Lines and Planes 1. x(t) = at + b y(t) = ct + d
|
|
|
- Laurence Davis
- 10 years ago
- Views:
Transcription
1 1 Lines in the Plane Lines and Planes 1 Ever line of points L in R 2 can be epressed as the solution set for an equation of the form A + B = C. The equation is not unique for if we multipl both sides b an nonzero number the solution set is unchanged. An line L can also be epressed b a pair of parametric equations of the form: (t) = at + b (t) = ct + d These can be rewritten in vector form:, = a, c t + b, d. The vectors a, c and b, d have a nice geometric/phsical interpretation. Regard t as time. Let p(t) = (t), (t) and call it the position vector. One can imagine a particle moving along L in accordance with the given parametric equations. Then p(0) = b, d is the initial position. Notice, dp dt = (t), (t) = a, c Thus, we call v = a, c the velocit vector. It is parallel to L. It is customar to place its base point on L. See Figure 1(left side). We now give a geometric interpretation for the ABC form of an equation of a line. First, suppose C = 0; this just means the line L goes through the origin. Let n = A, B, and again set p =,. Then we have n p = 0. That is the vectors n and p are at right angles to each other. Thus, the line L for A+B = 0 is the set of all points (, ) such that, is perpendicular to A, B. Now we consider the general case: A + B = C. Pick some particular point on the line and call it ( 0, 0 ). Then C = A 0 + B 0. Therefore, for 1 c Michael C. Sullivan, June 14,
2 an point (, ) on L we have A + B = A 0 + B 0. We can rewrite this as A A 0 + B B 0 = 0 A( 0 ) + B( 0 ) = 0 A, B 0, 0 = 0 n (, 0, 0 ) = 0 n (p p 0 ) = 0 In the last line we have let p 0 = 0, 0. The vector p p 0 can be thought of as ling in L with its tail at ( 0, 0 ) and its head at (, ). Thus, L is the unique line perpendicular to the vector n = A, B that passes through ( 0, 0 ). See Figure 1(right side). The vector n is called a normal vector for the line L. Given a vector to use as normal vector and a point we can easil find an equation for the corresponding line. t = 0 v t = 1 t = 2 n p 0 Figure 1: Left: A parametric line. Right: Normal vector to a line. Problem 1. Consider the line determined b (t) = 3t 2 and (t) = t+7. Find an equation for the line in ABC form. Problem 2. Consider the line determined b 4 7 = 2. Find a pair of parametric equations for this line. Note: Both of these problems have man correct answers. 2
3 2 Lines and Planes in 3-space The three dimensional set R 3 is the set of all triples (,, z) where,, and z are real numbers. Such a triple is called the z-coordinates of a point. These are also called rectilinear coordinates. The set {(, 0, 0) R} is the -ais. The and z aes are defined similarl. The are clearl lines. The set {(,, 0) R, R} is the -plane. The z and z planes are defined similarl. Visualizing structures in three dimensions takes practice. z (2, 5, 4) Figure 2: Three dimensional space: R 3 An line L in R 3 can epressed parametricall in the form: (t) = at + b (t) = ct + d z(t) = et + f or, in vector form,,, z = a, c, e t + b, d, f. As with lines in R 2 it is useful to think of a, c, e as a velocit vector and b, d, f as the position at t = 0. However, there is no wa to epress a line in R 3 as a single equation in three variables. In fact, we will show that tpicall solution sets of equations of the form A + B + Cz = D are planes and that ever plane in R 3 is the solution set of some equation in this form. Note: If A = B = C = D = 0, the solution set is all of R 3 ; if A = B = C = 0 but D 0 the solution set is empt. 3
4 Eample 1. Convince ourself of the following: If A = B = D = 0 and C 0 then A + B + Cz = D is the -plane. If A = C = D = 0 and B 0 then A + B + Cz = D is the z-plane. If B = C = D = 0 and A 0 then A + B + Cz = D is the z-plane. Let s consider the case where D = 0. Let n = A, B, C and p =,, z. Then the equation A + B + Cz = 0 becomes n p = 0. Thus, the solution set is the plane P, passing through the origin of R 3 whose points, when regarded as vectors, are perpendicular to n. We return to the general case: A+B+Cz = D. Let p 0 = 0, 0, z 0 be some fied point that satisfies the given equation. We leave it to the reader to show that n (p p 0 ) = 0. Thus, the solution set of A + B + Cz = D is the unique plane passing through p 0 and perpendicular to n = A, B, C. Eample 2. Consider + + z = 1. The points (1, 0, 0), (0, 1, 0), and (0, 0, 1) satisf the equation. We can connect them with line segments and visualize the triangle thus formed. This triangle sits in the plane. If we place the tail of n = 1, 1, 1 at an point of the triangle it is eas to see that it is perpendicular to the plane. Eample 3. Let P 1 be the plane given b z = 5 and let P 2 be the plane given b + + z = 1. Find parametric equations for the line L = P 1 P 2. Solution z = z = 1 } = 3z = 2. Let z = t. Then = 3t + 2. Also, = 1 z = 4t 1. We rewrite these as,, z = 4, 3, 1 t + 1, 2, 0. Eample 4. Find an equation for the plane passing through the three points (1, 1, 1), (1, 2, 3), and (2, 1, 0). 4
5 Solution. We have three conditions and these give us three equations in four unknowns. A + B + C = D A + 2B + 3C = D = 2A B = D A + B + C = D B + 2C = 0 3B 2C = D A + B + C = D B + 2C = 0 C = D/4 A + B = 5D/4 B = D/2 C = D/4 = = A = 3D/4 = B = D/2 C = D/4 An nonzero value of D will do. Let D = 4. Then z = 4 is an equation for our plane. Problem 1. Consider the three points (1, 1, 1), (2, 0, 2), and (4, 1, 4). Show that the do not determine a unique plane because the lie on the same line. Find an equation for this line; write it in vector form. Problem 2. Let P be the plane given b + 2 3z = 1. Let L be the intersection of P with the -plane. Define L z and L z similarl. Find equations for these three lines in ABC form. Problem 3. Graph, separatel, each of the planes determined b these three equations: z = 1, z = 1, and 3 2 2z = 7. Problem 4. Find the point of intersection of the three planes determined b these three equations: 2+2 3z = 1, +2+4z = 1, and 3 2 2z = 7. Problem 5. Show that the two planes determined b z = 1 and z = 0 do not intersect and are thus parallel. Problem 6. Let P be the plane given b z = 1. Let L be the line given b,, z = 1, 1, 1 t + 1, 0, 1. Find the point where the meet. Problem 7. Show that these four points lie in the same plane: (1, 1, 1), ( 1, 0, 0), ( 1, 1, 1 ), and (1, 1, 0). Find an equation for this plane. 2 5
6 3 Parametric Equation for a Plane There is another form for equations of planes in R 3 that is the analog of the parametric form for equations of a line. The difference is we will need two parameters, r and s, instead of one. Of course, the time metaphor is no longer useful. Let P be a plane given b A+B +Cz = D. Assume that C 0. Then we can solve for z and get z = D/C A/C B/C. (If C = 0 solve for or instead.) Think of z as the height above the -plane. Now let = r and = s, and think of r and s as free parameters. We can now write,, z = r, s, D/C A/Cr B/Cs = 0, 0, D/C + r 1, 0, A/C + s 0, 1, B/C This equation is far from unique. We can start with an point ( 0, 0, z 0 ) P, regard it as a vector p 0 = 0, 0, z 0 and add multiplies of 1, 0, A/C and 0, 1, B/C to it and sta in the plane. Furthermore, if we let v 1 and v 2 be nonzero multiplies of 1, 0, A/C and 0, 1, B/C, respectivel then p = p 0 + rv 1 + sv 2 gives the same plane P. Indeed, we could use an pair of vectors in P with tails at p 0 as long as the point in different directions. We will use this formulation to place a coordinate sstem on P. Take a point ( 0, 0, z 0 ) on P and call it the origin of P. Then an point on P can be gotten to b adding multiplies of v 1 and v 2 to p 0. Thus, for an point on P we can think of it as having coordinates (r, s). See Figure 3. Eample 1. Define a plane P b,, z = 1, 2, 3 + r 1, 1, 0 + s 0, 1, 1 Show that the point (0,2,4) is on P and find its rs-coordinates. Solution. We have three equations and two unknowns. 0 = 1 + 1r + 0s 2 = 2 + 1r + 1s 4 = 3 + 0r + 1s = r = 1 s = 1 Thus, (0, 2, 4) P and it has rs-coordinates ( 1, 1) relative to the given parametric equation. 6
7 z s r Figure 3: Coordinates for a plane: The dark lines are the r and s-aes Problem 1. Using the same plane P in Eample 1, find the rs-coordinates of (3, 3, 2). Problem 2. Show that the point (1, 2, 1) is not on the plane P of Eample 1. Problem 3 (Hard). The equation 2r + 3s = 1 determines a line L in the plane P of Eample 1, using rs-coordinates. Find a parametric equation for L in z-coordinates. 7
LINEAR FUNCTIONS OF 2 VARIABLES
CHAPTER 4: LINEAR FUNCTIONS OF 2 VARIABLES 4.1 RATES OF CHANGES IN DIFFERENT DIRECTIONS From Precalculus, we know that is a linear function if the rate of change of the function is constant. I.e., for
Section 11.4: Equations of Lines and Planes
Section 11.4: Equations of Lines and Planes Definition: The line containing the point ( 0, 0, 0 ) and parallel to the vector v = A, B, C has parametric equations = 0 + At, = 0 + Bt, = 0 + Ct, where t R
Equations Involving Lines and Planes Standard equations for lines in space
Equations Involving Lines and Planes In this section we will collect various important formulas regarding equations of lines and planes in three dimensional space Reminder regarding notation: any quantity
Chapter 8. Lines and Planes. By the end of this chapter, you will
Chapter 8 Lines and Planes In this chapter, ou will revisit our knowledge of intersecting lines in two dimensions and etend those ideas into three dimensions. You will investigate the nature of planes
L 2 : x = s + 1, y = s, z = 4s + 4. 3. Suppose that C has coordinates (x, y, z). Then from the vector equality AC = BD, one has
The line L through the points A and B is parallel to the vector AB = 3, 2, and has parametric equations x = 3t + 2, y = 2t +, z = t Therefore, the intersection point of the line with the plane should satisfy:
12.5 Equations of Lines and Planes
Instructor: Longfei Li Math 43 Lecture Notes.5 Equations of Lines and Planes What do we need to determine a line? D: a point on the line: P 0 (x 0, y 0 ) direction (slope): k 3D: a point on the line: P
Section 1.4. Lines, Planes, and Hyperplanes. The Calculus of Functions of Several Variables
The Calculus of Functions of Several Variables Section 1.4 Lines, Planes, Hyperplanes In this section we will add to our basic geometric understing of R n by studying lines planes. If we do this carefully,
Math 241 Lines and Planes (Solutions) x = 3 3t. z = 1 t. x = 5 + t. z = 7 + 3t
Math 241 Lines and Planes (Solutions) The equations for planes P 1, P 2 and P are P 1 : x 2y + z = 7 P 2 : x 4y + 5z = 6 P : (x 5) 2(y 6) + (z 7) = 0 The equations for lines L 1, L 2, L, L 4 and L 5 are
x y The matrix form, the vector form, and the augmented matrix form, respectively, for the system of equations are
Solving Sstems of Linear Equations in Matri Form with rref Learning Goals Determine the solution of a sstem of equations from the augmented matri Determine the reduced row echelon form of the augmented
2.1 Three Dimensional Curves and Surfaces
. Three Dimensional Curves and Surfaces.. Parametric Equation of a Line An line in two- or three-dimensional space can be uniquel specified b a point on the line and a vector parallel to the line. The
Geometric description of the cross product of the vectors u and v. The cross product of two vectors is a vector! u x v is perpendicular to u and v
12.4 Cross Product Geometric description of the cross product of the vectors u and v The cross product of two vectors is a vector! u x v is perpendicular to u and v The length of u x v is uv u v sin The
DISTANCE, CIRCLES, AND QUADRATIC EQUATIONS
a p p e n d i g DISTANCE, CIRCLES, AND QUADRATIC EQUATIONS DISTANCE BETWEEN TWO POINTS IN THE PLANE Suppose that we are interested in finding the distance d between two points P (, ) and P (, ) in the
D.2. The Cartesian Plane. The Cartesian Plane The Distance and Midpoint Formulas Equations of Circles. D10 APPENDIX D Precalculus Review
D0 APPENDIX D Precalculus Review SECTION D. The Cartesian Plane The Cartesian Plane The Distance and Midpoint Formulas Equations of Circles The Cartesian Plane An ordered pair, of real numbers has as its
13.4 THE CROSS PRODUCT
710 Chapter Thirteen A FUNDAMENTAL TOOL: VECTORS 62. Use the following steps and the results of Problems 59 60 to show (without trigonometry) that the geometric and algebraic definitions of the dot product
FURTHER VECTORS (MEI)
Mathematics Revision Guides Further Vectors (MEI) (column notation) Page of MK HOME TUITION Mathematics Revision Guides Level: AS / A Level - MEI OCR MEI: C FURTHER VECTORS (MEI) Version : Date: -9-7 Mathematics
Lecture 1 Introduction 1. 1.1 Rectangular Coordinate Systems... 1. 1.2 Vectors... 3. Lecture 2 Length, Dot Product, Cross Product 5. 2.1 Length...
CONTENTS i Contents Lecture Introduction. Rectangular Coordinate Sstems..................... Vectors.................................. 3 Lecture Length, Dot Product, Cross Product 5. Length...................................
December 4, 2013 MATH 171 BASIC LINEAR ALGEBRA B. KITCHENS
December 4, 2013 MATH 171 BASIC LINEAR ALGEBRA B KITCHENS The equation 1 Lines in two-dimensional space (1) 2x y = 3 describes a line in two-dimensional space The coefficients of x and y in the equation
Supporting Australian Mathematics Project. A guide for teachers Years 11 and 12. Algebra and coordinate geometry: Module 2. Coordinate geometry
1 Supporting Australian Mathematics Project 3 4 5 6 7 8 9 1 11 1 A guide for teachers Years 11 and 1 Algebra and coordinate geometr: Module Coordinate geometr Coordinate geometr A guide for teachers (Years
10.5. Click here for answers. Click here for solutions. EQUATIONS OF LINES AND PLANES. 3x 4y 6z 9 4, 2, 5. x y z. z 2. x 2. y 1.
SECTION EQUATIONS OF LINES AND PLANES 1 EQUATIONS OF LINES AND PLANES A Click here for answers. S Click here for solutions. 1 Find a vector equation and parametric equations for the line passing through
Slope-Intercept Form and Point-Slope Form
Slope-Intercept Form and Point-Slope Form In this section we will be discussing Slope-Intercept Form and the Point-Slope Form of a line. We will also discuss how to graph using the Slope-Intercept Form.
Lines and Planes in R 3
.3 Lines and Planes in R 3 P. Daniger Lines in R 3 We wish to represent lines in R 3. Note that a line may be described in two different ways: By specifying two points on the line. By specifying one point
Math 241, Exam 1 Information.
Math 241, Exam 1 Information. 9/24/12, LC 310, 11:15-12:05. Exam 1 will be based on: Sections 12.1-12.5, 14.1-14.3. The corresponding assigned homework problems (see http://www.math.sc.edu/ boylan/sccourses/241fa12/241.html)
1.5 Equations of Lines and Planes in 3-D
40 CHAPTER 1. VECTORS AND THE GEOMETRY OF SPACE Figure 1.16: Line through P 0 parallel to v 1.5 Equations of Lines and Planes in 3-D Recall that given a point P = (a, b, c), one can draw a vector from
SECTION 2.2. Distance and Midpoint Formulas; Circles
SECTION. Objectives. Find the distance between two points.. Find the midpoint of a line segment.. Write the standard form of a circle s equation.. Give the center and radius of a circle whose equation
5.3 The Cross Product in R 3
53 The Cross Product in R 3 Definition 531 Let u = [u 1, u 2, u 3 ] and v = [v 1, v 2, v 3 ] Then the vector given by [u 2 v 3 u 3 v 2, u 3 v 1 u 1 v 3, u 1 v 2 u 2 v 1 ] is called the cross product (or
Core Maths C2. Revision Notes
Core Maths C Revision Notes November 0 Core Maths C Algebra... Polnomials: +,,,.... Factorising... Long division... Remainder theorem... Factor theorem... 4 Choosing a suitable factor... 5 Cubic equations...
Addition and Subtraction of Vectors
ddition and Subtraction of Vectors 1 ppendi ddition and Subtraction of Vectors In this appendi the basic elements of vector algebra are eplored. Vectors are treated as geometric entities represented b
MAT 1341: REVIEW II SANGHOON BAEK
MAT 1341: REVIEW II SANGHOON BAEK 1. Projections and Cross Product 1.1. Projections. Definition 1.1. Given a vector u, the rectangular (or perpendicular or orthogonal) components are two vectors u 1 and
Section 9.5: Equations of Lines and Planes
Lines in 3D Space Section 9.5: Equations of Lines and Planes Practice HW from Stewart Textbook (not to hand in) p. 673 # 3-5 odd, 2-37 odd, 4, 47 Consider the line L through the point P = ( x, y, ) that
Name Class. Date Section. Test Form A Chapter 11. Chapter 11 Test Bank 155
Chapter Test Bank 55 Test Form A Chapter Name Class Date Section. Find a unit vector in the direction of v if v is the vector from P,, 3 to Q,, 0. (a) 3i 3j 3k (b) i j k 3 i 3 j 3 k 3 i 3 j 3 k. Calculate
THREE DIMENSIONAL GEOMETRY
Chapter 8 THREE DIMENSIONAL GEOMETRY 8.1 Introduction In this chapter we present a vector algebra approach to three dimensional geometry. The aim is to present standard properties of lines and planes,
A vector is a directed line segment used to represent a vector quantity.
Chapters and 6 Introduction to Vectors A vector quantity has direction and magnitude. There are many examples of vector quantities in the natural world, such as force, velocity, and acceleration. A vector
JUST THE MATHS UNIT NUMBER 8.5. VECTORS 5 (Vector equations of straight lines) A.J.Hobson
JUST THE MATHS UNIT NUMBER 8.5 VECTORS 5 (Vector equations of straight lines) by A.J.Hobson 8.5.1 Introduction 8.5. The straight line passing through a given point and parallel to a given vector 8.5.3
Solutions to old Exam 1 problems
Solutions to old Exam 1 problems Hi students! I am putting this old version of my review for the first midterm review, place and time to be announced. Check for updates on the web site as to which sections
LINES AND PLANES IN R 3
LINES AND PLANES IN R 3 In this handout we will summarize the properties of the dot product and cross product and use them to present arious descriptions of lines and planes in three dimensional space.
Math, Trigonometry and Vectors. Geometry. Trig Definitions. sin(θ) = opp hyp. cos(θ) = adj hyp. tan(θ) = opp adj. Here's a familiar image.
Math, Trigonometr and Vectors Geometr Trig Definitions Here's a familiar image. To make predictive models of the phsical world, we'll need to make visualizations, which we can then turn into analtical
Plotting Lines in Mathematica
Lines.nb 1 Plotting Lines in Mathematica Copright 199, 1997, 1 b James F. Hurle, Universit of Connecticut, Department of Mathematics, 196 Auditorium Road Unit 39, Storrs CT 669-39. All rights reserved.
Section 7.2 Linear Programming: The Graphical Method
Section 7.2 Linear Programming: The Graphical Method Man problems in business, science, and economics involve finding the optimal value of a function (for instance, the maimum value of the profit function
= y y 0. = z z 0. (a) Find a parametric vector equation for L. (b) Find parametric (scalar) equations for L.
Math 21a Lines and lanes Spring, 2009 Lines in Space How can we express the equation(s) of a line through a point (x 0 ; y 0 ; z 0 ) and parallel to the vector u ha; b; ci? Many ways: as parametric (scalar)
Section 8.8. 1. The given line has equations. x = 3 + t(13 3) = 3 + 10t, y = 2 + t(3 + 2) = 2 + 5t, z = 7 + t( 8 7) = 7 15t.
. The given line has equations Section 8.8 x + t( ) + 0t, y + t( + ) + t, z 7 + t( 8 7) 7 t. The line meets the plane y 0 in the point (x, 0, z), where 0 + t, or t /. The corresponding values for x and
Section V.2: Magnitudes, Directions, and Components of Vectors
Section V.: Magnitudes, Directions, and Components of Vectors Vectors in the plane If we graph a vector in the coordinate plane instead of just a grid, there are a few things to note. Firstl, directions
Colegio del mundo IB. Programa Diploma REPASO 2. 1. The mass m kg of a radio-active substance at time t hours is given by. m = 4e 0.2t.
REPASO. The mass m kg of a radio-active substance at time t hours is given b m = 4e 0.t. Write down the initial mass. The mass is reduced to.5 kg. How long does this take?. The function f is given b f()
COMPONENTS OF VECTORS
COMPONENTS OF VECTORS To describe motion in two dimensions we need a coordinate sstem with two perpendicular aes, and. In such a coordinate sstem, an vector A can be uniquel decomposed into a sum of two
Identifying second degree equations
Chapter 7 Identifing second degree equations 7.1 The eigenvalue method In this section we appl eigenvalue methods to determine the geometrical nature of the second degree equation a 2 + 2h + b 2 + 2g +
Section 2.4: Equations of Lines and Planes
Section.4: Equations of Lines and Planes An equation of three variable F (x, y, z) 0 is called an equation of a surface S if For instance, (x 1, y 1, z 1 ) S if and only if F (x 1, y 1, z 1 ) 0. x + y
REVIEW OF ANALYTIC GEOMETRY
REVIEW OF ANALYTIC GEOMETRY The points in a plane can be identified with ordered pairs of real numbers. We start b drawing two perpendicular coordinate lines that intersect at the origin O on each line.
Notes from February 11
Notes from February 11 Math 130 Course web site: www.courses.fas.harvard.edu/5811 Two lemmas Before proving the theorem which was stated at the end of class on February 8, we begin with two lemmas. The
sin(θ) = opp hyp cos(θ) = adj hyp tan(θ) = opp adj
Math, Trigonometr and Vectors Geometr 33º What is the angle equal to? a) α = 7 b) α = 57 c) α = 33 d) α = 90 e) α cannot be determined α Trig Definitions Here's a familiar image. To make predictive models
Lecture 14: Section 3.3
Lecture 14: Section 3.3 Shuanglin Shao October 23, 2013 Definition. Two nonzero vectors u and v in R n are said to be orthogonal (or perpendicular) if u v = 0. We will also agree that the zero vector in
SYSTEMS OF LINEAR EQUATIONS
SYSTEMS OF LINEAR EQUATIONS Sstems of linear equations refer to a set of two or more linear equations used to find the value of the unknown variables. If the set of linear equations consist of two equations
Section 13.5 Equations of Lines and Planes
Section 13.5 Equations of Lines and Planes Generalizing Linear Equations One of the main aspects of single variable calculus was approximating graphs of functions by lines - specifically, tangent lines.
Systems of Linear Equations: Solving by Substitution
8.3 Sstems of Linear Equations: Solving b Substitution 8.3 OBJECTIVES 1. Solve sstems using the substitution method 2. Solve applications of sstems of equations In Sections 8.1 and 8.2, we looked at graphing
Graphing Linear Equations
6.3 Graphing Linear Equations 6.3 OBJECTIVES 1. Graph a linear equation b plotting points 2. Graph a linear equation b the intercept method 3. Graph a linear equation b solving the equation for We are
CHAPTER FIVE. 5. Equations of Lines in R 3
118 CHAPTER FIVE 5. Equations of Lines in R 3 In this chapter it is going to be very important to distinguish clearly between points and vectors. Frequently in the past the distinction has only been a
LINES AND PLANES CHRIS JOHNSON
LINES AND PLANES CHRIS JOHNSON Abstract. In this lecture we derive the equations for lines and planes living in 3-space, as well as define the angle between two non-parallel planes, and determine the distance
LINEAR ALGEBRA W W L CHEN
LINEAR ALGEBRA W W L CHEN c W W L Chen, 1982, 2008. This chapter originates from material used by author at Imperial College, University of London, between 1981 and 1990. It is available free to all individuals,
Straight Line. Paper 1 Section A. O xy
PSf Straight Line Paper 1 Section A Each correct answer in this section is worth two marks. 1. The line with equation = a + 4 is perpendicular to the line with equation 3 + + 1 = 0. What is the value of
Physics 53. Kinematics 2. Our nature consists in movement; absolute rest is death. Pascal
Phsics 53 Kinematics 2 Our nature consists in movement; absolute rest is death. Pascal Velocit and Acceleration in 3-D We have defined the velocit and acceleration of a particle as the first and second
Solving Systems of Equations
Solving Sstems of Equations When we have or more equations and or more unknowns, we use a sstem of equations to find the solution. Definition: A solution of a sstem of equations is an ordered pair that
THE PARABOLA 13.2. section
698 (3 0) Chapter 3 Nonlinear Sstems and the Conic Sections 49. Fencing a rectangle. If 34 ft of fencing are used to enclose a rectangular area of 72 ft 2, then what are the dimensions of the area? 50.
Affine Transformations
A P P E N D I X C Affine Transformations CONTENTS C The need for geometric transformations 335 C2 Affine transformations 336 C3 Matri representation of the linear transformations 338 C4 Homogeneous coordinates
MA261-A Calculus III 2006 Fall Homework 3 Solutions Due 9/22/2006 8:00AM
MA6-A Calculus III 6 Fall Homework Solutions Due 9//6 :AM 9. # Find the parametric euation and smmetric euation for the line of intersection of the planes + + z = and + z =. To write down a line euation,
Geometry 1. Unit 3: Perpendicular and Parallel Lines
Geometry 1 Unit 3: Perpendicular and Parallel Lines Geometry 1 Unit 3 3.1 Lines and Angles Lines and Angles Parallel Lines Parallel lines are lines that are coplanar and do not intersect. Some examples
Section 1.1. Introduction to R n
The Calculus of Functions of Several Variables Section. Introduction to R n Calculus is the study of functional relationships and how related quantities change with each other. In your first exposure to
Equation of a Line. Chapter H2. The Gradient of a Line. m AB = Exercise H2 1
Chapter H2 Equation of a Line The Gradient of a Line The gradient of a line is simpl a measure of how steep the line is. It is defined as follows :- gradient = vertical horizontal horizontal A B vertical
Jim Lambers MAT 169 Fall Semester 2009-10 Lecture 25 Notes
Jim Lambers MAT 169 Fall Semester 009-10 Lecture 5 Notes These notes correspond to Section 10.5 in the text. Equations of Lines A line can be viewed, conceptually, as the set of all points in space that
Vector Notation: AB represents the vector from point A to point B on a graph. The vector can be computed by B A.
1 Linear Transformations Prepared by: Robin Michelle King A transformation of an object is a change in position or dimension (or both) of the object. The resulting object after the transformation is called
SECTION 9.1 THREE-DIMENSIONAL COORDINATE SYSTEMS 651. 1 x 2 y 2 z 2 4. 1 sx 2 y 2 z 2 2. xy-plane. It is sketched in Figure 11.
SECTION 9.1 THREE-DIMENSIONAL COORDINATE SYSTEMS 651 SOLUTION The inequalities 1 2 2 2 4 can be rewritten as 2 FIGURE 11 1 0 1 s 2 2 2 2 so the represent the points,, whose distance from the origin is
INVESTIGATIONS AND FUNCTIONS 1.1.1 1.1.4. Example 1
Chapter 1 INVESTIGATIONS AND FUNCTIONS 1.1.1 1.1.4 This opening section introduces the students to man of the big ideas of Algebra 2, as well as different was of thinking and various problem solving strategies.
Teacher Page. 1. Reflect a figure with vertices across the x-axis. Find the coordinates of the new image.
Teacher Page Geometr / Da # 10 oordinate Geometr (5 min.) 9-.G.3.1 9-.G.3.2 9-.G.3.3 9-.G.3. Use rigid motions (compositions of reflections, translations and rotations) to determine whether two geometric
CHALLENGE PROBLEMS: CHAPTER 10. Click here for solutions. Click here for answers.
CHALLENGE PROBLEMS CHALLENGE PROBLEMS: CHAPTER 0 A Click here for answers. S Click here for solutions. m m m FIGURE FOR PROBLEM N W F FIGURE FOR PROBLEM 5. Each edge of a cubical bo has length m. The bo
Complex Numbers. w = f(z) z. Examples
omple Numbers Geometrical Transformations in the omple Plane For functions of a real variable such as f( sin, g( 2 +2 etc ou are used to illustrating these geometricall, usuall on a cartesian graph. If
Connecting Transformational Geometry and Transformations of Functions
Connecting Transformational Geometr and Transformations of Functions Introductor Statements and Assumptions Isometries are rigid transformations that preserve distance and angles and therefore shapes.
STRAND: ALGEBRA Unit 3 Solving Equations
CMM Subject Support Strand: ALGEBRA Unit Solving Equations: Tet STRAND: ALGEBRA Unit Solving Equations TEXT Contents Section. Algebraic Fractions. Algebraic Fractions and Quadratic Equations. Algebraic
2.6. The Circle. Introduction. Prerequisites. Learning Outcomes
The Circle 2.6 Introduction A circle is one of the most familiar geometrical figures and has been around a long time! In this brief Section we discuss the basic coordinate geometr of a circle - in particular
Problem set on Cross Product
1 Calculate the vector product of a and b given that a= 2i + j + k and b = i j k (Ans 3 j - 3 k ) 2 Calculate the vector product of i - j and i + j (Ans ) 3 Find the unit vectors that are perpendicular
5 VECTOR GEOMETRY. 5.0 Introduction. Objectives. Activity 1
5 VECTOR GEOMETRY Chapter 5 Vector Geometry Objectives After studying this chapter you should be able to find and use the vector equation of a straight line; be able to find the equation of a plane in
2D Geometrical Transformations. Foley & Van Dam, Chapter 5
2D Geometrical Transformations Fole & Van Dam, Chapter 5 2D Geometrical Transformations Translation Scaling Rotation Shear Matri notation Compositions Homogeneous coordinates 2D Geometrical Transformations
Click here for answers.
CHALLENGE PROBLEMS: CHALLENGE PROBLEMS 1 CHAPTER A Click here for answers S Click here for solutions A 1 Find points P and Q on the parabola 1 so that the triangle ABC formed b the -ais and the tangent
1.(6pts) Find symmetric equations of the line L passing through the point (2, 5, 1) and perpendicular to the plane x + 3y z = 9.
.(6pts Find symmetric equations of the line L passing through the point (, 5, and perpendicular to the plane x + 3y z = 9. (a x = y + 5 3 = z (b x (c (x = ( 5(y 3 = z + (d x (e (x + 3(y 3 (z = 9 = y 3
C relative to O being abc,, respectively, then b a c.
2 EP-Program - Strisuksa School - Roi-et Math : Vectors Dr.Wattana Toutip - Department of Mathematics Khon Kaen University 200 :Wattana Toutip [email protected] http://home.kku.ac.th/wattou 2. Vectors A
Vector Algebra CHAPTER 13. Ü13.1. Basic Concepts
CHAPTER 13 ector Algebra Ü13.1. Basic Concepts A vector in the plane or in space is an arrow: it is determined by its length, denoted and its direction. Two arrows represent the same vector if they have
Applications of Trigonometry
5144_Demana_Ch06pp501-566 01/11/06 9:31 PM Page 501 CHAPTER 6 Applications of Trigonometr 6.1 Vectors in the Plane 6. Dot Product of Vectors 6.3 Parametric Equations and Motion 6.4 Polar Coordinates 6.5
Plane Stress Transformations
6 Plane Stress Transformations ASEN 311 - Structures ASEN 311 Lecture 6 Slide 1 Plane Stress State ASEN 311 - Structures Recall that in a bod in plane stress, the general 3D stress state with 9 components
9 Multiplication of Vectors: The Scalar or Dot Product
Arkansas Tech University MATH 934: Calculus III Dr. Marcel B Finan 9 Multiplication of Vectors: The Scalar or Dot Product Up to this point we have defined what vectors are and discussed basic notation
Chapter 17. Orthogonal Matrices and Symmetries of Space
Chapter 17. Orthogonal Matrices and Symmetries of Space Take a random matrix, say 1 3 A = 4 5 6, 7 8 9 and compare the lengths of e 1 and Ae 1. The vector e 1 has length 1, while Ae 1 = (1, 4, 7) has length
SLOPE OF A LINE 3.2. section. helpful. hint. Slope Using Coordinates to Find 6% GRADE 6 100 SLOW VEHICLES KEEP RIGHT
. Slope of a Line (-) 67. 600 68. 00. SLOPE OF A LINE In this section In Section. we saw some equations whose graphs were straight lines. In this section we look at graphs of straight lines in more detail
Exam 1 Sample Question SOLUTIONS. y = 2x
Exam Sample Question SOLUTIONS. Eliminate the parameter to find a Cartesian equation for the curve: x e t, y e t. SOLUTION: You might look at the coordinates and notice that If you don t see it, we can
discuss how to describe points, lines and planes in 3 space.
Chapter 2 3 Space: lines and planes In this chapter we discuss how to describe points, lines and planes in 3 space. introduce the language of vectors. discuss various matters concerning the relative position
PYTHAGOREAN TRIPLES KEITH CONRAD
PYTHAGOREAN TRIPLES KEITH CONRAD 1. Introduction A Pythagorean triple is a triple of positive integers (a, b, c) where a + b = c. Examples include (3, 4, 5), (5, 1, 13), and (8, 15, 17). Below is an ancient
a.) Write the line 2x - 4y = 9 into slope intercept form b.) Find the slope of the line parallel to part a
Bellwork a.) Write the line 2x - 4y = 9 into slope intercept form b.) Find the slope of the line parallel to part a c.) Find the slope of the line perpendicular to part b or a May 8 7:30 AM 1 Day 1 I.
Linear algebra and the geometry of quadratic equations. Similarity transformations and orthogonal matrices
MATH 30 Differential Equations Spring 006 Linear algebra and the geometry of quadratic equations Similarity transformations and orthogonal matrices First, some things to recall from linear algebra Two
Polynomials. Jackie Nicholas Jacquie Hargreaves Janet Hunter
Mathematics Learning Centre Polnomials Jackie Nicholas Jacquie Hargreaves Janet Hunter c 26 Universit of Sdne Mathematics Learning Centre, Universit of Sdne 1 1 Polnomials Man of the functions we will
11.1. Objectives. Component Form of a Vector. Component Form of a Vector. Component Form of a Vector. Vectors and the Geometry of Space
11 Vectors and the Geometry of Space 11.1 Vectors in the Plane Copyright Cengage Learning. All rights reserved. Copyright Cengage Learning. All rights reserved. 2 Objectives! Write the component form of
Chapter 4.1 Parallel Lines and Planes
Chapter 4.1 Parallel Lines and Planes Expand on our definition of parallel lines Introduce the idea of parallel planes. What do we recall about parallel lines? In geometry, we have to be concerned about
MATH2210 Notebook 1 Fall Semester 2016/2017. 1 MATH2210 Notebook 1 3. 1.1 Solving Systems of Linear Equations... 3
MATH0 Notebook Fall Semester 06/07 prepared by Professor Jenny Baglivo c Copyright 009 07 by Jenny A. Baglivo. All Rights Reserved. Contents MATH0 Notebook 3. Solving Systems of Linear Equations........................
2.6. The Circle. Introduction. Prerequisites. Learning Outcomes
The Circle 2.6 Introduction A circle is one of the most familiar geometrical figures. In this brief Section we discuss the basic coordinate geometr of a circle - in particular the basic equation representing
