12.5 Equations of Lines and Planes

Size: px
Start display at page:

Transcription

1 Instructor: Longfei Li Math 43 Lecture Notes.5 Equations of Lines and Planes What do we need to determine a line? D: a point on the line: P 0 (x 0, y 0 ) direction (slope): k 3D: a point on the line: P 0 (x 0, y 0, z 0 ) direction (a vector parallel the line): v Vector Equation of L: Proof: r = r 0 + tv P 0 (x 0, y 0, z 0 ) is a given (known) point on L, P (x, y, z) is an arbitrary point on L. r 0 and r are the position vectors of P 0 and P. a = P 0 P, then by the Triangle Law: Since a is parallel to v, v is a scalar multiple of a: r = r 0 + a a = tv, t R So r = r 0 + tv, t R Remark: r traces out the line: r 0 shifts us onto the line, tv moves us along the line(t > 0 to the same direction as v; t < 0 to the opposite direction to v)

2 Scalar Equations (parametric equations) x = x 0 + at; y = y 0 + bt; z = z 0 + ct, t R Proof: If we write the vectors into their components form and let v =< a, b, c >, then < x, y, z > =< x 0, y 0, z 0 > +t < a, b, c > =< x 0 + at, y 0 + bt, z 0 + ct > Thus, we have the scalar equations: x = x 0 + at; y = y 0 + bt; z = z 0 + ct. Example: Find a vector and parametric equations for the line that passes through the points A(,, 3) and B(4, 6, 8). The vector of the line: v = AB =< 3, 4, 5 > If we pick A(,, 3) as the given point on the line, then vector equation: r =<,, 3 > +t < 3, 4, 5 >=< + 3t, + 4t, 3 + 5t > parametric equations: x = + 3t, y = + 4t, z = 3 + 5t If we pick B(4, 6, 8) as the given point on the line, then vector equation: r =< 4, 6, 8 > +t < 3, 4, 5 >=< 4 + 3t, 6 + 4t, 8 + 5t > parametric equations: x = 4 + 3t, y = 6 + 4t, z = 8 + 5t We could also a scalar multiple of the vector v =< 6, 8, 0 >: vector equation: r =<,, 3 > +t < 6, 8, 0 >=< + 6t, + 8t, 3 + 0t > Remark: Equations are not unique! We can change the given point, choose a different parallel vector. Direction Numbers: If vector v =< a, b, c > is used as the direction of L, then a, b and c are called the direction numbers. Symmetric Equations: x x 0 = y y 0 = z z 0 a b c If one of a, b, c equals 0, we write the symmetric equations as: x x 0 a = z z 0, y = y 0, for instance, if b = 0 c Proof: The symmetric equations are obtained by eliminating t from the parametric equations: Hence, x = x 0 + at t = x x 0 a y = y 0 + bt t = y y 0 b z = z 0 + ct t = z z 0 c x x 0 a = y y 0 b = z z 0 c

3 Example: Find parametric and symmetric equations for the line passes through the point (5,, 3) and is parallel to i + 4j k. parametric equations: x = 5 + t, y = + 4t, z = 3 t symmetric equations: x 5 = y 4 = z 3 Line Segment: The line segment from r 0 to r is given by the vector equations: Proof: r(t) = ( t)r 0 + tr, 0 t If we choose v = r r 0, then the vector equation r(t) = r 0 + t(r r 0 ) r(t) = ( t)r 0 + tr, 0 t Remark: r(t) starts at r 0, ends at r and traces point between. Relations of lines in space: Intersect: pass through the same point. Parallel: have the same direction Skew: not parallel, don t intersect Example: Determine whether the lines L and L are parallel, intersecting, or skew: (a) L : x = + t, y = 3 + t, z = 5 + 3t; L : x = 3s, y = 6s, z = 5 9s Directions: v =<,, 3 >, v =< 3, 6, 9 >. We have v = 3v, scalar multiple parallel 3

4 (b) L : x = + t, y = + t, z = + t; L : x = 3s, y = s, z = 0 Directions: v =<,, >, v =< 3,, 0 >. Not scalar multiple Not parallel. Intersect? If so, for some t and s: + t = 3s + t = s + t = 0 Solve the first equations t =, s = 0. However, the third equation is not satisfied! Not intersecting. So L and L are skew lines. (c) L : x = y 3 = z 3, L : x 3 = y + 4 = z 3 7 : Directions: v =<,, 3 >, v =<, 3, 7 >. Not scalar multiple Not parallel. Intersect? The parametric equations are If intersect, for some t and s, we have L : x = + t, y = 3 t, z = 3t L : x = 3 + s, y = 4 + 3s, z = 7s + t = 3 + s 3 t = 4 + 3s 3t = 7s Solve the first two equations t =, s =. Check the third equation, it s satisfied! So the lines intersect when t =, s =, i.e., at the point (4,, 5). Planes What do we need to determine a plane? a point in the plane: P 0 (x 0, y 0 ) direction (a vector perpendicular to the plane): n Remark: The orthogonal vector n is called a normal vector. 4

5 Let P (x, y, z) be an arbitrary point in the plane, P 0 (x 0, y 0, z 0 ) is a given point in the plane, and n be a normal vector of plane, then n is orthogonal to r r 0, i.e., n (r r 0 ) = 0 Vector Equation of the Plane: n (r r 0 ) = 0 or n r = n r 0 Scalar Equation of the Plane: If n =< a, b, c >, then a(x x 0 ) + b(y y 0 ) + c(z z 0 ) = 0 Linear Equation of the Plane: where d = (ax 0 + by 0 + cz c ) ax + by + cz + d = 0 Recall: the intercepts are the intersections of the graph with the coordinate axes. Example: Find an equation of the plane through the point (, 4, ) with normal vector n =<, 3, 4 >. Find the intersepts and sketch the plane. (x ) + 3(y 4) + 4(z + ) = 0 x + 3y + 4z = The x intercepts is x = 6, the y intercepts is y = 4, and the z intercepts is z = 3. 5

6 Example: Find an equation of the plane that passes through the points P (3,, ), Q(5,, ) and R(, 4, 7). The vectors in the plane are a = P Q =<, 3, > and b = P R =<, 3, 6 > a b is orthogonal to both a and b, i j n = a b = 3 3 thus is orthogonal to the plane and can be taken as normal. k =< 8 3,, 6 3 >=<, 3, 3 > 6 So the equation of the plane is (x 3) 3(y ) + 3(z ) = 0 Parallel of Planes: Two planes are parallel if their normal vectors are parallel. The Angle between the planes: defined as the acute angle between the normal vectors. Example: Find the angle between the planes x + y + z = 0 and x y + 3z =. The normal vectors of the two planes are n =<,, > and n =<,, 3 > 6

7 If θ is the angle between the two planes, then n n +3 = = n n θ = arccos 7 4 cos θ = Example: Find the parametric equations for the line of intersection L of the planes x + y + z = and x y z =. The normal vectors of the planes are n =<,, > and n =<,, > Since the line L lies in both of the planes, it is to L is i n n = orthogonal to both n and n. Thus, the vector parallel j k =< 0,, > Pick a point on the line of the intersect: ( x+y+z = x y z = set z = 0, we have x + y =, x y = x = 3, y =. So the point ( 3,, 0) lies on L. So far we find the direction of L: < 0,, > and a given point ( 3,, 0) on the line, so the parametric equations are 3 x =, y = + t, z = t Distance: The distance D from a point P (x, y, z ) to the plane ax + by + cz + d = 0 is D= ax + by + cz + d a + b + c Proof: Let P0 (x0, y0, z0 ) be a point in the plane. Then the coordinates of P0 satisfies the plane equation: ax0 + by0 + cz0 + d = 0 d = (ax0 + by0 + cz0 ) 7

8 b = P 0 P =< x x 0, y y 0, z z 0 > From the equation of the plane, the normal vector is n =< a, b, c >. Thus, D = comp n b = n b n = a(x x 0 ) + b(y y 0 ) + c(z z 0 ) a + b + c = ax + by + cz (ax 0 + by 0 + cz 0 ) a + b + c = ax + by + cz + d a + b + c 8

1.5 Equations of Lines and Planes in 3-D

40 CHAPTER 1. VECTORS AND THE GEOMETRY OF SPACE Figure 1.16: Line through P 0 parallel to v 1.5 Equations of Lines and Planes in 3-D Recall that given a point P = (a, b, c), one can draw a vector from

Section 11.4: Equations of Lines and Planes

Section 11.4: Equations of Lines and Planes Definition: The line containing the point ( 0, 0, 0 ) and parallel to the vector v = A, B, C has parametric equations = 0 + At, = 0 + Bt, = 0 + Ct, where t R

Section 9.5: Equations of Lines and Planes

Lines in 3D Space Section 9.5: Equations of Lines and Planes Practice HW from Stewart Textbook (not to hand in) p. 673 # 3-5 odd, 2-37 odd, 4, 47 Consider the line L through the point P = ( x, y, ) that

Geometric description of the cross product of the vectors u and v. The cross product of two vectors is a vector! u x v is perpendicular to u and v

12.4 Cross Product Geometric description of the cross product of the vectors u and v The cross product of two vectors is a vector! u x v is perpendicular to u and v The length of u x v is uv u v sin The

9 Multiplication of Vectors: The Scalar or Dot Product

Arkansas Tech University MATH 934: Calculus III Dr. Marcel B Finan 9 Multiplication of Vectors: The Scalar or Dot Product Up to this point we have defined what vectors are and discussed basic notation

Section 13.5 Equations of Lines and Planes

Section 13.5 Equations of Lines and Planes Generalizing Linear Equations One of the main aspects of single variable calculus was approximating graphs of functions by lines - specifically, tangent lines.

Equations Involving Lines and Planes Standard equations for lines in space

Equations Involving Lines and Planes In this section we will collect various important formulas regarding equations of lines and planes in three dimensional space Reminder regarding notation: any quantity

Math 241, Exam 1 Information.

Math 241, Exam 1 Information. 9/24/12, LC 310, 11:15-12:05. Exam 1 will be based on: Sections 12.1-12.5, 14.1-14.3. The corresponding assigned homework problems (see http://www.math.sc.edu/ boylan/sccourses/241fa12/241.html)

Section 2.4: Equations of Lines and Planes

Section.4: Equations of Lines and Planes An equation of three variable F (x, y, z) 0 is called an equation of a surface S if For instance, (x 1, y 1, z 1 ) S if and only if F (x 1, y 1, z 1 ) 0. x + y

L 2 : x = s + 1, y = s, z = 4s + 4. 3. Suppose that C has coordinates (x, y, z). Then from the vector equality AC = BD, one has

The line L through the points A and B is parallel to the vector AB = 3, 2, and has parametric equations x = 3t + 2, y = 2t +, z = t Therefore, the intersection point of the line with the plane should satisfy:

Jim Lambers MAT 169 Fall Semester 2009-10 Lecture 25 Notes

Jim Lambers MAT 169 Fall Semester 009-10 Lecture 5 Notes These notes correspond to Section 10.5 in the text. Equations of Lines A line can be viewed, conceptually, as the set of all points in space that

LINES AND PLANES CHRIS JOHNSON

LINES AND PLANES CHRIS JOHNSON Abstract. In this lecture we derive the equations for lines and planes living in 3-space, as well as define the angle between two non-parallel planes, and determine the distance

Section 1.4. Lines, Planes, and Hyperplanes. The Calculus of Functions of Several Variables

The Calculus of Functions of Several Variables Section 1.4 Lines, Planes, Hyperplanes In this section we will add to our basic geometric understing of R n by studying lines planes. If we do this carefully,

10.5. Click here for answers. Click here for solutions. EQUATIONS OF LINES AND PLANES. 3x 4y 6z 9 4, 2, 5. x y z. z 2. x 2. y 1.

SECTION EQUATIONS OF LINES AND PLANES 1 EQUATIONS OF LINES AND PLANES A Click here for answers. S Click here for solutions. 1 Find a vector equation and parametric equations for the line passing through

= y y 0. = z z 0. (a) Find a parametric vector equation for L. (b) Find parametric (scalar) equations for L.

Math 21a Lines and lanes Spring, 2009 Lines in Space How can we express the equation(s) of a line through a point (x 0 ; y 0 ; z 0 ) and parallel to the vector u ha; b; ci? Many ways: as parametric (scalar)

1.3. DOT PRODUCT 19. 6. If θ is the angle (between 0 and π) between two non-zero vectors u and v,

1.3. DOT PRODUCT 19 1.3 Dot Product 1.3.1 Definitions and Properties The dot product is the first way to multiply two vectors. The definition we will give below may appear arbitrary. But it is not. It

Math 241 Lines and Planes (Solutions) x = 3 3t. z = 1 t. x = 5 + t. z = 7 + 3t

Math 241 Lines and Planes (Solutions) The equations for planes P 1, P 2 and P are P 1 : x 2y + z = 7 P 2 : x 4y + 5z = 6 P : (x 5) 2(y 6) + (z 7) = 0 The equations for lines L 1, L 2, L, L 4 and L 5 are

Determine whether the following lines intersect, are parallel, or skew. L 1 : x = 6t y = 1 + 9t z = 3t. x = 1 + 2s y = 4 3s z = s

Homework Solutions 5/20 10.5.17 Determine whether the following lines intersect, are parallel, or skew. L 1 : L 2 : x = 6t y = 1 + 9t z = 3t x = 1 + 2s y = 4 3s z = s A vector parallel to L 1 is 6, 9,

Lecture 14: Section 3.3

Lecture 14: Section 3.3 Shuanglin Shao October 23, 2013 Definition. Two nonzero vectors u and v in R n are said to be orthogonal (or perpendicular) if u v = 0. We will also agree that the zero vector in

CHAPTER FIVE. 5. Equations of Lines in R 3

118 CHAPTER FIVE 5. Equations of Lines in R 3 In this chapter it is going to be very important to distinguish clearly between points and vectors. Frequently in the past the distinction has only been a

Name Class. Date Section. Test Form A Chapter 11. Chapter 11 Test Bank 155

Chapter Test Bank 55 Test Form A Chapter Name Class Date Section. Find a unit vector in the direction of v if v is the vector from P,, 3 to Q,, 0. (a) 3i 3j 3k (b) i j k 3 i 3 j 3 k 3 i 3 j 3 k. Calculate

A vector is a directed line segment used to represent a vector quantity.

Chapters and 6 Introduction to Vectors A vector quantity has direction and magnitude. There are many examples of vector quantities in the natural world, such as force, velocity, and acceleration. A vector

Section 8.8. 1. The given line has equations. x = 3 + t(13 3) = 3 + 10t, y = 2 + t(3 + 2) = 2 + 5t, z = 7 + t( 8 7) = 7 15t.

. The given line has equations Section 8.8 x + t( ) + 0t, y + t( + ) + t, z 7 + t( 8 7) 7 t. The line meets the plane y 0 in the point (x, 0, z), where 0 + t, or t /. The corresponding values for x and

Solutions to old Exam 1 problems

Solutions to old Exam 1 problems Hi students! I am putting this old version of my review for the first midterm review, place and time to be announced. Check for updates on the web site as to which sections

Equations of Lines and Planes

Calculus 3 Lia Vas Equations of Lines and Planes Planes. A plane is uniquely determined by a point in it and a vector perpendicular to it. An equation of the plane passing the point (x 0, y 0, z 0 ) perpendicular

2.1 Three Dimensional Curves and Surfaces

. Three Dimensional Curves and Surfaces.. Parametric Equation of a Line An line in two- or three-dimensional space can be uniquel specified b a point on the line and a vector parallel to the line. The

JUST THE MATHS UNIT NUMBER 8.5. VECTORS 5 (Vector equations of straight lines) A.J.Hobson

JUST THE MATHS UNIT NUMBER 8.5 VECTORS 5 (Vector equations of straight lines) by A.J.Hobson 8.5.1 Introduction 8.5. The straight line passing through a given point and parallel to a given vector 8.5.3

THREE DIMENSIONAL GEOMETRY

Chapter 8 THREE DIMENSIONAL GEOMETRY 8.1 Introduction In this chapter we present a vector algebra approach to three dimensional geometry. The aim is to present standard properties of lines and planes,

Lines and Planes in R 3

.3 Lines and Planes in R 3 P. Daniger Lines in R 3 We wish to represent lines in R 3. Note that a line may be described in two different ways: By specifying two points on the line. By specifying one point

Exam 1 Sample Question SOLUTIONS. y = 2x

Exam Sample Question SOLUTIONS. Eliminate the parameter to find a Cartesian equation for the curve: x e t, y e t. SOLUTION: You might look at the coordinates and notice that If you don t see it, we can

FURTHER VECTORS (MEI)

Mathematics Revision Guides Further Vectors (MEI) (column notation) Page of MK HOME TUITION Mathematics Revision Guides Level: AS / A Level - MEI OCR MEI: C FURTHER VECTORS (MEI) Version : Date: -9-7 Mathematics

MAT 1341: REVIEW II SANGHOON BAEK

MAT 1341: REVIEW II SANGHOON BAEK 1. Projections and Cross Product 1.1. Projections. Definition 1.1. Given a vector u, the rectangular (or perpendicular or orthogonal) components are two vectors u 1 and

LINES AND PLANES IN R 3

LINES AND PLANES IN R 3 In this handout we will summarize the properties of the dot product and cross product and use them to present arious descriptions of lines and planes in three dimensional space.

Chapter 4.1 Parallel Lines and Planes

Chapter 4.1 Parallel Lines and Planes Expand on our definition of parallel lines Introduce the idea of parallel planes. What do we recall about parallel lines? In geometry, we have to be concerned about

1 Chapter 13. VECTORS IN THREE DIMENSIONAL SPACE Let s begin with some names and notation for things: R is the set (collection) of real numbers. We write x R to mean that x is a real number. A real number

(a) We have x = 3 + 2t, y = 2 t, z = 6 so solving for t we get the symmetric equations. x 3 2. = 2 y, z = 6. t 2 2t + 1 = 0,

Name: Solutions to Practice Final. Consider the line r(t) = 3 + t, t, 6. (a) Find symmetric equations for this line. (b) Find the point where the first line r(t) intersects the surface z = x + y. (a) We

MA261-A Calculus III 2006 Fall Homework 3 Solutions Due 9/22/2006 8:00AM

MA6-A Calculus III 6 Fall Homework Solutions Due 9//6 :AM 9. # Find the parametric euation and smmetric euation for the line of intersection of the planes + + z = and + z =. To write down a line euation,

Review Sheet for Test 1

Review Sheet for Test 1 Math 261-00 2 6 2004 These problems are provided to help you study. The presence of a problem on this handout does not imply that there will be a similar problem on the test. And

5.3 The Cross Product in R 3

53 The Cross Product in R 3 Definition 531 Let u = [u 1, u 2, u 3 ] and v = [v 1, v 2, v 3 ] Then the vector given by [u 2 v 3 u 3 v 2, u 3 v 1 u 1 v 3, u 1 v 2 u 2 v 1 ] is called the cross product (or

MATH 304 Linear Algebra Lecture 9: Subspaces of vector spaces (continued). Span. Spanning set.

MATH 304 Linear Algebra Lecture 9: Subspaces of vector spaces (continued). Span. Spanning set. Vector space A vector space is a set V equipped with two operations, addition V V (x,y) x + y V and scalar

Problem Set 5 Due: In class Thursday, Oct. 18 Late papers will be accepted until 1:00 PM Friday.

Math 312, Fall 2012 Jerry L. Kazdan Problem Set 5 Due: In class Thursday, Oct. 18 Late papers will be accepted until 1:00 PM Friday. In addition to the problems below, you should also know how to solve

Section 1.1. Introduction to R n

The Calculus of Functions of Several Variables Section. Introduction to R n Calculus is the study of functional relationships and how related quantities change with each other. In your first exposure to

Example SECTION 13-1. X-AXIS - the horizontal number line. Y-AXIS - the vertical number line ORIGIN - the point where the x-axis and y-axis cross

CHAPTER 13 SECTION 13-1 Geometry and Algebra The Distance Formula COORDINATE PLANE consists of two perpendicular number lines, dividing the plane into four regions called quadrants X-AXIS - the horizontal

Two vectors are equal if they have the same length and direction. They do not

Vectors define vectors Some physical quantities, such as temperature, length, and mass, can be specified by a single number called a scalar. Other physical quantities, such as force and velocity, must

Recall that two vectors in are perpendicular or orthogonal provided that their dot

Orthogonal Complements and Projections Recall that two vectors in are perpendicular or orthogonal provided that their dot product vanishes That is, if and only if Example 1 The vectors in are orthogonal

BALTIC OLYMPIAD IN INFORMATICS Stockholm, April 18-22, 2009 Page 1 of?? ENG rectangle. Rectangle

Page 1 of?? ENG rectangle Rectangle Spoiler Solution of SQUARE For start, let s solve a similar looking easier task: find the area of the largest square. All we have to do is pick two points A and B and

1. Equations for lines on the plane and planes in the space.

1. Equations for lines on the plane and planes in the space. 1.1. General implicit vector equation. (1) a r=α This equation defines a line in the plane and a plane in the 3-space. Here r is the radius-vector

Section 12.6: Directional Derivatives and the Gradient Vector

Section 26: Directional Derivatives and the Gradient Vector Recall that if f is a differentiable function of x and y and z = f(x, y), then the partial derivatives f x (x, y) and f y (x, y) give the rate

1.(6pts) Find symmetric equations of the line L passing through the point (2, 5, 1) and perpendicular to the plane x + 3y z = 9.

.(6pts Find symmetric equations of the line L passing through the point (, 5, and perpendicular to the plane x + 3y z = 9. (a x = y + 5 3 = z (b x (c (x = ( 5(y 3 = z + (d x (e (x + 3(y 3 (z = 9 = y 3

Lecture 9: Lines. m = y 2 y 1 x 2 x 1

Lecture 9: Lines If we have two distinct points in the Cartesian plane, there is a unique line which passes through the two points. We can construct it by joining the points with a straight edge and extending

Dot product and vector projections (Sect. 12.3) There are two main ways to introduce the dot product

Dot product and vector projections (Sect. 12.3) Two definitions for the dot product. Geometric definition of dot product. Orthogonal vectors. Dot product and orthogonal projections. Properties of the dot

a.) Write the line 2x - 4y = 9 into slope intercept form b.) Find the slope of the line parallel to part a

Bellwork a.) Write the line 2x - 4y = 9 into slope intercept form b.) Find the slope of the line parallel to part a c.) Find the slope of the line perpendicular to part b or a May 8 7:30 AM 1 Day 1 I.

Plotting Lines in Mathematica

Lines.nb 1 Plotting Lines in Mathematica Copright 199, 1997, 1 b James F. Hurle, Universit of Connecticut, Department of Mathematics, 196 Auditorium Road Unit 39, Storrs CT 669-39. All rights reserved.

Geometry 1. Unit 3: Perpendicular and Parallel Lines

Geometry 1 Unit 3: Perpendicular and Parallel Lines Geometry 1 Unit 3 3.1 Lines and Angles Lines and Angles Parallel Lines Parallel lines are lines that are coplanar and do not intersect. Some examples

CIRCLE COORDINATE GEOMETRY

CIRCLE COORDINATE GEOMETRY (EXAM QUESTIONS) Question 1 (**) A circle has equation x + y = 2x + 8 Determine the radius and the coordinates of the centre of the circle. r = 3, ( 1,0 ) Question 2 (**) A circle

Math 215 HW #6 Solutions

Math 5 HW #6 Solutions Problem 34 Show that x y is orthogonal to x + y if and only if x = y Proof First, suppose x y is orthogonal to x + y Then since x, y = y, x In other words, = x y, x + y = (x y) T

Geometry of Vectors. 1 Cartesian Coordinates. Carlo Tomasi

Geometry of Vectors Carlo Tomasi This note explores the geometric meaning of norm, inner product, orthogonality, and projection for vectors. For vectors in three-dimensional space, we also examine the

Contents. 2 Lines and Circles 3 2.1 Cartesian Coordinates... 3 2.2 Distance and Midpoint Formulas... 3 2.3 Lines... 3 2.4 Circles...

Contents Lines and Circles 3.1 Cartesian Coordinates.......................... 3. Distance and Midpoint Formulas.................... 3.3 Lines.................................. 3.4 Circles..................................

discuss how to describe points, lines and planes in 3 space.

Chapter 2 3 Space: lines and planes In this chapter we discuss how to describe points, lines and planes in 3 space. introduce the language of vectors. discuss various matters concerning the relative position

5 VECTOR GEOMETRY. 5.0 Introduction. Objectives. Activity 1

5 VECTOR GEOMETRY Chapter 5 Vector Geometry Objectives After studying this chapter you should be able to find and use the vector equation of a straight line; be able to find the equation of a plane in

Lines and Planes 1. x(t) = at + b y(t) = ct + d

1 Lines in the Plane Lines and Planes 1 Ever line of points L in R 2 can be epressed as the solution set for an equation of the form A + B = C. The equation is not unique for if we multipl both sides b

is in plane V. However, it may be more convenient to introduce a plane coordinate system in V.

.4 COORDINATES EXAMPLE Let V be the plane in R with equation x +2x 2 +x 0, a two-dimensional subspace of R. We can describe a vector in this plane by its spatial (D)coordinates; for example, vector x 5

MATH 275: Calculus III. Lecture Notes by Angel V. Kumchev

MATH 275: Calculus III Lecture Notes by Angel V. Kumchev Contents Preface.............................................. iii Lecture 1. Three-Dimensional Coordinate Systems..................... 1 Lecture

ISOMETRIES OF R n KEITH CONRAD

ISOMETRIES OF R n KEITH CONRAD 1. Introduction An isometry of R n is a function h: R n R n that preserves the distance between vectors: h(v) h(w) = v w for all v and w in R n, where (x 1,..., x n ) = x

A QUICK GUIDE TO THE FORMULAS OF MULTIVARIABLE CALCULUS

A QUIK GUIDE TO THE FOMULAS OF MULTIVAIABLE ALULUS ontents 1. Analytic Geometry 2 1.1. Definition of a Vector 2 1.2. Scalar Product 2 1.3. Properties of the Scalar Product 2 1.4. Length and Unit Vectors

Numerical Analysis Lecture Notes

Numerical Analysis Lecture Notes Peter J. Olver 5. Inner Products and Norms The norm of a vector is a measure of its size. Besides the familiar Euclidean norm based on the dot product, there are a number

Mathematics 205 HWK 6 Solutions Section 13.3 p627. Note: Remember that boldface is being used here, rather than overhead arrows, to indicate vectors.

Mathematics 205 HWK 6 Solutions Section 13.3 p627 Note: Remember that boldface is being used here, rather than overhead arrows, to indicate vectors. Problem 5, 13.3, p627. Given a = 2j + k or a = (0,2,

Algebra and Geometry Review (61 topics, no due date)

Course Name: Math 112 Credit Exam LA Tech University Course Code: ALEKS Course: Trigonometry Instructor: Course Dates: Course Content: 159 topics Algebra and Geometry Review (61 topics, no due date) Properties

LINEAR ALGEBRA W W L CHEN

LINEAR ALGEBRA W W L CHEN c W W L Chen, 1982, 2008. This chapter originates from material used by author at Imperial College, University of London, between 1981 and 1990. It is available free to all individuals,

Linear algebra and the geometry of quadratic equations. Similarity transformations and orthogonal matrices

MATH 30 Differential Equations Spring 006 Linear algebra and the geometry of quadratic equations Similarity transformations and orthogonal matrices First, some things to recall from linear algebra Two

Orthogonal Projections

Orthogonal Projections and Reflections (with exercises) by D. Klain Version.. Corrections and comments are welcome! Orthogonal Projections Let X,..., X k be a family of linearly independent (column) vectors

Geometry: Unit 1 Vocabulary TERM DEFINITION GEOMETRIC FIGURE. Cannot be defined by using other figures.

Geometry: Unit 1 Vocabulary 1.1 Undefined terms Cannot be defined by using other figures. Point A specific location. It has no dimension and is represented by a dot. Line Plane A connected straight path.

Solutions to Math 51 First Exam January 29, 2015

Solutions to Math 5 First Exam January 29, 25. ( points) (a) Complete the following sentence: A set of vectors {v,..., v k } is defined to be linearly dependent if (2 points) there exist c,... c k R, not

Vector Algebra CHAPTER 13. Ü13.1. Basic Concepts

CHAPTER 13 ector Algebra Ü13.1. Basic Concepts A vector in the plane or in space is an arrow: it is determined by its length, denoted and its direction. Two arrows represent the same vector if they have

Section 1.1 Linear Equations: Slope and Equations of Lines

Section. Linear Equations: Slope and Equations of Lines Slope The measure of the steepness of a line is called the slope of the line. It is the amount of change in y, the rise, divided by the amount of

13.4 THE CROSS PRODUCT

710 Chapter Thirteen A FUNDAMENTAL TOOL: VECTORS 62. Use the following steps and the results of Problems 59 60 to show (without trigonometry) that the geometric and algebraic definitions of the dot product

Selected practice exam solutions (part 5, item 2) (MAT 360)

Selected practice exam solutions (part 5, item ) (MAT 360) Harder 8,91,9,94(smaller should be replaced by greater )95,103,109,140,160,(178,179,180,181 this is really one problem),188,193,194,195 8. On

The Essentials of CAGD

The Essentials of CAGD Chapter 2: Lines and Planes Gerald Farin & Dianne Hansford CRC Press, Taylor & Francis Group, An A K Peters Book www.farinhansford.com/books/essentials-cagd c 2000 Farin & Hansford

42 CHAPTER 1. VECTORS AND THE GEOMETRY OF SPACE. Figure 1.18: Parabola y = 2x 2. 1.6.1 Brief review of Conic Sections

2 CHAPTER 1. VECTORS AND THE GEOMETRY OF SPACE Figure 1.18: Parabola y = 2 1.6 Quadric Surfaces 1.6.1 Brief review of Conic Sections You may need to review conic sections for this to make more sense. You

www.sakshieducation.com

LENGTH OF THE PERPENDICULAR FROM A POINT TO A STRAIGHT LINE AND DISTANCE BETWEEN TWO PAPALLEL LINES THEOREM The perpendicular distance from a point P(x 1, y 1 ) to the line ax + by + c 0 is ax1+ by1+ c

Section 1.7 22 Continued

Section 1.5 23 A homogeneous equation is always consistent. TRUE - The trivial solution is always a solution. The equation Ax = 0 gives an explicit descriptions of its solution set. FALSE - The equation

Circle Name: Radius: Diameter: Chord: Secant:

12.1: Tangent Lines Congruent Circles: circles that have the same radius length Diagram of Examples Center of Circle: Circle Name: Radius: Diameter: Chord: Secant: Tangent to A Circle: a line in the plane

Notes from February 11

Notes from February 11 Math 130 Course web site: www.courses.fas.harvard.edu/5811 Two lemmas Before proving the theorem which was stated at the end of class on February 8, we begin with two lemmas. The

Section 11.1: Vectors in the Plane. Suggested Problems: 1, 5, 9, 17, 23, 25-37, 40, 42, 44, 45, 47, 50

Section 11.1: Vectors in the Plane Page 779 Suggested Problems: 1, 5, 9, 17, 3, 5-37, 40, 4, 44, 45, 47, 50 Determine whether the following vectors a and b are perpendicular. 5) a = 6, 0, b = 0, 7 Recall

Solving Equations Involving Parallel and Perpendicular Lines Examples

Solving Equations Involving Parallel and Perpendicular Lines Examples. The graphs of y = x, y = x, and y = x + are lines that have the same slope. They are parallel lines. Definition of Parallel Lines

Coordinate Plane, Slope, and Lines Long-Term Memory Review Review 1

Review. What does slope of a line mean?. How do you find the slope of a line? 4. Plot and label the points A (3, ) and B (, ). a. From point B to point A, by how much does the y-value change? b. From point

α = u v. In other words, Orthogonal Projection

Orthogonal Projection Given any nonzero vector v, it is possible to decompose an arbitrary vector u into a component that points in the direction of v and one that points in a direction orthogonal to v

Lecture 8 : Coordinate Geometry. The coordinate plane The points on a line can be referenced if we choose an origin and a unit of 20

Lecture 8 : Coordinate Geometry The coordinate plane The points on a line can be referenced if we choose an origin and a unit of 0 distance on the axis and give each point an identity on the corresponding

Mechanics lecture 7 Moment of a force, torque, equilibrium of a body

G.1 EE1.el3 (EEE1023): Electronics III Mechanics lecture 7 Moment of a force, torque, equilibrium of a body Dr Philip Jackson http://www.ee.surrey.ac.uk/teaching/courses/ee1.el3/ G.2 Moments, torque and

Definition: A vector is a directed line segment that has and. Each vector has an initial point and a terminal point.

6.1 Vectors in the Plane PreCalculus 6.1 VECTORS IN THE PLANE Learning Targets: 1. Find the component form and the magnitude of a vector.. Perform addition and scalar multiplication of two vectors. 3.

8-3 Dot Products and Vector Projections

8-3 Dot Products and Vector Projections Find the dot product of u and v Then determine if u and v are orthogonal 1u =, u and v are not orthogonal 2u = 3u =, u and v are not orthogonal 6u = 11i + 7j; v

Chapter 19. General Matrices. An n m matrix is an array. a 11 a 12 a 1m a 21 a 22 a 2m A = a n1 a n2 a nm. The matrix A has n row vectors

Chapter 9. General Matrices An n m matrix is an array a a a m a a a m... = [a ij]. a n a n a nm The matrix A has n row vectors and m column vectors row i (A) = [a i, a i,..., a im ] R m a j a j a nj col

i=(1,0), j=(0,1) in R 2 i=(1,0,0), j=(0,1,0), k=(0,0,1) in R 3 e 1 =(1,0,..,0), e 2 =(0,1,,0),,e n =(0,0,,1) in R n.

Length, norm, magnitude of a vector v=(v 1,,v n ) is v = (v 12 +v 22 + +v n2 ) 1/2. Examples v=(1,1,,1) v =n 1/2. Unit vectors u=v/ v corresponds to directions. Standard unit vectors i=(1,0), j=(0,1) in

Cross product and determinants (Sect. 12.4) Two main ways to introduce the cross product

Cross product and determinants (Sect. 12.4) Two main ways to introduce the cross product Geometrical definition Properties Expression in components. Definition in components Properties Geometrical expression.

LINEAR FUNCTIONS OF 2 VARIABLES

CHAPTER 4: LINEAR FUNCTIONS OF 2 VARIABLES 4.1 RATES OF CHANGES IN DIFFERENT DIRECTIONS From Precalculus, we know that is a linear function if the rate of change of the function is constant. I.e., for

Vector Notation: AB represents the vector from point A to point B on a graph. The vector can be computed by B A.

1 Linear Transformations Prepared by: Robin Michelle King A transformation of an object is a change in position or dimension (or both) of the object. The resulting object after the transformation is called

EQUATIONS and INEQUALITIES

EQUATIONS and INEQUALITIES Linear Equations and Slope 1. Slope a. Calculate the slope of a line given two points b. Calculate the slope of a line parallel to a given line. c. Calculate the slope of a line

C relative to O being abc,, respectively, then b a c.

2 EP-Program - Strisuksa School - Roi-et Math : Vectors Dr.Wattana Toutip - Department of Mathematics Khon Kaen University 200 :Wattana Toutip wattou@kku.ac.th http://home.kku.ac.th/wattou 2. Vectors A