2.1 Three Dimensional Curves and Surfaces
|
|
|
- Rosanna Preston
- 10 years ago
- Views:
Transcription
1 . Three Dimensional Curves and Surfaces.. Parametric Equation of a Line An line in two- or three-dimensional space can be uniquel specified b a point on the line and a vector parallel to the line. The line then is the line parallel to the vector v = (a, b, c) passing through the point P (,, ). In particular, if we view the vector as having its initial point at P, then we can move awa from P along the line b adding multiples of v. In other L.5. P,,.5. v a,b,c Figure : Parametric equation of a line. words, we can move tv along the line. In other words, the position of point Q(,, ) on the line is given b (,, ) = (,, ) + t(a, b, c) = ( + at, + bt, + ct). () This gives us the parametric equations of a line in 3-space for a line passing through P (,, ) and parallel to v = ai + bj + ck : = + at, = + bt, = + ct. ()
2 Here t is the parameter that determines how far along the line ou have moved. Eample: Find the parametric equation of the line passing through P (, 3, ), parallel to i j + 3k. Solution: The line is given b parametric equations = + t, = 3 t, = + 3t. Note that these lines are infinite. If we want onl a line segment we must restrict the parameter. Thus, the line given in the eample can be restricted to the line segment joining P (, 3, ) to Q(3,, 5) if we restrict t to the interval t. Finall, two lines that are not parallel and do not cross are called skew lines.... Representing the parametric equation using vectors If instead of an initial point P (,, ), we define a position vector r = (,, ) to give an initial position on a line and r = (,, ) for an point on the line parallel to v = (a, b, c) through P, then equation () can be represented b the vector equation of a line as r = r + tv. (3) This is shown in Figure. Note that all these vectors are defined with initial points at the origin. This is entirel equivalent to the equations in (), but the notation is obviousl briefer, and the interpretation is purel in terms of vectors. If ou need to think about this more intuitivel, think of r as ordinar position vectors in space, r as a velocit vector and t as time. This then looks like one of the usual equations for linear motion in vector form. However, we can use this more generall for an parameter t and appropriate vector v. Let s return to the previous eample: Eample: Find the vector equation of the line passing through P (, 3, ), parallel to i j + 3k.. Solution: The initial position is given b the vector r = (, 3, ),
3 ..5 L P,..5 r r v t v Figure : Vector equation of a line r = r + vt. and the vector equation is r = (, 3, )+t(,, 3) = (+t, 3 t, +3t) = (+t)i+(3 t)j+(+3t)k. It is important to be comfortable with all these was of writing parametric equations of a line... Planes The first tpe of planes we might think of are the coordinate planes. The -plane, for eample, is the set of a and with =. B etension, we can imagine planes parallel to the coordinate planes. For eample, the plane = a is the set of all and such that = a. These tpes of planes are shown in Figure 3. 3
4 a b c Figure 3: Planes parallel to the coordinate aes.... Planes specified b a point and normal vector An plane in 3-space can be uniquel determined b giving a point on the plane and a vector perpendicular to the plane, called a normal vector. Suppose we want to find an equation of the plane passing through P (,, ) and perpendicular to n = (a, b, c). Let us define the vector r = (,, ) pointing to P, and r = (,, ) pointing to another point Q. Since n is perpendicular to the plane, n r = n r =, and therefore which in component form is written which results in the equation n (r r ) =, (4) (a, b, c) (,, ) =, (5) a( ) + b( ) + c( ) =. (6) This is known as the point-normal form of the equation of a plane. Equation (4) is the vector form of this equation. Eample: Find the equation of the plane passing though (,, ) and with normal vector n = (, 3, ). Solution: We use equation (6) to give us ( ) + 3( ) + ( + ) =, 4
5 which can be simplified to =. In fact, this final form can be generalised to a + b + c + d =, (7) which is the equation with graph that is a plane with n = (a, b, c) as a normal. This is called the general form of the equation of a plane. d is determined b knowing a point that lies in the plane and substituting into the equation to find d. Other was to determine a plane are a point and two vectors parallel to the plane, or three points in the plane. Note that these allow us to find a normal vector and so the equation of the plane. The cross-product of two vectors in the plane will give a vector normal to the plane. Three points P, P and P 3 allow us to define two vectors P P and P P 3, which again allow us to find the normal vector.... Intersecting planes Two distinct planes have an acute angle of intersection, θ π/. The angle is the same as either the angle between n and n or between n and n depending on the direction of the normal vectors. However, in either case the angle is given b cos θ = n n n n. (8) The absolute value ensures that regardless of the sign of the normal vectors we alwas have an acute angle. Eample: Find the angle between the planes + = 3, =. Solution: The normal vectors are given b n = (,, ) and n = (, 4, 4), and the angle is found from cos θ = = 8 (3)(6) = 4 9, 5
6 n n. Θ 5 Θ Figure 4: Intersecting planes. which gives the angle θ = cos 4 9 =.4 rad = 63.6o....3 Distance problems involving planes There are three distance problems we will be concerned with: the distance between a point and a plane; the distance between two parallel planes; find the distance between two skew lines. Theorem: The distance D between a point P (,, ) and the plane a + b + c + d = is D = a + b + c + d a + b + c. (9) Proof: Let Q(,, ) be a point in the plane, and n = (a, b, c) the normal vector with its initial point is at Q. Consider Figure 5. The distance D is equal to the length of the orthogonal projection of QP onto n. Therefore, recalling proj b v = v b b b, () 6
7 P,, proj n QP D Q,, Figure 5: Projection onto normal vector: distance from plane. we get However, we can write D = proj n QP = QP n n QP = (,, ) QP na( ) + b( ) + c( ), n = QP n. () n () and which together give us n = a + b + c, (3) D = a( ) + b( ) + c( ) a + b + c. (4) Moreover, since Q lies in the plane, it satisfies the equation a + b + c + d =, (5) which allows us to find d, d = a b c, (6) and therefore we find the result. 7
8 Eample: Find the distance between the point P (4, 4, ) and the plane =. Solution: Using () we get D = ()(4) + ( )(4) + (4)() = 6 6 =. (7) To compute the distance between two parallel planes, compute the distance between one plane and an point in the other plane. To find the distance between skew lines, define two parallel planes each of which contains one of the skew lines. Then the distance between the planes gives the distance between the skew lines. Eample: Find the distance between the skew lines L : = + 4t = 5 4t, = + 5t, L : = + 8t = 4 3t, = 5 + t. Solution: Let P and P be parallel planes containing L and L respectivel. We can find a point on each line and hence in each plane b setting t =, giving Q (, 5, ) and Q (, 4, 5), see Figure 6. Let s use Q and find the L Q D L Q Figure 6: Distance between skew lines. equation of the plane P. Since the planes are parallel, the vectors used to define the parametric equations of the lines u = (4, 4, 5) and u = (8, 3, ) are both parallel to P. Hence i j k n = u u = = i + 36j + k, 8 3 8
9 is normal to P and P. With this normal vector and the point Q, we find the equation of P : (c ) + 36( 4) + ( 5) =, which can be written in the general form =. Therefore the distance from P to the point Q (, 5, ) is D = ()() + (36)(5) + ()( ) = 95 87, which in turn is the distance from L to L, since the lie in the parallel planes...3 Quadric Surfaces The generalisation to the general quadratic equation?? which from which conic sections were derived in -space is the second-degree equation in, and, A + B + C + D + E + F + G + H + Ik + J =. (8) The graphs of this famil of equations are called the quadric surfaces. There are si common tpes of quadrics,. Ellipsoid:. Hperboloid of One Sheet: 3. Hperboloid of Two Sheets: a + b + c = a + b c = c a b = 4. Elliptic Cone: = a + b 5. Elliptic Paraboloid: = a + b (9) 6. Hperbolic Paraboloid: = b a where we assume that a, b, c >. These are shown in Figure 7. The have the following traces 9
10 . Ellipsoid: Traces in the coordinate planes are ellipses.. Hperboloid of One Sheet: The trace in the -plane are ellipses, and traces in the - and -planes are hperbolas. 3. Hperboloid of Two Sheets: There is no trace in the -plane, although the traces in planes parallel to the -plane are ellipses provided there is a trace, and traces in the - and -planes are hperbolas. 4. Elliptic Cone: The trace in the -plane is a point and in planes parallel to the -plane the traces are ellipses, and traces in the - and planes are pairs of intersecting lines. 5. Elliptic Paraboloid: The trace in the -plane is a point and in planes parallel to and above the -plane the traces are ellipses, and traces in the - and -planes are parabolas. 6. Hperbolic Paraboloid: The trace in the -plane is a pair of intersecting lines, and traces in planes parallel to the -plane are hperbolas, which open in the -direction when above the -plane and open in the - direction when below the -plane. Traces in the - and -planes are parabolas. These of course can also appear in other orientations along different coordinate aes, or indeed with cross-product terms which would result in other orientations. If the elliptic cross-section of an elliptic cone or elliptic paraboloid is circular the are called a circular cone and a circular paraboloid respectivel. Of course an ellipsoid with all the cross-sections circular is a sphere, i.e. a = b = c. You are not epected to accuratel draw an of these surfaces. If asked for a sketch, draw the traces on the planes, and join these to give a rough idea of the shape. As with the conic sections we can translate a quadric surface b moving awa from the origin to (a, b, c), which will result in the change (,, ) ( a, b, c) in the equations for the surfaces. However, this will not be required for this course.
11 Figure 7: Quadric surfaces.
12 ..4 Clindrical and Spherical Coordinates We have alread met polar coordinates in -space. Now we introduce two coordinate sstems that are often useful when rectangular coordinates are awkward in 3-space. Clindrical coordinates (ρ, θ, ): In terms of clindrical coordinates the rectangular coordinates are written = ρ cos θ, = ρ sin θ,, () where ρ <, θ < π. This is shown in Figure 8 If we wish to go Θ Ρ Figure 8: Clindrical coordinates (ρ, θ, φ). from rectangular to clindrical coordinates directl, we can use the relations ρ = +, tan θ =, =. () Spherical coordinates: In terms of spherical coordinates the rectangular coordinates are written = ρ sin φ cos θ, = ρ sin φ sin θ, = ρ cos φ, () where ρ <, θ < π and φ π. Figure 9 shows spherical coordinates. If we wish to go from rectangular to spherical coordinates directl,
13 Ρ Φ.5 Θ Figure 9: Spherical coordinates. we can use the relations ρ = + +, tan θ =, cos φ = + +. (3) Eample: Change + + = 9 to spherical polar coordinates. Solution: The coordinates for this surface (a sphere) are for ρ = 3 and so = 3 sin φ cos θ, = 3 sin φ sin θ, = 3 cos φ, (4) where θ and φ are the parameters. 3
Name Class. Date Section. Test Form A Chapter 11. Chapter 11 Test Bank 155
Chapter Test Bank 55 Test Form A Chapter Name Class Date Section. Find a unit vector in the direction of v if v is the vector from P,, 3 to Q,, 0. (a) 3i 3j 3k (b) i j k 3 i 3 j 3 k 3 i 3 j 3 k. Calculate
Section 11.4: Equations of Lines and Planes
Section 11.4: Equations of Lines and Planes Definition: The line containing the point ( 0, 0, 0 ) and parallel to the vector v = A, B, C has parametric equations = 0 + At, = 0 + Bt, = 0 + Ct, where t R
MA261-A Calculus III 2006 Fall Homework 3 Solutions Due 9/22/2006 8:00AM
MA6-A Calculus III 6 Fall Homework Solutions Due 9//6 :AM 9. # Find the parametric euation and smmetric euation for the line of intersection of the planes + + z = and + z =. To write down a line euation,
42 CHAPTER 1. VECTORS AND THE GEOMETRY OF SPACE. Figure 1.18: Parabola y = 2x 2. 1.6.1 Brief review of Conic Sections
2 CHAPTER 1. VECTORS AND THE GEOMETRY OF SPACE Figure 1.18: Parabola y = 2 1.6 Quadric Surfaces 1.6.1 Brief review of Conic Sections You may need to review conic sections for this to make more sense. You
12.5 Equations of Lines and Planes
Instructor: Longfei Li Math 43 Lecture Notes.5 Equations of Lines and Planes What do we need to determine a line? D: a point on the line: P 0 (x 0, y 0 ) direction (slope): k 3D: a point on the line: P
Lecture 1 Introduction 1. 1.1 Rectangular Coordinate Systems... 1. 1.2 Vectors... 3. Lecture 2 Length, Dot Product, Cross Product 5. 2.1 Length...
CONTENTS i Contents Lecture Introduction. Rectangular Coordinate Sstems..................... Vectors.................................. 3 Lecture Length, Dot Product, Cross Product 5. Length...................................
MAT 1341: REVIEW II SANGHOON BAEK
MAT 1341: REVIEW II SANGHOON BAEK 1. Projections and Cross Product 1.1. Projections. Definition 1.1. Given a vector u, the rectangular (or perpendicular or orthogonal) components are two vectors u 1 and
Determine whether the following lines intersect, are parallel, or skew. L 1 : x = 6t y = 1 + 9t z = 3t. x = 1 + 2s y = 4 3s z = s
Homework Solutions 5/20 10.5.17 Determine whether the following lines intersect, are parallel, or skew. L 1 : L 2 : x = 6t y = 1 + 9t z = 3t x = 1 + 2s y = 4 3s z = s A vector parallel to L 1 is 6, 9,
Solutions to old Exam 1 problems
Solutions to old Exam 1 problems Hi students! I am putting this old version of my review for the first midterm review, place and time to be announced. Check for updates on the web site as to which sections
Equations Involving Lines and Planes Standard equations for lines in space
Equations Involving Lines and Planes In this section we will collect various important formulas regarding equations of lines and planes in three dimensional space Reminder regarding notation: any quantity
Math 241, Exam 1 Information.
Math 241, Exam 1 Information. 9/24/12, LC 310, 11:15-12:05. Exam 1 will be based on: Sections 12.1-12.5, 14.1-14.3. The corresponding assigned homework problems (see http://www.math.sc.edu/ boylan/sccourses/241fa12/241.html)
LINEAR FUNCTIONS OF 2 VARIABLES
CHAPTER 4: LINEAR FUNCTIONS OF 2 VARIABLES 4.1 RATES OF CHANGES IN DIFFERENT DIRECTIONS From Precalculus, we know that is a linear function if the rate of change of the function is constant. I.e., for
Section 9.5: Equations of Lines and Planes
Lines in 3D Space Section 9.5: Equations of Lines and Planes Practice HW from Stewart Textbook (not to hand in) p. 673 # 3-5 odd, 2-37 odd, 4, 47 Consider the line L through the point P = ( x, y, ) that
Two vectors are equal if they have the same length and direction. They do not
Vectors define vectors Some physical quantities, such as temperature, length, and mass, can be specified by a single number called a scalar. Other physical quantities, such as force and velocity, must
SECTION 9.1 THREE-DIMENSIONAL COORDINATE SYSTEMS 651. 1 x 2 y 2 z 2 4. 1 sx 2 y 2 z 2 2. xy-plane. It is sketched in Figure 11.
SECTION 9.1 THREE-DIMENSIONAL COORDINATE SYSTEMS 651 SOLUTION The inequalities 1 2 2 2 4 can be rewritten as 2 FIGURE 11 1 0 1 s 2 2 2 2 so the represent the points,, whose distance from the origin is
L 2 : x = s + 1, y = s, z = 4s + 4. 3. Suppose that C has coordinates (x, y, z). Then from the vector equality AC = BD, one has
The line L through the points A and B is parallel to the vector AB = 3, 2, and has parametric equations x = 3t + 2, y = 2t +, z = t Therefore, the intersection point of the line with the plane should satisfy:
Ax 2 Cy 2 Dx Ey F 0. Here we show that the general second-degree equation. Ax 2 Bxy Cy 2 Dx Ey F 0. y X sin Y cos P(X, Y) X
Rotation of Aes ROTATION OF AES Rotation of Aes For a discussion of conic sections, see Calculus, Fourth Edition, Section 11.6 Calculus, Earl Transcendentals, Fourth Edition, Section 1.6 In precalculus
Identifying second degree equations
Chapter 7 Identifing second degree equations 7.1 The eigenvalue method In this section we appl eigenvalue methods to determine the geometrical nature of the second degree equation a 2 + 2h + b 2 + 2g +
Rotation of Axes 1. Rotation of Axes. At the beginning of Chapter 5 we stated that all equations of the form
Rotation of Axes 1 Rotation of Axes At the beginning of Chapter we stated that all equations of the form Ax + Bx + C + Dx + E + F =0 represented a conic section, which might possibl be degenerate. We saw
11.1. Objectives. Component Form of a Vector. Component Form of a Vector. Component Form of a Vector. Vectors and the Geometry of Space
11 Vectors and the Geometry of Space 11.1 Vectors in the Plane Copyright Cengage Learning. All rights reserved. Copyright Cengage Learning. All rights reserved. 2 Objectives! Write the component form of
9 Multiplication of Vectors: The Scalar or Dot Product
Arkansas Tech University MATH 934: Calculus III Dr. Marcel B Finan 9 Multiplication of Vectors: The Scalar or Dot Product Up to this point we have defined what vectors are and discussed basic notation
THREE DIMENSIONAL GEOMETRY
Chapter 8 THREE DIMENSIONAL GEOMETRY 8.1 Introduction In this chapter we present a vector algebra approach to three dimensional geometry. The aim is to present standard properties of lines and planes,
Section 11.1: Vectors in the Plane. Suggested Problems: 1, 5, 9, 17, 23, 25-37, 40, 42, 44, 45, 47, 50
Section 11.1: Vectors in the Plane Page 779 Suggested Problems: 1, 5, 9, 17, 3, 5-37, 40, 4, 44, 45, 47, 50 Determine whether the following vectors a and b are perpendicular. 5) a = 6, 0, b = 0, 7 Recall
Triple Integrals in Cylindrical or Spherical Coordinates
Triple Integrals in Clindrical or Spherical Coordinates. Find the volume of the solid ball 2 + 2 + 2. Solution. Let be the ball. We know b #a of the worksheet Triple Integrals that the volume of is given
9.5 CALCULUS AND POLAR COORDINATES
smi9885_ch09b.qd 5/7/0 :5 PM Page 760 760 Chapter 9 Parametric Equations and Polar Coordinates 9.5 CALCULUS AND POLAR COORDINATES Now that we have introduced ou to polar coordinates and looked at a variet
Section 1.4. Lines, Planes, and Hyperplanes. The Calculus of Functions of Several Variables
The Calculus of Functions of Several Variables Section 1.4 Lines, Planes, Hyperplanes In this section we will add to our basic geometric understing of R n by studying lines planes. If we do this carefully,
Section 13.5 Equations of Lines and Planes
Section 13.5 Equations of Lines and Planes Generalizing Linear Equations One of the main aspects of single variable calculus was approximating graphs of functions by lines - specifically, tangent lines.
10.5. Click here for answers. Click here for solutions. EQUATIONS OF LINES AND PLANES. 3x 4y 6z 9 4, 2, 5. x y z. z 2. x 2. y 1.
SECTION EQUATIONS OF LINES AND PLANES 1 EQUATIONS OF LINES AND PLANES A Click here for answers. S Click here for solutions. 1 Find a vector equation and parametric equations for the line passing through
Physics 53. Kinematics 2. Our nature consists in movement; absolute rest is death. Pascal
Phsics 53 Kinematics 2 Our nature consists in movement; absolute rest is death. Pascal Velocit and Acceleration in 3-D We have defined the velocit and acceleration of a particle as the first and second
Section 2.4: Equations of Lines and Planes
Section.4: Equations of Lines and Planes An equation of three variable F (x, y, z) 0 is called an equation of a surface S if For instance, (x 1, y 1, z 1 ) S if and only if F (x 1, y 1, z 1 ) 0. x + y
1. a. standard form of a parabola with. 2 b 1 2 horizontal axis of symmetry 2. x 2 y 2 r 2 o. standard form of an ellipse centered
Conic Sections. Distance Formula and Circles. More on the Parabola. The Ellipse and Hperbola. Nonlinear Sstems of Equations in Two Variables. Nonlinear Inequalities and Sstems of Inequalities In Chapter,
Review Sheet for Test 1
Review Sheet for Test 1 Math 261-00 2 6 2004 These problems are provided to help you study. The presence of a problem on this handout does not imply that there will be a similar problem on the test. And
Surface Normals and Tangent Planes
Surface Normals and Tangent Planes Normal and Tangent Planes to Level Surfaces Because the equation of a plane requires a point and a normal vector to the plane, nding the equation of a tangent plane to
Supporting Australian Mathematics Project. A guide for teachers Years 11 and 12. Algebra and coordinate geometry: Module 2. Coordinate geometry
1 Supporting Australian Mathematics Project 3 4 5 6 7 8 9 1 11 1 A guide for teachers Years 11 and 1 Algebra and coordinate geometr: Module Coordinate geometr Coordinate geometr A guide for teachers (Years
REVIEW OF CONIC SECTIONS
REVIEW OF CONIC SECTIONS In this section we give geometric definitions of parabolas, ellipses, and hperbolas and derive their standard equations. The are called conic sections, or conics, because the result
13.4 THE CROSS PRODUCT
710 Chapter Thirteen A FUNDAMENTAL TOOL: VECTORS 62. Use the following steps and the results of Problems 59 60 to show (without trigonometry) that the geometric and algebraic definitions of the dot product
Lecture 14: Section 3.3
Lecture 14: Section 3.3 Shuanglin Shao October 23, 2013 Definition. Two nonzero vectors u and v in R n are said to be orthogonal (or perpendicular) if u v = 0. We will also agree that the zero vector in
COMPONENTS OF VECTORS
COMPONENTS OF VECTORS To describe motion in two dimensions we need a coordinate sstem with two perpendicular aes, and. In such a coordinate sstem, an vector A can be uniquel decomposed into a sum of two
Section 7.2 Linear Programming: The Graphical Method
Section 7.2 Linear Programming: The Graphical Method Man problems in business, science, and economics involve finding the optimal value of a function (for instance, the maimum value of the profit function
Solutions for Review Problems
olutions for Review Problems 1. Let be the triangle with vertices A (,, ), B (4,, 1) and C (,, 1). (a) Find the cosine of the angle BAC at vertex A. (b) Find the area of the triangle ABC. (c) Find a vector
Lines and Planes 1. x(t) = at + b y(t) = ct + d
1 Lines in the Plane Lines and Planes 1 Ever line of points L in R 2 can be epressed as the solution set for an equation of the form A + B = C. The equation is not unique for if we multipl both sides b
Linear algebra and the geometry of quadratic equations. Similarity transformations and orthogonal matrices
MATH 30 Differential Equations Spring 006 Linear algebra and the geometry of quadratic equations Similarity transformations and orthogonal matrices First, some things to recall from linear algebra Two
Click here for answers.
CHALLENGE PROBLEMS: CHALLENGE PROBLEMS 1 CHAPTER A Click here for answers S Click here for solutions A 1 Find points P and Q on the parabola 1 so that the triangle ABC formed b the -ais and the tangent
(a) We have x = 3 + 2t, y = 2 t, z = 6 so solving for t we get the symmetric equations. x 3 2. = 2 y, z = 6. t 2 2t + 1 = 0,
Name: Solutions to Practice Final. Consider the line r(t) = 3 + t, t, 6. (a) Find symmetric equations for this line. (b) Find the point where the first line r(t) intersects the surface z = x + y. (a) We
Solutions to Homework 10
Solutions to Homework 1 Section 7., exercise # 1 (b,d): (b) Compute the value of R f dv, where f(x, y) = y/x and R = [1, 3] [, 4]. Solution: Since f is continuous over R, f is integrable over R. Let x
INVESTIGATIONS AND FUNCTIONS 1.1.1 1.1.4. Example 1
Chapter 1 INVESTIGATIONS AND FUNCTIONS 1.1.1 1.1.4 This opening section introduces the students to man of the big ideas of Algebra 2, as well as different was of thinking and various problem solving strategies.
Notes on the representational possibilities of projective quadrics in four dimensions
bacso 2006/6/22 18:13 page 167 #1 4/1 (2006), 167 177 [email protected] http://tmcs.math.klte.hu Notes on the representational possibilities of projective quadrics in four dimensions Sándor Bácsó and
JUST THE MATHS UNIT NUMBER 8.5. VECTORS 5 (Vector equations of straight lines) A.J.Hobson
JUST THE MATHS UNIT NUMBER 8.5 VECTORS 5 (Vector equations of straight lines) by A.J.Hobson 8.5.1 Introduction 8.5. The straight line passing through a given point and parallel to a given vector 8.5.3
Core Maths C2. Revision Notes
Core Maths C Revision Notes November 0 Core Maths C Algebra... Polnomials: +,,,.... Factorising... Long division... Remainder theorem... Factor theorem... 4 Choosing a suitable factor... 5 Cubic equations...
THE PARABOLA 13.2. section
698 (3 0) Chapter 3 Nonlinear Sstems and the Conic Sections 49. Fencing a rectangle. If 34 ft of fencing are used to enclose a rectangular area of 72 ft 2, then what are the dimensions of the area? 50.
Graphing Linear Equations
6.3 Graphing Linear Equations 6.3 OBJECTIVES 1. Graph a linear equation b plotting points 2. Graph a linear equation b the intercept method 3. Graph a linear equation b solving the equation for We are
Section 8.8. 1. The given line has equations. x = 3 + t(13 3) = 3 + 10t, y = 2 + t(3 + 2) = 2 + 5t, z = 7 + t( 8 7) = 7 15t.
. The given line has equations Section 8.8 x + t( ) + 0t, y + t( + ) + t, z 7 + t( 8 7) 7 t. The line meets the plane y 0 in the point (x, 0, z), where 0 + t, or t /. The corresponding values for x and
1.(6pts) Find symmetric equations of the line L passing through the point (2, 5, 1) and perpendicular to the plane x + 3y z = 9.
.(6pts Find symmetric equations of the line L passing through the point (, 5, and perpendicular to the plane x + 3y z = 9. (a x = y + 5 3 = z (b x (c (x = ( 5(y 3 = z + (d x (e (x + 3(y 3 (z = 9 = y 3
1.3. DOT PRODUCT 19. 6. If θ is the angle (between 0 and π) between two non-zero vectors u and v,
1.3. DOT PRODUCT 19 1.3 Dot Product 1.3.1 Definitions and Properties The dot product is the first way to multiply two vectors. The definition we will give below may appear arbitrary. But it is not. It
Adding vectors We can do arithmetic with vectors. We ll start with vector addition and related operations. Suppose you have two vectors
1 Chapter 13. VECTORS IN THREE DIMENSIONAL SPACE Let s begin with some names and notation for things: R is the set (collection) of real numbers. We write x R to mean that x is a real number. A real number
5 VECTOR GEOMETRY. 5.0 Introduction. Objectives. Activity 1
5 VECTOR GEOMETRY Chapter 5 Vector Geometry Objectives After studying this chapter you should be able to find and use the vector equation of a straight line; be able to find the equation of a plane in
Section 1.1. Introduction to R n
The Calculus of Functions of Several Variables Section. Introduction to R n Calculus is the study of functional relationships and how related quantities change with each other. In your first exposure to
1.5 Equations of Lines and Planes in 3-D
40 CHAPTER 1. VECTORS AND THE GEOMETRY OF SPACE Figure 1.16: Line through P 0 parallel to v 1.5 Equations of Lines and Planes in 3-D Recall that given a point P = (a, b, c), one can draw a vector from
Double Integrals in Polar Coordinates
Double Integrals in Polar Coordinates. A flat plate is in the shape of the region in the first quadrant ling between the circles + and +. The densit of the plate at point, is + kilograms per square meter
Lines and Planes in R 3
.3 Lines and Planes in R 3 P. Daniger Lines in R 3 We wish to represent lines in R 3. Note that a line may be described in two different ways: By specifying two points on the line. By specifying one point
SECTION 2.2. Distance and Midpoint Formulas; Circles
SECTION. Objectives. Find the distance between two points.. Find the midpoint of a line segment.. Write the standard form of a circle s equation.. Give the center and radius of a circle whose equation
5.3 The Cross Product in R 3
53 The Cross Product in R 3 Definition 531 Let u = [u 1, u 2, u 3 ] and v = [v 1, v 2, v 3 ] Then the vector given by [u 2 v 3 u 3 v 2, u 3 v 1 u 1 v 3, u 1 v 2 u 2 v 1 ] is called the cross product (or
CHAPTER 10 SYSTEMS, MATRICES, AND DETERMINANTS
CHAPTER 0 SYSTEMS, MATRICES, AND DETERMINANTS PRE-CALCULUS: A TEACHING TEXTBOOK Lesson 64 Solving Sstems In this chapter, we re going to focus on sstems of equations. As ou ma remember from algebra, sstems
Math Placement Test Practice Problems
Math Placement Test Practice Problems The following problems cover material that is used on the math placement test to place students into Math 1111 College Algebra, Math 1113 Precalculus, and Math 2211
To Be or Not To Be a Linear Equation: That Is the Question
To Be or Not To Be a Linear Equation: That Is the Question Linear Equation in Two Variables A linear equation in two variables is an equation that can be written in the form A + B C where A and B are not
Math 259 Winter 2009. Recitation Handout 1: Finding Formulas for Parametric Curves
Math 259 Winter 2009 Recitation Handout 1: Finding Formulas for Parametric Curves 1. The diagram given below shows an ellipse in the -plane. -5-1 -1-3 (a) Find equations for (t) and (t) that will describe
DISTANCE, CIRCLES, AND QUADRATIC EQUATIONS
a p p e n d i g DISTANCE, CIRCLES, AND QUADRATIC EQUATIONS DISTANCE BETWEEN TWO POINTS IN THE PLANE Suppose that we are interested in finding the distance d between two points P (, ) and P (, ) in the
M PROOF OF THE DIVERGENCE THEOREM AND STOKES THEOREM
68 Theor Supplement Section M M POOF OF THE DIEGENE THEOEM ND STOKES THEOEM In this section we give proofs of the Divergence Theorem Stokes Theorem using the definitions in artesian coordinates. Proof
In this this review we turn our attention to the square root function, the function defined by the equation. f(x) = x. (5.1)
Section 5.2 The Square Root 1 5.2 The Square Root In this this review we turn our attention to the square root function, the function defined b the equation f() =. (5.1) We can determine the domain and
REVIEW OF ANALYTIC GEOMETRY
REVIEW OF ANALYTIC GEOMETRY The points in a plane can be identified with ordered pairs of real numbers. We start b drawing two perpendicular coordinate lines that intersect at the origin O on each line.
FURTHER VECTORS (MEI)
Mathematics Revision Guides Further Vectors (MEI) (column notation) Page of MK HOME TUITION Mathematics Revision Guides Level: AS / A Level - MEI OCR MEI: C FURTHER VECTORS (MEI) Version : Date: -9-7 Mathematics
15.1. Exact Differential Equations. Exact First-Order Equations. Exact Differential Equations Integrating Factors
SECTION 5. Eact First-Order Equations 09 SECTION 5. Eact First-Order Equations Eact Differential Equations Integrating Factors Eact Differential Equations In Section 5.6, ou studied applications of differential
Some Comments on the Derivative of a Vector with applications to angular momentum and curvature. E. L. Lady (October 18, 2000)
Some Comments on the Derivative of a Vector with applications to angular momentum and curvature E. L. Lady (October 18, 2000) Finding the formula in polar coordinates for the angular momentum of a moving
Geometry: Unit 1 Vocabulary TERM DEFINITION GEOMETRIC FIGURE. Cannot be defined by using other figures.
Geometry: Unit 1 Vocabulary 1.1 Undefined terms Cannot be defined by using other figures. Point A specific location. It has no dimension and is represented by a dot. Line Plane A connected straight path.
Math 241 Lines and Planes (Solutions) x = 3 3t. z = 1 t. x = 5 + t. z = 7 + 3t
Math 241 Lines and Planes (Solutions) The equations for planes P 1, P 2 and P are P 1 : x 2y + z = 7 P 2 : x 4y + 5z = 6 P : (x 5) 2(y 6) + (z 7) = 0 The equations for lines L 1, L 2, L, L 4 and L 5 are
Complex Numbers. w = f(z) z. Examples
omple Numbers Geometrical Transformations in the omple Plane For functions of a real variable such as f( sin, g( 2 +2 etc ou are used to illustrating these geometricall, usuall on a cartesian graph. If
Vector Fields and Line Integrals
Vector Fields and Line Integrals 1. Match the following vector fields on R 2 with their plots. (a) F (, ), 1. Solution. An vector, 1 points up, and the onl plot that matches this is (III). (b) F (, ) 1,.
Connecting Transformational Geometry and Transformations of Functions
Connecting Transformational Geometr and Transformations of Functions Introductor Statements and Assumptions Isometries are rigid transformations that preserve distance and angles and therefore shapes.
Higher. Polynomials and Quadratics 64
hsn.uk.net Higher Mathematics UNIT OUTCOME 1 Polnomials and Quadratics Contents Polnomials and Quadratics 64 1 Quadratics 64 The Discriminant 66 3 Completing the Square 67 4 Sketching Parabolas 70 5 Determining
Warm-Up y. What type of triangle is formed by the points A(4,2), B(6, 1), and C( 1, 3)? A. right B. equilateral C. isosceles D.
CST/CAHSEE: Warm-Up Review: Grade What tpe of triangle is formed b the points A(4,), B(6, 1), and C( 1, 3)? A. right B. equilateral C. isosceles D. scalene Find the distance between the points (, 5) and
Solutions to Exercises, Section 5.1
Instructor s Solutions Manual, Section 5.1 Exercise 1 Solutions to Exercises, Section 5.1 1. Find all numbers t such that ( 1 3,t) is a point on the unit circle. For ( 1 3,t)to be a point on the unit circle
D.2. The Cartesian Plane. The Cartesian Plane The Distance and Midpoint Formulas Equations of Circles. D10 APPENDIX D Precalculus Review
D0 APPENDIX D Precalculus Review SECTION D. The Cartesian Plane The Cartesian Plane The Distance and Midpoint Formulas Equations of Circles The Cartesian Plane An ordered pair, of real numbers has as its
Jim Lambers MAT 169 Fall Semester 2009-10 Lecture 25 Notes
Jim Lambers MAT 169 Fall Semester 009-10 Lecture 5 Notes These notes correspond to Section 10.5 in the text. Equations of Lines A line can be viewed, conceptually, as the set of all points in space that
MULTIPLE INTEGRALS. h 2 (y) are continuous functions on [c, d] and let f(x, y) be a function defined on R. Then
MULTIPLE INTEGALS 1. ouble Integrals Let be a simple region defined by a x b and g 1 (x) y g 2 (x), where g 1 (x) and g 2 (x) are continuous functions on [a, b] and let f(x, y) be a function defined on.
D.3. Angles and Degree Measure. Review of Trigonometric Functions
APPENDIX D Precalculus Review D7 SECTION D. Review of Trigonometric Functions Angles and Degree Measure Radian Measure The Trigonometric Functions Evaluating Trigonometric Functions Solving Trigonometric
Introduction to polarization of light
Chapter 2 Introduction to polarization of light This Chapter treats the polarization of electromagnetic waves. In Section 2.1 the concept of light polarization is discussed and its Jones formalism is presented.
Geometric description of the cross product of the vectors u and v. The cross product of two vectors is a vector! u x v is perpendicular to u and v
12.4 Cross Product Geometric description of the cross product of the vectors u and v The cross product of two vectors is a vector! u x v is perpendicular to u and v The length of u x v is uv u v sin The
Applications of Trigonometry
5144_Demana_Ch06pp501-566 01/11/06 9:31 PM Page 501 CHAPTER 6 Applications of Trigonometr 6.1 Vectors in the Plane 6. Dot Product of Vectors 6.3 Parametric Equations and Motion 6.4 Polar Coordinates 6.5
2.6. The Circle. Introduction. Prerequisites. Learning Outcomes
The Circle 2.6 Introduction A circle is one of the most familiar geometrical figures and has been around a long time! In this brief Section we discuss the basic coordinate geometr of a circle - in particular
MAT188H1S Lec0101 Burbulla
Winter 206 Linear Transformations A linear transformation T : R m R n is a function that takes vectors in R m to vectors in R n such that and T (u + v) T (u) + T (v) T (k v) k T (v), for all vectors u
Definition: A vector is a directed line segment that has and. Each vector has an initial point and a terminal point.
6.1 Vectors in the Plane PreCalculus 6.1 VECTORS IN THE PLANE Learning Targets: 1. Find the component form and the magnitude of a vector.. Perform addition and scalar multiplication of two vectors. 3.
Shake, Rattle and Roll
00 College Board. All rights reserved. 00 College Board. All rights reserved. SUGGESTED LEARNING STRATEGIES: Shared Reading, Marking the Tet, Visualization, Interactive Word Wall Roller coasters are scar
13 CALCULUS OF VECTOR-VALUED FUNCTIONS
CALCULUS OF VECTOR-VALUED FUNCTIONS. Vector-Valued Functions LT Section 4.) Preliminar Questions. Which one of the following does not parametrize a line? a) r t) 8 t,t,t b) r t) t i 7t j + t k c) r t)
{ } Sec 3.1 Systems of Linear Equations in Two Variables
Sec.1 Sstems of Linear Equations in Two Variables Learning Objectives: 1. Deciding whether an ordered pair is a solution.. Solve a sstem of linear equations using the graphing, substitution, and elimination
LINES AND PLANES IN R 3
LINES AND PLANES IN R 3 In this handout we will summarize the properties of the dot product and cross product and use them to present arious descriptions of lines and planes in three dimensional space.
Solving Quadratic Equations by Graphing. Consider an equation of the form. y ax 2 bx c a 0. In an equation of the form
SECTION 11.3 Solving Quadratic Equations b Graphing 11.3 OBJECTIVES 1. Find an ais of smmetr 2. Find a verte 3. Graph a parabola 4. Solve quadratic equations b graphing 5. Solve an application involving
Rotated Ellipses. And Their Intersections With Lines. Mark C. Hendricks, Ph.D. Copyright March 8, 2012
Rotated Ellipses And Their Intersections With Lines b Mark C. Hendricks, Ph.D. Copright March 8, 0 Abstract: This paper addresses the mathematical equations for ellipses rotated at an angle and how to
Math, Trigonometry and Vectors. Geometry. Trig Definitions. sin(θ) = opp hyp. cos(θ) = adj hyp. tan(θ) = opp adj. Here's a familiar image.
Math, Trigonometr and Vectors Geometr Trig Definitions Here's a familiar image. To make predictive models of the phsical world, we'll need to make visualizations, which we can then turn into analtical
