two original vectors b taking cross product of the two. Normalie it. Step 3: Form the final orthogonal vector b taking the cross product of the two just generated. Normalie it. FIGURE 8. Orthonormaliation. Computer Animation: Algorithms and Techniques 45
18 a) Positive 90 degree -ais rotation b) Negative 90 degree -ais rotation c) Half wa between orientation representations FIGURE 9. Direct interpolation of transformation matri values can result in nonsense. 46 Computer Animation: Algorithms and Techniques
19 . FIGURE 20. Fied angle representation. Computer Animation: Algorithms and Techniques 47
20 a) Original definition b) (0,90,0) orientation FIGURE 2. Fied angle representation of (0,90,0). 48 Computer Animation: Algorithms and Techniques
21 . a) (+/-ε,90,0) orientation b) (0,90+/-ε,0) orientation c) (0,90,+/-ε) orientation FIGURE 22. Effect of slightl altering values of fied angle representation (0,90,0). Computer Animation: Algorithms and Techniques 49
22 (0,90,0) orientation (90,45,90) orientation; the object lies in the - plane FIGURE 23. Eample orientations to interpolate. 50 Computer Animation: Algorithms and Techniques
23 . aw roll Y X pitch Z Global coordinate sstem Local Coordinate sstem attached to object FIGURE 24. Euler angle representation. Computer Animation: Algorithms and Techniques 5
24 R '( β)r ( α) R ( α)r ( β)r ( α)r ( α) R ( α)r ( β) R ''()R γ '( β)r ( α) R ( α)r ( β)r ()R γ ( α)r ( β)r ( β)r ( α) R ( α)r ( β)r () γ (EQ 8) (EQ 9) 52 Computer Animation: Algorithms and Techniques
25 orientation A Y orientation B Y θ angle and ais of rotation X X Z Z FIGURE 25. Euler s Rotation Theorem implies that, for an two orientations of an object, one can be produced from the other b a single rotation about an arbitrar ais. Computer Animation: Algorithms and Techniques 53
26 ! BA A 2 Y θ Α Α 2 φ θ 2 B A A 2 φ cos A A 2 A A 2 X A k R B ( k φ)a Z θ k ( k) θ + k θ 2 FIGURE 26. Interpolating ais-angle representations. 54 Computer Animation: Algorithms and Techniques
27 . [ s, v ] [ s 2, v 2 ] [ s s 2 v v 2, s v 2 + s 2 v + v v 2 ] (EQ 20) [ 0, v ] [ 0, v 2 ] [ 0, v v 2 ] iff v v 2 0 (EQ 2) ( q ) 2 [ s, v] q where q s (EQ 22) q q q ( q ) (EQ 23) v' Rot() v q v q (EQ 24) Rot q ( Rot p () v ) q ( p v p ) q (( pq) v ( pq )) Rot pq () v (EQ 25) Rot ( Rot() v ) q ( q v q ) q v (EQ 26) q Rot θ, (,, ) [ cos( θ 2), sin( θ 2) (,, ) ] (EQ 27) q Rot θ, (,, ) [ cos( θ 2), sin( ( θ) 2) ( (,, ) )] [ cos( θ 2), sin( θ 2) ( (,, ) )] [ cos( θ 2), sin( θ 2),, ] Rot θ, (,, ) q (EQ 28) 27. Computer Animation: Algorithms and Techniques 55
28 56 Computer Animation: Algorithms and Techniques
2D Geometrical Transformations. Foley & Van Dam, Chapter 5
2D Geometrical Transformations Fole & Van Dam, Chapter 5 2D Geometrical Transformations Translation Scaling Rotation Shear Matri notation Compositions Homogeneous coordinates 2D Geometrical Transformations
Section 11.4: Equations of Lines and Planes
Section 11.4: Equations of Lines and Planes Definition: The line containing the point ( 0, 0, 0 ) and parallel to the vector v = A, B, C has parametric equations = 0 + At, = 0 + Bt, = 0 + Ct, where t R
Math 241 Lines and Planes (Solutions) x = 3 3t. z = 1 t. x = 5 + t. z = 7 + 3t
Math 241 Lines and Planes (Solutions) The equations for planes P 1, P 2 and P are P 1 : x 2y + z = 7 P 2 : x 4y + 5z = 6 P : (x 5) 2(y 6) + (z 7) = 0 The equations for lines L 1, L 2, L, L 4 and L 5 are
Identifying second degree equations
Chapter 7 Identifing second degree equations 7.1 The eigenvalue method In this section we appl eigenvalue methods to determine the geometrical nature of the second degree equation a 2 + 2h + b 2 + 2g +
Affine Transformations
A P P E N D I X C Affine Transformations CONTENTS C The need for geometric transformations 335 C2 Affine transformations 336 C3 Matri representation of the linear transformations 338 C4 Homogeneous coordinates
B4 Computational Geometry
3CG 2006 / B4 Computational Geometry David Murray [email protected] www.robots.o.ac.uk/ dwm/courses/3cg Michaelmas 2006 3CG 2006 2 / Overview Computational geometry is concerned with the derivation
2.1 Three Dimensional Curves and Surfaces
. Three Dimensional Curves and Surfaces.. Parametric Equation of a Line An line in two- or three-dimensional space can be uniquel specified b a point on the line and a vector parallel to the line. The
Section 9.5: Equations of Lines and Planes
Lines in 3D Space Section 9.5: Equations of Lines and Planes Practice HW from Stewart Textbook (not to hand in) p. 673 # 3-5 odd, 2-37 odd, 4, 47 Consider the line L through the point P = ( x, y, ) that
Realtime 3D Computer Graphics Virtual Reality
Realtime 3D Computer Graphics Virtual Realit Viewing and projection Classical and General Viewing Transformation Pipeline CPU Pol. DL Pixel Per Vertex Texture Raster Frag FB object ee clip normalized device
Dot product and vector projections (Sect. 12.3) There are two main ways to introduce the dot product
Dot product and vector projections (Sect. 12.3) Two definitions for the dot product. Geometric definition of dot product. Orthogonal vectors. Dot product and orthogonal projections. Properties of the dot
Equations Involving Lines and Planes Standard equations for lines in space
Equations Involving Lines and Planes In this section we will collect various important formulas regarding equations of lines and planes in three dimensional space Reminder regarding notation: any quantity
Lines and Planes in R 3
.3 Lines and Planes in R 3 P. Daniger Lines in R 3 We wish to represent lines in R 3. Note that a line may be described in two different ways: By specifying two points on the line. By specifying one point
Exam 1 Sample Question SOLUTIONS. y = 2x
Exam Sample Question SOLUTIONS. Eliminate the parameter to find a Cartesian equation for the curve: x e t, y e t. SOLUTION: You might look at the coordinates and notice that If you don t see it, we can
Fundamentals of Computer Animation
Fundamentals of Computer Animation Quaternions as Orientations () page 1 Visualizing a Unit Quaternion Rotation in 4D Space ( ) = w + x + y z q = Norm q + q = q q [ w, v], v = ( x, y, z) w scalar q =,
226-332 Basic CAD/CAM. CHAPTER 5: Geometric Transformation
226-332 Basic CAD/CAM CHAPTER 5: Geometric Transformation 1 Geometric transformation is a change in geometric characteristics such as position, orientation, and size of a geometric entity (point, line,
Section 1.4. Lines, Planes, and Hyperplanes. The Calculus of Functions of Several Variables
The Calculus of Functions of Several Variables Section 1.4 Lines, Planes, Hyperplanes In this section we will add to our basic geometric understing of R n by studying lines planes. If we do this carefully,
VECTOR ALGEBRA. 10.1.1 A quantity that has magnitude as well as direction is called a vector. is given by a and is represented by a.
VECTOR ALGEBRA Chapter 10 101 Overview 1011 A quantity that has magnitude as well as direction is called a vector 101 The unit vector in the direction of a a is given y a and is represented y a 101 Position
Advanced Computer Graphics (2IV40) ~ 3D Transformations. Types (geometric) Types (algebraic) 3D Transformations. y + c 1. x = a 1.
Advanced Computer Graphics (2IV40) ~ 3D Transformations Kees Huiing Huub van de Wetering Winter 2005/6 Tpes (geometric) maintain distances & orientation (LH/RH): rigid bod transforms (rotations, translations)
12.5 Equations of Lines and Planes
Instructor: Longfei Li Math 43 Lecture Notes.5 Equations of Lines and Planes What do we need to determine a line? D: a point on the line: P 0 (x 0, y 0 ) direction (slope): k 3D: a point on the line: P
Section 1.1. Introduction to R n
The Calculus of Functions of Several Variables Section. Introduction to R n Calculus is the study of functional relationships and how related quantities change with each other. In your first exposure to
3D Tranformations. CS 4620 Lecture 6. Cornell CS4620 Fall 2013 Lecture 6. 2013 Steve Marschner (with previous instructors James/Bala)
3D Tranformations CS 4620 Lecture 6 1 Translation 2 Translation 2 Translation 2 Translation 2 Scaling 3 Scaling 3 Scaling 3 Scaling 3 Rotation about z axis 4 Rotation about z axis 4 Rotation about x axis
9 Multiplication of Vectors: The Scalar or Dot Product
Arkansas Tech University MATH 934: Calculus III Dr. Marcel B Finan 9 Multiplication of Vectors: The Scalar or Dot Product Up to this point we have defined what vectors are and discussed basic notation
x y The matrix form, the vector form, and the augmented matrix form, respectively, for the system of equations are
Solving Sstems of Linear Equations in Matri Form with rref Learning Goals Determine the solution of a sstem of equations from the augmented matri Determine the reduced row echelon form of the augmented
Review Sheet for Test 1
Review Sheet for Test 1 Math 261-00 2 6 2004 These problems are provided to help you study. The presence of a problem on this handout does not imply that there will be a similar problem on the test. And
MAT 1341: REVIEW II SANGHOON BAEK
MAT 1341: REVIEW II SANGHOON BAEK 1. Projections and Cross Product 1.1. Projections. Definition 1.1. Given a vector u, the rectangular (or perpendicular or orthogonal) components are two vectors u 1 and
Lecture 14: Section 3.3
Lecture 14: Section 3.3 Shuanglin Shao October 23, 2013 Definition. Two nonzero vectors u and v in R n are said to be orthogonal (or perpendicular) if u v = 0. We will also agree that the zero vector in
Complex Numbers. w = f(z) z. Examples
omple Numbers Geometrical Transformations in the omple Plane For functions of a real variable such as f( sin, g( 2 +2 etc ou are used to illustrating these geometricall, usuall on a cartesian graph. If
Mechanics lecture 7 Moment of a force, torque, equilibrium of a body
G.1 EE1.el3 (EEE1023): Electronics III Mechanics lecture 7 Moment of a force, torque, equilibrium of a body Dr Philip Jackson http://www.ee.surrey.ac.uk/teaching/courses/ee1.el3/ G.2 Moments, torque and
We can display an object on a monitor screen in three different computer-model forms: Wireframe model Surface Model Solid model
CHAPTER 4 CURVES 4.1 Introduction In order to understand the significance of curves, we should look into the types of model representations that are used in geometric modeling. Curves play a very significant
Monash University Clayton s School of Information Technology CSE3313 Computer Graphics Sample Exam Questions 2007
Monash University Clayton s School of Information Technology CSE3313 Computer Graphics Questions 2007 INSTRUCTIONS: Answer all questions. Spend approximately 1 minute per mark. Question 1 30 Marks Total
10.5. Click here for answers. Click here for solutions. EQUATIONS OF LINES AND PLANES. 3x 4y 6z 9 4, 2, 5. x y z. z 2. x 2. y 1.
SECTION EQUATIONS OF LINES AND PLANES 1 EQUATIONS OF LINES AND PLANES A Click here for answers. S Click here for solutions. 1 Find a vector equation and parametric equations for the line passing through
Lectures notes on orthogonal matrices (with exercises) 92.222 - Linear Algebra II - Spring 2004 by D. Klain
Lectures notes on orthogonal matrices (with exercises) 92.222 - Linear Algebra II - Spring 2004 by D. Klain 1. Orthogonal matrices and orthonormal sets An n n real-valued matrix A is said to be an orthogonal
Cross Products and Moments of Force
4 Cross Products and Moments of Force Ref: Hibbeler 4.2-4.3, edford & Fowler: Statics 2.6, 4.3 In geometric terms, the cross product of two vectors, A and, produces a new vector, C, with a direction perpendicular
MA261-A Calculus III 2006 Fall Homework 3 Solutions Due 9/22/2006 8:00AM
MA6-A Calculus III 6 Fall Homework Solutions Due 9//6 :AM 9. # Find the parametric euation and smmetric euation for the line of intersection of the planes + + z = and + z =. To write down a line euation,
Orthogonal Projections
Orthogonal Projections and Reflections (with exercises) by D. Klain Version.. Corrections and comments are welcome! Orthogonal Projections Let X,..., X k be a family of linearly independent (column) vectors
Cross product and determinants (Sect. 12.4) Two main ways to introduce the cross product
Cross product and determinants (Sect. 12.4) Two main ways to introduce the cross product Geometrical definition Properties Expression in components. Definition in components Properties Geometrical expression.
3D Viewing. Chapter 7. Projections. 3D clipping. OpenGL viewing functions and clipping planes
3D Viewing Chapter 7 Projections 3D clipping OpenGL viewing functions and clipping planes 1 Projections Parallel Perspective Coordinates are transformed along parallel lines Relative sizes are preserved
Math 241, Exam 1 Information.
Math 241, Exam 1 Information. 9/24/12, LC 310, 11:15-12:05. Exam 1 will be based on: Sections 12.1-12.5, 14.1-14.3. The corresponding assigned homework problems (see http://www.math.sc.edu/ boylan/sccourses/241fa12/241.html)
Name Class. Date Section. Test Form A Chapter 11. Chapter 11 Test Bank 155
Chapter Test Bank 55 Test Form A Chapter Name Class Date Section. Find a unit vector in the direction of v if v is the vector from P,, 3 to Q,, 0. (a) 3i 3j 3k (b) i j k 3 i 3 j 3 k 3 i 3 j 3 k. Calculate
Product Operators 6.1 A quick review of quantum mechanics
6 Product Operators The vector model, introduced in Chapter 3, is ver useful for describing basic NMR eperiments but unfortunatel is not applicable to coupled spin sstems. When it comes to two-dimensional
COMPONENTS OF VECTORS
COMPONENTS OF VECTORS To describe motion in two dimensions we need a coordinate sstem with two perpendicular aes, and. In such a coordinate sstem, an vector A can be uniquel decomposed into a sum of two
4BA6 - Topic 4 Dr. Steven Collins. Chap. 5 3D Viewing and Projections
4BA6 - Topic 4 Dr. Steven Collins Chap. 5 3D Viewing and Projections References Computer graphics: principles & practice, Fole, vandam, Feiner, Hughes, S-LEN 5.644 M23*;-6 (has a good appendix on linear
Two vectors are equal if they have the same length and direction. They do not
Vectors define vectors Some physical quantities, such as temperature, length, and mass, can be specified by a single number called a scalar. Other physical quantities, such as force and velocity, must
13.4 THE CROSS PRODUCT
710 Chapter Thirteen A FUNDAMENTAL TOOL: VECTORS 62. Use the following steps and the results of Problems 59 60 to show (without trigonometry) that the geometric and algebraic definitions of the dot product
Introduction to Computer Graphics Marie-Paule Cani & Estelle Duveau
Introduction to Computer Graphics Marie-Paule Cani & Estelle Duveau 04/02 Introduction & projective rendering 11/02 Prodedural modeling, Interactive modeling with parametric surfaces 25/02 Introduction
Math for Game Programmers: Dual Numbers. Gino van den Bergen [email protected]
Math for Game Programmers: Dual Numbers Gino van den Bergen [email protected] Introduction Dual numbers extend real numbers, similar to complex numbers. Complex numbers adjoin an element i, for which i 2
Computer Graphics. Introduction. Computer graphics. What is computer graphics? Yung-Yu Chuang
Introduction Computer Graphics Instructor: Yung-Yu Chuang ( 莊 永 裕 ) E-mail: [email protected] Office: CSIE 527 Grading: a MatchMove project Computer Science ce & Information o Technolog og Yung-Yu Chuang
v 1 v 3 u v = (( 1)4 (3)2, [1(4) ( 2)2], 1(3) ( 2)( 1)) = ( 10, 8, 1) (d) u (v w) = (u w)v (u v)w (Relationship between dot and cross product)
0.1 Cross Product The dot product of two vectors is a scalar, a number in R. Next we will define the cross product of two vectors in 3-space. This time the outcome will be a vector in 3-space. Definition
Figure 1.1 Vector A and Vector F
CHAPTER I VECTOR QUANTITIES Quantities are anything which can be measured, and stated with number. Quantities in physics are divided into two types; scalar and vector quantities. Scalar quantities have
Introduction to polarization of light
Chapter 2 Introduction to polarization of light This Chapter treats the polarization of electromagnetic waves. In Section 2.1 the concept of light polarization is discussed and its Jones formalism is presented.
Connecting Transformational Geometry and Transformations of Functions
Connecting Transformational Geometr and Transformations of Functions Introductor Statements and Assumptions Isometries are rigid transformations that preserve distance and angles and therefore shapes.
a.) Write the line 2x - 4y = 9 into slope intercept form b.) Find the slope of the line parallel to part a
Bellwork a.) Write the line 2x - 4y = 9 into slope intercept form b.) Find the slope of the line parallel to part a c.) Find the slope of the line perpendicular to part b or a May 8 7:30 AM 1 Day 1 I.
Section V.2: Magnitudes, Directions, and Components of Vectors
Section V.: Magnitudes, Directions, and Components of Vectors Vectors in the plane If we graph a vector in the coordinate plane instead of just a grid, there are a few things to note. Firstl, directions
THREE DIMENSIONAL GEOMETRY
Chapter 8 THREE DIMENSIONAL GEOMETRY 8.1 Introduction In this chapter we present a vector algebra approach to three dimensional geometry. The aim is to present standard properties of lines and planes,
Problem set on Cross Product
1 Calculate the vector product of a and b given that a= 2i + j + k and b = i j k (Ans 3 j - 3 k ) 2 Calculate the vector product of i - j and i + j (Ans ) 3 Find the unit vectors that are perpendicular
Module 8 Lesson 4: Applications of Vectors
Module 8 Lesson 4: Applications of Vectors So now that you have learned the basic skills necessary to understand and operate with vectors, in this lesson, we will look at how to solve real world problems
Geometry: Unit 1 Vocabulary TERM DEFINITION GEOMETRIC FIGURE. Cannot be defined by using other figures.
Geometry: Unit 1 Vocabulary 1.1 Undefined terms Cannot be defined by using other figures. Point A specific location. It has no dimension and is represented by a dot. Line Plane A connected straight path.
Geometry of Vectors. 1 Cartesian Coordinates. Carlo Tomasi
Geometry of Vectors Carlo Tomasi This note explores the geometric meaning of norm, inner product, orthogonality, and projection for vectors. For vectors in three-dimensional space, we also examine the
Vector has a magnitude and a direction. Scalar has a magnitude
Vector has a magnitude and a direction Scalar has a magnitude Vector has a magnitude and a direction Scalar has a magnitude a brick on a table Vector has a magnitude and a direction Scalar has a magnitude
11.1. Objectives. Component Form of a Vector. Component Form of a Vector. Component Form of a Vector. Vectors and the Geometry of Space
11 Vectors and the Geometry of Space 11.1 Vectors in the Plane Copyright Cengage Learning. All rights reserved. Copyright Cengage Learning. All rights reserved. 2 Objectives! Write the component form of
Interactive Computer Graphics
Interactive Computer Graphics Lecture 18 Kinematics and Animation Interactive Graphics Lecture 18: Slide 1 Animation of 3D models In the early days physical models were altered frame by frame to create
α = u v. In other words, Orthogonal Projection
Orthogonal Projection Given any nonzero vector v, it is possible to decompose an arbitrary vector u into a component that points in the direction of v and one that points in a direction orthogonal to v
Physics 53. Kinematics 2. Our nature consists in movement; absolute rest is death. Pascal
Phsics 53 Kinematics 2 Our nature consists in movement; absolute rest is death. Pascal Velocit and Acceleration in 3-D We have defined the velocit and acceleration of a particle as the first and second
MAT188H1S Lec0101 Burbulla
Winter 206 Linear Transformations A linear transformation T : R m R n is a function that takes vectors in R m to vectors in R n such that and T (u + v) T (u) + T (v) T (k v) k T (v), for all vectors u
Adding vectors We can do arithmetic with vectors. We ll start with vector addition and related operations. Suppose you have two vectors
1 Chapter 13. VECTORS IN THREE DIMENSIONAL SPACE Let s begin with some names and notation for things: R is the set (collection) of real numbers. We write x R to mean that x is a real number. A real number
L 2 : x = s + 1, y = s, z = 4s + 4. 3. Suppose that C has coordinates (x, y, z). Then from the vector equality AC = BD, one has
The line L through the points A and B is parallel to the vector AB = 3, 2, and has parametric equations x = 3t + 2, y = 2t +, z = t Therefore, the intersection point of the line with the plane should satisfy:
15.1. Exact Differential Equations. Exact First-Order Equations. Exact Differential Equations Integrating Factors
SECTION 5. Eact First-Order Equations 09 SECTION 5. Eact First-Order Equations Eact Differential Equations Integrating Factors Eact Differential Equations In Section 5.6, ou studied applications of differential
ME 115(b): Solution to Homework #1
ME 115(b): Solution to Homework #1 Solution to Problem #1: To construct the hybrid Jacobian for a manipulator, you could either construct the body Jacobian, JST b, and then use the body-to-hybrid velocity
Math, Trigonometry and Vectors. Geometry. Trig Definitions. sin(θ) = opp hyp. cos(θ) = adj hyp. tan(θ) = opp adj. Here's a familiar image.
Math, Trigonometr and Vectors Geometr Trig Definitions Here's a familiar image. To make predictive models of the phsical world, we'll need to make visualizations, which we can then turn into analtical
Rotation Matrices and Homogeneous Transformations
Rotation Matrices and Homogeneous Transformations A coordinate frame in an n-dimensional space is defined by n mutually orthogonal unit vectors. In particular, for a two-dimensional (2D) space, i.e., n
Calculation of Azimuth, Elevation and Polarization for non-horizontal aligned Antennas
Calculation of Azimuth, Elevation and Polarization for non-horizontal aligned Antennas Algorithm Description Technical Document TD-1205-a Version 1.1 23.10.2012 In Co-operation with 1 Objective Many SatCom
Vector Notation: AB represents the vector from point A to point B on a graph. The vector can be computed by B A.
1 Linear Transformations Prepared by: Robin Michelle King A transformation of an object is a change in position or dimension (or both) of the object. The resulting object after the transformation is called
3. INNER PRODUCT SPACES
. INNER PRODUCT SPACES.. Definition So far we have studied abstract vector spaces. These are a generalisation of the geometric spaces R and R. But these have more structure than just that of a vector space.
Geometry for Computer Graphics
Computer Graphics and Visualisation Geometry for Computer Graphics Student Notes Developed by F Lin K Wyrwas J Irwin C Lilley W T Hewitt T L J Howard Computer Graphics Unit Manchester Computing Centre
Lines and Planes 1. x(t) = at + b y(t) = ct + d
1 Lines in the Plane Lines and Planes 1 Ever line of points L in R 2 can be epressed as the solution set for an equation of the form A + B = C. The equation is not unique for if we multipl both sides b
Animation (-4, -2, 0 ) + (( 2, 6, -4 ) - (-4, -2, 0 ))*.75 = (-4, -2, 0 ) + ( 6, 8, -4)*.75 = (.5, 4, -3 ).
Animation A Series of Still Images We Call Animation Animation needs no explanation. We see it in movies and games. We grew up with it in cartoons. Some of the most popular, longest-running television
Essential Mathematics for Computer Graphics fast
John Vince Essential Mathematics for Computer Graphics fast Springer Contents 1. MATHEMATICS 1 Is mathematics difficult? 3 Who should read this book? 4 Aims and objectives of this book 4 Assumptions made
Lecture L3 - Vectors, Matrices and Coordinate Transformations
S. Widnall 16.07 Dynamics Fall 2009 Lecture notes based on J. Peraire Version 2.0 Lecture L3 - Vectors, Matrices and Coordinate Transformations By using vectors and defining appropriate operations between
2D Geometric Transformations
2D Geometric Transformations (Chapter 5 in FVD) 2D Geometric Transformations Question: How do we represent a geometric object in the plane? Answer: For now, assume that objects consist of points and lines.
discuss how to describe points, lines and planes in 3 space.
Chapter 2 3 Space: lines and planes In this chapter we discuss how to describe points, lines and planes in 3 space. introduce the language of vectors. discuss various matters concerning the relative position
Computer Animation. Lecture 2. Basics of Character Animation
Computer Animation Lecture 2. Basics of Character Animation Taku Komura Overview Character Animation Posture representation Hierarchical structure of the body Joint types Translational, hinge, universal,
Introduction to Matrices for Engineers
Introduction to Matrices for Engineers C.T.J. Dodson, School of Mathematics, Manchester Universit 1 What is a Matrix? A matrix is a rectangular arra of elements, usuall numbers, e.g. 1 0-8 4 0-1 1 0 11
521493S Computer Graphics. Exercise 2 & course schedule change
521493S Computer Graphics Exercise 2 & course schedule change Course Schedule Change Lecture from Wednesday 31th of March is moved to Tuesday 30th of March at 16-18 in TS128 Question 2.1 Given two nonparallel,
Addition and Subtraction of Vectors
ddition and Subtraction of Vectors 1 ppendi ddition and Subtraction of Vectors In this appendi the basic elements of vector algebra are eplored. Vectors are treated as geometric entities represented b
JUST THE MATHS UNIT NUMBER 8.5. VECTORS 5 (Vector equations of straight lines) A.J.Hobson
JUST THE MATHS UNIT NUMBER 8.5 VECTORS 5 (Vector equations of straight lines) by A.J.Hobson 8.5.1 Introduction 8.5. The straight line passing through a given point and parallel to a given vector 8.5.3
Mathematics Notes for Class 12 chapter 10. Vector Algebra
1 P a g e Mathematics Notes for Class 12 chapter 10. Vector Algebra A vector has direction and magnitude both but scalar has only magnitude. Magnitude of a vector a is denoted by a or a. It is non-negative
1. Equations for lines on the plane and planes in the space.
1. Equations for lines on the plane and planes in the space. 1.1. General implicit vector equation. (1) a r=α This equation defines a line in the plane and a plane in the 3-space. Here r is the radius-vector
A vector is a directed line segment used to represent a vector quantity.
Chapters and 6 Introduction to Vectors A vector quantity has direction and magnitude. There are many examples of vector quantities in the natural world, such as force, velocity, and acceleration. A vector
Geometric Camera Parameters
Geometric Camera Parameters What assumptions have we made so far? -All equations we have derived for far are written in the camera reference frames. -These equations are valid only when: () all distances
9 MATRICES AND TRANSFORMATIONS
9 MATRICES AND TRANSFORMATIONS Chapter 9 Matrices and Transformations Objectives After studying this chapter you should be able to handle matrix (and vector) algebra with confidence, and understand the
Lecture 1 Introduction 1. 1.1 Rectangular Coordinate Systems... 1. 1.2 Vectors... 3. Lecture 2 Length, Dot Product, Cross Product 5. 2.1 Length...
CONTENTS i Contents Lecture Introduction. Rectangular Coordinate Sstems..................... Vectors.................................. 3 Lecture Length, Dot Product, Cross Product 5. Length...................................
FURTHER VECTORS (MEI)
Mathematics Revision Guides Further Vectors (MEI) (column notation) Page of MK HOME TUITION Mathematics Revision Guides Level: AS / A Level - MEI OCR MEI: C FURTHER VECTORS (MEI) Version : Date: -9-7 Mathematics
The Dot and Cross Products
The Dot and Cross Products Two common operations involving vectors are the dot product and the cross product. Let two vectors =,, and =,, be given. The Dot Product The dot product of and is written and
Section 8.8. 1. The given line has equations. x = 3 + t(13 3) = 3 + 10t, y = 2 + t(3 + 2) = 2 + 5t, z = 7 + t( 8 7) = 7 15t.
. The given line has equations Section 8.8 x + t( ) + 0t, y + t( + ) + t, z 7 + t( 8 7) 7 t. The line meets the plane y 0 in the point (x, 0, z), where 0 + t, or t /. The corresponding values for x and
www.sakshieducation.com
LENGTH OF THE PERPENDICULAR FROM A POINT TO A STRAIGHT LINE AND DISTANCE BETWEEN TWO PAPALLEL LINES THEOREM The perpendicular distance from a point P(x 1, y 1 ) to the line ax + by + c 0 is ax1+ by1+ c
x1 x 2 x 3 y 1 y 2 y 3 x 1 y 2 x 2 y 1 0.
Cross product 1 Chapter 7 Cross product We are getting ready to study integration in several variables. Until now we have been doing only differential calculus. One outcome of this study will be our ability
Vector Math Computer Graphics Scott D. Anderson
Vector Math Computer Graphics Scott D. Anderson 1 Dot Product The notation v w means the dot product or scalar product or inner product of two vectors, v and w. In abstract mathematics, we can talk about
