Geography 403 Lecture 7 Scanners, Thermal, and Microwave
|
|
|
- Annis Peters
- 10 years ago
- Views:
Transcription
1 Geography 403 Lecture 7 Scanners, Thermal, and Microwave Needs: Lect_403_7.ppt A. Basics of Passive Electric Sensors 1. Sensors absorb EMR and produce some sort of response, such as voltages differences which generate electric current a. photos produce chemical reaction in film emulsion 2. Sensors allow us to work with EMR outside the range that film can record 3. "Ideal sensor" a. response should be uniform over entire band, with no response outside band, but this is never achieved b. need to compare sensor response to original EMR spectrum over a discrete band where: Sensor Signal Äë = response constant Äë * EMR Intensity Äë c. electric sensors have relatively even response curves, while film emulsions are rarely uniform 4. Quantum type electric sensors--photon hits detector and produces changes in the electric qualities of the material a. photemissive--causes detection material to emit photons which can be measured ( not effective at ës higher than NIR)...too few photons produced--landsat RBV a variation of this type of sensor) b. photoconductors (semiconductors)--emr modifies electrical resistance of detector so a current is generated (e.g. solar cell), different substances used in different bands, some new sensors effective to very long ës c. problems--must be kept cool, or else they produce electric signals internally, also usually need filter to limit spectral range 5. Thermal Sensor (thermopile) measures EMR indirectly by heating that is caused by absorption--need to know band response to calibrate a. not very spectrally selective--use filters b. must "subtract out" EMR from instrument and solar if working in the FIR (thermal bands)--can be a big source of error
2 403-7-Scanners, Thermal, and Microwave 2 B. Other features of electric sensors 1. Instantaneous field of view (IFOV) D = Hâ (in radians) a. extended sources (larger than IFOV, separately detected) b. point sources (smaller than IFOV, merge with background) c. wide IFOV (low resolution, used for hemispheric energy) d. narrow IFOV (higher resolution, but less energy) PP1-5 original LANDSAT (â = 9 x 10 radians) at 915 km, D = 79 m 2. Response time - 9 a. photo emitter and photo conductor (1 x 10 s) b. thermopile SLOW 1-3 s C. Scanners--way to generate images in parts of the spectrum not sensitive to film emulsions 1. Electric Optical (E-O) type, really electric camera, as it converts radiation image into electric signal which can be stored a. plate which becomes charged when light is absorbed, resulting in an electric "picture" b. RBV systems shoot electrons at the plate, and scan across, measuring the response which can be stored on tape or viewed on a TV screen c. pictures can be transmitted back to earth d. limitation--uses lens, only works in UV, VIS, and NIR PP Optical Mechanical (O-M) type sense target in scan lines, sensor moves back and forth, platform moves forward between scan lines ( whiskbroom ) a. movement of scanner produces some distortions 3. "Pushbroom" scanners (newest, aboard SPOT & IKONOS) platform moves as in O-M, but now have a line of charge coupled devices to image entire scan line at once a. advantage--no moving parts b. disadvantage--calibration of a larger number of detectors, no longer a problem 4. New Area devices can operate like E-O and record images of an entire scene all at once D. Thermal Remote Sensing PP4 1. Thermal radiometer components a. collecting optics b. filter c. detector d. "chopper"--calibration 2. Thermal scanners--imaging devices (O-M or whiskbroom) a. contain a rotating "mirror" assembly that moves the IFOV along scan lines that run perpendicular to the flight line 3. Newest Thermal Scanners linear pushbrooms a. eliminates much of the geometric distortion of whiskbrooms 4. Image interpretation (almost always using emitted energy)
3 403-7-Scanners, Thermal, and Microwave 3 a. IR divided into: I. Near.7-1.5ìm (reflected IR, can record on film) ii. Mid ìm (scanners, both reflected and EMITTED) iii. Far ìm (region of earth's emission) b. imagery and energy exchange theory I. a black body curve would be produced by a perfect emitter ii. with internal calibration, can produce "brightness" temperatures 4 iii. E = åót emissivity affects apparent temperatures 5. Atmospheric effects a. gases in the atmosphere absorb and emit energy in narrow bands of ës determined by molecular structure--combined effect produces "windows", i.e. we can't use entire spectrum for R.S. b. solar window (allows UV, VIS, and NIR in) c. terrestrial window (around ìm) allows earth emitted energy out d. possible geographic variations due to water vapor and suspended material in column of air e. usual method of correcting is to use some kind of "ground truth", but this is difficult, can also compare same object with several different passes of the plane (if a plane) at different heights f. viewing angle is also important, as å usually decreases as viewing angle decreases 6. Distortion--fairly high due to system factors a. scale changes away from nadir along scan lines b. several other causes of distortion or signal loss 7. Environmental factors a. clouds or rain can obscure surface b. winds can produce "smears" c. small objects below system resolution can produce "hot spots" PP5-10 d. IMPORTANT--time of day and season is critical for interpretation e. nighttime TIR is probably superior to daytime for contrast 8. Example applications (interpretation difficult without ground truth) a. relative ice thickness b. soil surface temperature (air temperature more difficult) c. thermal pollution monitoring d. residential thermal energy surveys--building heat loss e. distinguish rock types by heat holding characteristics f. urban heat island studies
4 403-7-Scanners, Thermal, and Microwave 4 E. Microwave-RADAR interactions in the atmosphere 1. Two major systems a. Passive Microwave--earth emitted b. RADAR--active, send and then "listen" c. both subject to some similar limitations 2. Characteristics and Terms a cm ë common b. pulse--packet of EMR (1ìs) c. pulse repetition frequency PRF (1000/s) d. beam width (angular distance between ½ power points) e. power pattern (main and side lobes) f. Radar Equation Pr Pt Ga R ó where: Pr = power returned Pt = power transmitted Ga = gain or amplification factor of antenna R = distance to target ó = scattering characteristics of target g. return is determined by a number of characteristics of the target and the radar system 3. Return factors a. geometry--shape of material (snow vrs. rain) b. type of scattering (volume or surface) c. polarization (HH VV HV VH) d. dielectric constant ( water content of target) reason microwave oven works e. viewing angle--changes what radar "sees", i.e. top as opposed to sides of trees
5 403-7-Scanners, Thermal, and Microwave 5 f. resolution--half power angular width determines this g. wavelength--longer the ë the farther below the surface it will view 4. Example radar returns from different surfaces a. water--mostly specular, roughness can change b. land--penetrates below highest level (e.g. vegetation) so both surface and volume scattering present in return c. soil--highly moisture dependent, and some other props. d. snow--air-water mixture, depends on age, etc. e. plants--more sensitive to leaves than stalks, time of year important as it determines volume scattering (how many leaves present, etc.) F. Radar Systems 1. Resolution--smallest object resolved is related to beam width a. beam width is inversely prop. to number of ës across antenna b. for conventional systems need to either decrease ë or increase antenna size for improved resolution c. there are synthetic aperture processing techniques that can get around this for imaging systems 2. Basic forms and applications a. range discrimination--a function of pulse length, time to return give distance b. speed measurement--doppler principle, produces change of phase in return signal c. imaging systems 3. SLAR Systems (contrast real and synthetic apertures) displays radar "backscatter" of the earth's surface as a strip "map" PP11 a. a scanning system, displayed in either slant range or (more useful) ground range b. "look direction"-direction that radar is sending out energy toward PP12 c. range resolution ( look direction, at 90 to aircraft flight line) size decreases with distance away from aircraft (near range resolution not as good as far range resolution, see pages in Jensen) PP13 d. azimuth resolution (along the direction of aircraft flight line) size increases with distance from aircraft (better in near range and worse in far range) e. image must be rectified to produce "vertical" view from side imaged information f. dual systems can produce information for terrain contour mapping, due to knowledge of time traveled by EMR g. SLARs taken at two different altitudes can be used to produce stereo views h. geometric distortions 1. radar relief displacement unlike vertical air photos, it is TOWARD the sensor, because the higher the object the closer it is to the sensor called foreshortening or layover 2. shadows help or hinder as in air photos
6 403-7-Scanners, Thermal, and Microwave 6 3. speckle random constructive and destructive interference in the coherent radar beam G. Passive Microwave Radiation 1. similar to TIR, observations in the 1-30 cm ë range 2. can approximate energy produced in this band with the Rayleigh-Jeans formula 2 2 Brightness (Blackbody in W/m ) = 2 k T / ë where: -23 k = 1.38 x 10 j/ K (Boltzman constant) ë = wavelength in m T = temp. in K 3. Radiometric or "brightness" temperature will be related to: a. brightness of total scene (how warm is everything viewed) b. atmospheric loss c. scattered energy to sensor d. emitted energy by the atmosphere reaching sensor e. desired emitted energy by target H. Passive Microwave Systems (relatively new and developing area) 1. Antenna patterns determine resolution as in radar 2. many sources of "noise" from space, and even the antenna itself 3. About 10% of an average signal will be emission by atmosphere, and must also consider atmospheric attenuation 4. emmissivity varies more than in TIR 5. atmosphere more transparent than in TIR 6. little energy available, so need large "pixels", hence poorer resolution 7. Applications in oceanography, related to sea surface physical and chemical conditions; meteorology (tropical rainfall), wind speeds from sea surface state; hydrology, snow pack and soil moisture assessment I. LIDAR (Light Detection and Ranging, with lasers, a relatively new technology) 1. A scanning mirror directs pulses of laser light across-track perpendicular to the flight line 2. LIDAR is based on the accurate measurement of the laser pulse travel time from the transmitter to the target and back to the receiver. 3. Processing is complex: need to know x,y,z location; attitude (roll, pitch, and heading); scan angle; atmospheric refraction effects on the speed of light; and pulse travel time. 4. Multiple returns from the same laser pulse can allow determination of canopy heights as well as ground elevation (digital elevation models). 5. LIDAR-derived vertical accuracies are usually in the range of 5 to 30 cm.
Active and Passive Microwave Remote Sensing
Active and Passive Microwave Remote Sensing Passive remote sensing system record EMR that was reflected (e.g., blue, green, red, and near IR) or emitted (e.g., thermal IR) from the surface of the Earth.
Overview. What is EMR? Electromagnetic Radiation (EMR) LA502 Special Studies Remote Sensing
LA502 Special Studies Remote Sensing Electromagnetic Radiation (EMR) Dr. Ragab Khalil Department of Landscape Architecture Faculty of Environmental Design King AbdulAziz University Room 103 Overview What
Passive remote sensing systems record electromagnetic energy that was reflected (e.g., blue, green, red, and near-infrared light) or emitted (e.g.
CHAPTER 9: Active and Passive Microwave RS REFERENCE: Remote Sensing of the Environment John R. Jensen (2007) Second Edition Pearson Prentice Hall Passive Remote Sensing Passive remote sensing systems
Synthetic Sensing: Proximity / Distance Sensors
Synthetic Sensing: Proximity / Distance Sensors MediaRobotics Lab, February 2010 Proximity detection is dependent on the object of interest. One size does not fit all For non-contact distance measurement,
The most widely used active remote sensing systems include:
Active and Passive Remote Sensing Passive remote sensing systems record EMR that is reflected (e.g., blue, green, red, and near-infrared light) or emitted (e.g., thermal infrared energy) from the surface
D.S. Boyd School of Earth Sciences and Geography, Kingston University, U.K.
PHYSICAL BASIS OF REMOTE SENSING D.S. Boyd School of Earth Sciences and Geography, Kingston University, U.K. Keywords: Remote sensing, electromagnetic radiation, wavelengths, target, atmosphere, sensor,
Treasure Hunt. Lecture 2 How does Light Interact with the Environment? EMR Principles and Properties. EMR and Remote Sensing
Lecture 2 How does Light Interact with the Environment? Treasure Hunt Find and scan all 11 QR codes Choose one to watch / read in detail Post the key points as a reaction to http://www.scoop.it/t/env202-502-w2
A remote sensing instrument collects information about an object or phenomenon within the
Satellite Remote Sensing GE 4150- Natural Hazards Some slides taken from Ann Maclean: Introduction to Digital Image Processing Remote Sensing the art, science, and technology of obtaining reliable information
RESULTS FROM A SIMPLE INFRARED CLOUD DETECTOR
RESULTS FROM A SIMPLE INFRARED CLOUD DETECTOR A. Maghrabi 1 and R. Clay 2 1 Institute of Astronomical and Geophysical Research, King Abdulaziz City For Science and Technology, P.O. Box 6086 Riyadh 11442,
2.3 Spatial Resolution, Pixel Size, and Scale
Section 2.3 Spatial Resolution, Pixel Size, and Scale Page 39 2.3 Spatial Resolution, Pixel Size, and Scale For some remote sensing instruments, the distance between the target being imaged and the platform,
Two primary advantages of radars: all-weather and day /night imaging
Lecture 0 Principles of active remote sensing: Radars. Objectives: 1. Radar basics. Main types of radars.. Basic antenna parameters. Required reading: G: 8.1, p.401-40 dditional/advanced reading: Online
Digital Remote Sensing Data Processing Digital Remote Sensing Data Processing and Analysis: An Introduction and Analysis: An Introduction
Digital Remote Sensing Data Processing Digital Remote Sensing Data Processing and Analysis: An Introduction and Analysis: An Introduction Content Remote sensing data Spatial, spectral, radiometric and
ESCI 107/109 The Atmosphere Lesson 2 Solar and Terrestrial Radiation
ESCI 107/109 The Atmosphere Lesson 2 Solar and Terrestrial Radiation Reading: Meteorology Today, Chapters 2 and 3 EARTH-SUN GEOMETRY The Earth has an elliptical orbit around the sun The average Earth-Sun
Remote sensing is the collection of data without directly measuring the object it relies on the
Chapter 8 Remote Sensing Chapter Overview Remote sensing is the collection of data without directly measuring the object it relies on the reflectance of natural or emitted electromagnetic radiation (EMR).
Mapping Earth from Space Remote sensing and satellite images. Remote sensing developments from war
Mapping Earth from Space Remote sensing and satellite images Geomatics includes all the following spatial technologies: a. Cartography "The art, science and technology of making maps" b. Geographic Information
Weather Radar Basics
Weather Radar Basics RADAR: Radio Detection And Ranging Developed during World War II as a method to detect the presence of ships and aircraft (the military considered weather targets as noise) Since WW
16 th IOCCG Committee annual meeting. Plymouth, UK 15 17 February 2011. mission: Present status and near future
16 th IOCCG Committee annual meeting Plymouth, UK 15 17 February 2011 The Meteor 3M Mt satellite mission: Present status and near future plans MISSION AIMS Satellites of the series METEOR M M are purposed
Robot Perception Continued
Robot Perception Continued 1 Visual Perception Visual Odometry Reconstruction Recognition CS 685 11 Range Sensing strategies Active range sensors Ultrasound Laser range sensor Slides adopted from Siegwart
Overview of the IR channels and their applications
Ján Kaňák Slovak Hydrometeorological Institute [email protected] Overview of the IR channels and their applications EUMeTrain, 14 June 2011 Ján Kaňák, SHMÚ 1 Basics in satellite Infrared image interpretation
Remote Sensing an Introduction
Remote Sensing an Introduction Seminar: Space is the Place Referenten: Anica Huck & Michael Schlund Remote Sensing means the observation of, or gathering information about, a target by a device separated
Information Contents of High Resolution Satellite Images
Information Contents of High Resolution Satellite Images H. Topan, G. Büyüksalih Zonguldak Karelmas University K. Jacobsen University of Hannover, Germany Keywords: satellite images, mapping, resolution,
2 Absorbing Solar Energy
2 Absorbing Solar Energy 2.1 Air Mass and the Solar Spectrum Now that we have introduced the solar cell, it is time to introduce the source of the energy the sun. The sun has many properties that could
High Resolution Information from Seven Years of ASTER Data
High Resolution Information from Seven Years of ASTER Data Anna Colvin Michigan Technological University Department of Geological and Mining Engineering and Sciences Outline Part I ASTER mission Terra
8.1 Radio Emission from Solar System objects
8.1 Radio Emission from Solar System objects 8.1.1 Moon and Terrestrial planets At visible wavelengths all the emission seen from these objects is due to light reflected from the sun. However at radio
Antennas & Propagation. CS 6710 Spring 2010 Rajmohan Rajaraman
Antennas & Propagation CS 6710 Spring 2010 Rajmohan Rajaraman Introduction An antenna is an electrical conductor or system of conductors o Transmission - radiates electromagnetic energy into space o Reception
SAMPLE MIDTERM QUESTIONS
Geography 309 Sample MidTerm Questions Page 1 SAMPLE MIDTERM QUESTIONS Textbook Questions Chapter 1 Questions 4, 5, 6, Chapter 2 Questions 4, 7, 10 Chapter 4 Questions 8, 9 Chapter 10 Questions 1, 4, 7
Electromagnetic Radiation (EMR) and Remote Sensing
Electromagnetic Radiation (EMR) and Remote Sensing 1 Atmosphere Anything missing in between? Electromagnetic Radiation (EMR) is radiated by atomic particles at the source (the Sun), propagates through
LiDAR for vegetation applications
LiDAR for vegetation applications UoL MSc Remote Sensing Dr Lewis [email protected] Introduction Introduction to LiDAR RS for vegetation Review instruments and observational concepts Discuss applications
a) species of plants that require a relatively cool, moist environment tend to grow on poleward-facing slopes.
J.D. McAlpine ATMS 611 HMWK #8 a) species of plants that require a relatively cool, moist environment tend to grow on poleward-facing slopes. These sides of the slopes will tend to have less average solar
High Resolution RF Analysis: The Benefits of Lidar Terrain & Clutter Datasets
0 High Resolution RF Analysis: The Benefits of Lidar Terrain & Clutter Datasets January 15, 2014 Martin Rais 1 High Resolution Terrain & Clutter Datasets: Why Lidar? There are myriad methods, techniques
Clouds and the Energy Cycle
August 1999 NF-207 The Earth Science Enterprise Series These articles discuss Earth's many dynamic processes and their interactions Clouds and the Energy Cycle he study of clouds, where they occur, and
E190Q Lecture 5 Autonomous Robot Navigation
E190Q Lecture 5 Autonomous Robot Navigation Instructor: Chris Clark Semester: Spring 2014 1 Figures courtesy of Siegwart & Nourbakhsh Control Structures Planning Based Control Prior Knowledge Operator
CHAPTER 2 Energy and Earth
CHAPTER 2 Energy and Earth This chapter is concerned with the nature of energy and how it interacts with Earth. At this stage we are looking at energy in an abstract form though relate it to how it affect
Hyperspectral Satellite Imaging Planning a Mission
Hyperspectral Satellite Imaging Planning a Mission Victor Gardner University of Maryland 2007 AIAA Region 1 Mid-Atlantic Student Conference National Institute of Aerospace, Langley, VA Outline Objective
Assessing Cloud Spatial and Vertical Distribution with Infrared Cloud Analyzer
Assessing Cloud Spatial and Vertical Distribution with Infrared Cloud Analyzer I. Genkova and C. N. Long Pacific Northwest National Laboratory Richland, Washington T. Besnard ATMOS SARL Le Mans, France
Solar Energy. Outline. Solar radiation. What is light?-- Electromagnetic Radiation. Light - Electromagnetic wave spectrum. Electromagnetic Radiation
Outline MAE 493R/593V- Renewable Energy Devices Solar Energy Electromagnetic wave Solar spectrum Solar global radiation Solar thermal energy Solar thermal collectors Solar thermal power plants Photovoltaics
Estimating Firn Emissivity, from 1994 to1998, at the Ski Hi Automatic Weather Station on the West Antarctic Ice Sheet Using Passive Microwave Data
Estimating Firn Emissivity, from 1994 to1998, at the Ski Hi Automatic Weather Station on the West Antarctic Ice Sheet Using Passive Microwave Data Mentor: Dr. Malcolm LeCompte Elizabeth City State University
Monitoring Soil Moisture from Space. Dr. Heather McNairn Science and Technology Branch Agriculture and Agri-Food Canada [email protected].
Monitoring Soil Moisture from Space Dr. Heather McNairn Science and Technology Branch Agriculture and Agri-Food Canada [email protected] What is Remote Sensing? Scientists turn the raw data collected
Seasonal & Daily Temperatures. Seasons & Sun's Distance. Solstice & Equinox. Seasons & Solar Intensity
Seasonal & Daily Temperatures Seasons & Sun's Distance The role of Earth's tilt, revolution, & rotation in causing spatial, seasonal, & daily temperature variations Please read Chapter 3 in Ahrens Figure
Solar Flux and Flux Density. Lecture 3: Global Energy Cycle. Solar Energy Incident On the Earth. Solar Flux Density Reaching Earth
Lecture 3: Global Energy Cycle Solar Flux and Flux Density Planetary energy balance Greenhouse Effect Vertical energy balance Latitudinal energy balance Seasonal and diurnal cycles Solar Luminosity (L)
Lidar 101: Intro to Lidar. Jason Stoker USGS EROS / SAIC
Lidar 101: Intro to Lidar Jason Stoker USGS EROS / SAIC Lidar Light Detection and Ranging Laser altimetry ALTM (Airborne laser terrain mapping) Airborne laser scanning Lidar Laser IMU (INS) GPS Scanning
Optical Metrology. Third Edition. Kjell J. Gasvik Spectra Vision AS, Trondheim, Norway JOHN WILEY & SONS, LTD
2008 AGI-Information Management Consultants May be used for personal purporses only or by libraries associated to dandelon.com network. Optical Metrology Third Edition Kjell J. Gasvik Spectra Vision AS,
See Lab 8, Natural Resource Canada RS Tutorial web pages Tues 3/24 Supervised land cover classification See Lab 9, NR Canada RS Tutorial web pages
SFR 406 Remote Sensing, Image Interpretation and Forest Mapping EXAM # 2 (23 April 2015) REVIEW SHEET www.umaine.edu/mial/courses/sfr406/index.htm (Lecture powerpoint & notes) TOPICS COVERED ON 2 nd EXAM:
Cloud detection and clearing for the MOPITT instrument
Cloud detection and clearing for the MOPITT instrument Juying Warner, John Gille, David P. Edwards and Paul Bailey National Center for Atmospheric Research, Boulder, Colorado ABSTRACT The Measurement Of
How To Make An Orthophoto
ISSUE 2 SEPTEMBER 2014 TSA Endorsed by: CLIENT GUIDE TO DIGITAL ORTHO- PHOTOGRAPHY The Survey Association s Client Guides are primarily aimed at other professionals such as engineers, architects, planners
Principle of Thermal Imaging
Section 8 All materials, which are above 0 degrees Kelvin (-273 degrees C), emit infrared energy. The infrared energy emitted from the measured object is converted into an electrical signal by the imaging
Radiation Transfer in Environmental Science
Radiation Transfer in Environmental Science with emphasis on aquatic and vegetation canopy media Autumn 2008 Prof. Emmanuel Boss, Dr. Eyal Rotenberg Introduction Radiation in Environmental sciences Most
Energy Pathways in Earth s Atmosphere
BRSP - 10 Page 1 Solar radiation reaching Earth s atmosphere includes a wide spectrum of wavelengths. In addition to visible light there is radiation of higher energy and shorter wavelength called ultraviolet
Blackbody Radiation References INTRODUCTION
Blackbody Radiation References 1) R.A. Serway, R.J. Beichner: Physics for Scientists and Engineers with Modern Physics, 5 th Edition, Vol. 2, Ch.40, Saunders College Publishing (A Division of Harcourt
Seasonal Temperature Variations
Seasonal and Daily Temperatures Fig. 3-CO, p. 54 Seasonal Temperature Variations What causes the seasons What governs the seasons is the amount of solar radiation reaching the ground What two primary factors
A New Radar Technology Broadband Radar Explained
A New Radar Technology Broadband Radar Explained by Bill Johnson The landscape of small boat radar has just changed. Until two months ago, all the radars for the leisure marine market worked in pretty
Energy. Mechanical Energy
Principles of Imaging Science I (RAD119) Electromagnetic Radiation Energy Definition of energy Ability to do work Physicist s definition of work Work = force x distance Force acting upon object over distance
American Society of Agricultural and Biological Engineers
ASAE S580.1 NOV2013 Testing and Reporting Solar Cooker Performance American Society of Agricultural and Biological Engineers ASABE is a professional and technical organization, of members worldwide, who
Geography affects climate.
KEY CONCEPT Climate is a long-term weather pattern. BEFORE, you learned The Sun s energy heats Earth s surface unevenly The atmosphere s temperature changes with altitude Oceans affect wind flow NOW, you
Remote Sensing. Vandaag. Voordelen Remote Sensing Wat is Remote Sensing? Vier elementen Remote Sensing systeem
Remote Sensing 1 Vandaag Voordelen Remote Sensing Wat is Remote Sensing? Vier elementen Remote Sensing systeem 2 Nederland Vanaf 700 km hoogte Landsat TM mozaïek 3 Europa vanaf 36000 km hoogte 4 5 Mount
Light Control and Efficacy using Light Guides and Diffusers
Light Control and Efficacy using Light Guides and Diffusers LEDs 2012 Michael Georgalis, LC Marketing Manager, Fusion Optix October 11, 2012 Agenda Introduction What Is Light Control? Improves Application
ATM S 111, Global Warming: Understanding the Forecast
ATM S 111, Global Warming: Understanding the Forecast DARGAN M. W. FRIERSON DEPARTMENT OF ATMOSPHERIC SCIENCES DAY 1: OCTOBER 1, 2015 Outline How exactly the Sun heats the Earth How strong? Important concept
COLLATED QUESTIONS: ELECTROMAGNETIC RADIATION
COLLATED QUESTIONS: ELECTROMAGNETIC RADIATION 2011(2): WAVES Doppler radar can determine the speed and direction of a moving car. Pulses of extremely high frequency radio waves are sent out in a narrow
Sunlight and its Properties. EE 495/695 Y. Baghzouz
Sunlight and its Properties EE 495/695 Y. Baghzouz The sun is a hot sphere of gas whose internal temperatures reach over 20 million deg. K. Nuclear fusion reaction at the sun's core converts hydrogen to
Research on Soil Moisture and Evapotranspiration using Remote Sensing
Research on Soil Moisture and Evapotranspiration using Remote Sensing Prof. dr. hab Katarzyna Dabrowska Zielinska Remote Sensing Center Institute of Geodesy and Cartography 00-950 Warszawa Jasna 2/4 Field
A PHOTOGRAMMETRIC APPRAOCH FOR AUTOMATIC TRAFFIC ASSESSMENT USING CONVENTIONAL CCTV CAMERA
A PHOTOGRAMMETRIC APPRAOCH FOR AUTOMATIC TRAFFIC ASSESSMENT USING CONVENTIONAL CCTV CAMERA N. Zarrinpanjeh a, F. Dadrassjavan b, H. Fattahi c * a Islamic Azad University of Qazvin - [email protected]
Monitoring a Changing Environment with Synthetic Aperture Radar. Alaska Satellite Facility National Park Service Don Atwood
Monitoring a Changing Environment with Synthetic Aperture Radar Don Atwood Alaska Satellite Facility 1 Entering the SAR Age 2 SAR Satellites RADARSAT-1 Launched 1995 by CSA 5.6 cm (C-Band) HH Polarization
Passive Millimeter-Wave Imaging and Potential Applications in Homeland Security and Aeronautics
Passive Millimeter-Wave Imaging and Potential Applications in Homeland Security and Aeronautics Magdy Attia, Ph.D. James B. Duke Distinguished Professor Chair, Computer Science & Engineering Department
The Balance of Power in the Earth-Sun System
NASA Facts National Aeronautics and Space Administration www.nasa.gov The Balance of Power in the Earth-Sun System The Sun is the major source of energy for Earth s oceans, atmosphere, land, and biosphere.
Passive Remote Sensing of Clouds from Airborne Platforms
Passive Remote Sensing of Clouds from Airborne Platforms Why airborne measurements? My instrument: the Solar Spectral Flux Radiometer (SSFR) Some spectrometry/radiometry basics How can we infer cloud properties
Remote Sensing Satellite Information Sheets Geophysical Institute University of Alaska Fairbanks
Remote Sensing Satellite Information Sheets Geophysical Institute University of Alaska Fairbanks ASTER Advanced Spaceborne Thermal Emission and Reflection Radiometer AVHRR Advanced Very High Resolution
ENVIRONMENTAL MONITORING Vol. I - Remote Sensing (Satellite) System Technologies - Michael A. Okoye and Greg T. Koeln
REMOTE SENSING (SATELLITE) SYSTEM TECHNOLOGIES Michael A. Okoye and Greg T. Earth Satellite Corporation, Rockville Maryland, USA Keywords: active microwave, advantages of satellite remote sensing, atmospheric
The Basics of Scanning Electron Microscopy
The Basics of Scanning Electron Microscopy The small scanning electron microscope is easy to use because almost every variable is pre-set: the acceleration voltage is always 15kV, it has only a single
Traffic Monitoring Systems. Technology and sensors
Traffic Monitoring Systems Technology and sensors Technology Inductive loops Cameras Lidar/Ladar and laser Radar GPS etc Inductive loops Inductive loops signals Inductive loop sensor The inductance signal
Satellite Altimetry Missions
Satellite Altimetry Missions SINGAPORE SPACE SYMPOSIUM 30 TH SEPTEMBER 2015 AUTHORS: LUCA SIMONINI/ ERICK LANSARD/ JOSE M GONZALEZ www.thalesgroup.com Table of Content General Principles and Applications
APPENDIX D: SOLAR RADIATION
APPENDIX D: SOLAR RADIATION The sun is the source of most energy on the earth and is a primary factor in determining the thermal environment of a locality. It is important for engineers to have a working
Resolutions of Remote Sensing
Resolutions of Remote Sensing 1. Spatial (what area and how detailed) 2. Spectral (what colors bands) 3. Temporal (time of day/season/year) 4. Radiometric (color depth) Spatial Resolution describes how
6) How wide must a narrow slit be if the first diffraction minimum occurs at ±12 with laser light of 633 nm?
Test IV Name 1) In a single slit diffraction experiment, the width of the slit is 3.1 10-5 m and the distance from the slit to the screen is 2.2 m. If the beam of light of wavelength 600 nm passes through
Antenna Properties and their impact on Wireless System Performance. Dr. Steven R. Best. Cushcraft Corporation 48 Perimeter Road Manchester, NH 03013
Antenna Properties and their impact on Wireless System Performance Dr. Steven R. Best Cushcraft Corporation 48 Perimeter Road Manchester, NH 03013 Phone (603) 627-7877 FAX: (603) 627-1764 Email: [email protected]
Precipitation Remote Sensing
Precipitation Remote Sensing Huade Guan Prepared for Remote Sensing class Earth & Environmental Science University of Texas at San Antonio November 14, 2005 Outline Background Remote sensing technique
Optical Communications
Optical Communications Telecommunication Engineering School of Engineering University of Rome La Sapienza Rome, Italy 2005-2006 Lecture #2, May 2 2006 The Optical Communication System BLOCK DIAGRAM OF
Christine E. Hatch University of Nevada, Reno
Christine E. Hatch University of Nevada, Reno Roadmap What is DTS? How Does it Work? What Can DTS Measure? Applications What is Distributed Temperature Sensing (DTS)? Temperature measurement using only
How Landsat Images are Made
How Landsat Images are Made Presentation by: NASA s Landsat Education and Public Outreach team June 2006 1 More than just a pretty picture Landsat makes pretty weird looking maps, and it isn t always easy
Chapter 2: Solar Radiation and Seasons
Chapter 2: Solar Radiation and Seasons Spectrum of Radiation Intensity and Peak Wavelength of Radiation Solar (shortwave) Radiation Terrestrial (longwave) Radiations How to Change Air Temperature? Add
Various Technics of Liquids and Solids Level Measurements. (Part 3)
(Part 3) In part one of this series of articles, level measurement using a floating system was discusses and the instruments were recommended for each application. In the second part of these articles,
Using Optech LMS to Calibrate Survey Data Without Ground Control Points
Challenge An Optech client conducted an airborne lidar survey over a sparsely developed river valley. The data processors were finding that the data acquired in this survey was particularly difficult to
Realization of a UV fisheye hyperspectral camera
Realization of a UV fisheye hyperspectral camera Valentina Caricato, Andrea Egidi, Marco Pisani and Massimo Zucco, INRIM Outline Purpose of the instrument Required specs Hyperspectral technique Optical
Evaluation of the Effect of Upper-Level Cirrus Clouds on Satellite Retrievals of Low-Level Cloud Droplet Effective Radius
Evaluation of the Effect of Upper-Level Cirrus Clouds on Satellite Retrievals of Low-Level Cloud Droplet Effective Radius F.-L. Chang and Z. Li Earth System Science Interdisciplinary Center University
Laboratory #3 Guide: Optical and Electrical Properties of Transparent Conductors -- September 23, 2014
Laboratory #3 Guide: Optical and Electrical Properties of Transparent Conductors -- September 23, 2014 Introduction Following our previous lab exercises, you now have the skills and understanding to control
Robot Sensors. Outline. The Robot Structure. Robots and Sensors. Henrik I Christensen
Robot Sensors Henrik I Christensen Robotics & Intelligent Machines @ GT Georgia Institute of Technology, Atlanta, GA 30332-0760 [email protected] Henrik I Christensen (RIM@GT) Sensors 1 / 38 Outline 1
INVESTIGA I+D+i 2013/2014
INVESTIGA I+D+i 2013/2014 SPECIFIC GUIDELINES ON AEROSPACE OBSERVATION OF EARTH Text by D. Eduardo de Miguel October, 2013 Introducction Earth observation is the use of remote sensing techniques to better
Remote Sensing of Clouds from Polarization
Remote Sensing of Clouds from Polarization What polarization can tell us about clouds... and what not? J. Riedi Laboratoire d'optique Atmosphérique University of Science and Technology Lille / CNRS FRANCE
Preview of Period 3: Electromagnetic Waves Radiant Energy II
Preview of Period 3: Electromagnetic Waves Radiant Energy II 3.1 Radiant Energy from the Sun How is light reflected and transmitted? What is polarized light? 3.2 Energy Transfer with Radiant Energy How
Fundamentals of modern UV-visible spectroscopy. Presentation Materials
Fundamentals of modern UV-visible spectroscopy Presentation Materials The Electromagnetic Spectrum E = hν ν = c / λ 1 Electronic Transitions in Formaldehyde 2 Electronic Transitions and Spectra of Atoms
Reprint (R22) Avoiding Errors in UV Radiation Measurements. By Thomas C. Larason July 2001. Reprinted from Photonics Spectra, Laurin Publishing
Reprint (R22) Avoiding Errors in UV Radiation Measurements By Thomas C. Larason July 2001 Reprinted from Photonics Spectra, Laurin Publishing Gooch & Housego 4632 36 th Street, Orlando, FL 32811 Tel: 1
AS COMPETITION PAPER 2008
AS COMPETITION PAPER 28 Name School Town & County Total Mark/5 Time Allowed: One hour Attempt as many questions as you can. Write your answers on this question paper. Marks allocated for each question
Solar Tracking Application
Solar Tracking Application A Rockwell Automation White Paper Solar trackers are devices used to orient photovoltaic panels, reflectors, lenses or other optical devices toward the sun. Since the sun s position
LIDAR and Digital Elevation Data
LIDAR and Digital Elevation Data Light Detection and Ranging (LIDAR) is being used by the North Carolina Floodplain Mapping Program to generate digital elevation data. These highly accurate topographic
How To Understand Light And Color
PRACTICE EXAM IV P202 SPRING 2004 1. In two separate double slit experiments, an interference pattern is observed on a screen. In the first experiment, violet light (λ = 754 nm) is used and a second-order
CBERS Program Update Jacie 2011. Frederico dos Santos Liporace AMS Kepler [email protected]
CBERS Program Update Jacie 2011 Frederico dos Santos Liporace AMS Kepler [email protected] Overview CBERS 3 and 4 characteristics Differences from previous CBERS satellites (CBERS 1/2/2B) Geometric
Infrared Thermometry. Introduction, History, and Applications. Optical Pyrometry. Jason Mershon, Advanced Energy Industries, Inc
Infrared Thermometry Introduction, History, and Applications Jason Mershon, Advanced Energy Industries, Inc In manufacturing environments, measuring the temperature of an object without contact has proven
Department of Engineering Enzo Ferrari University of Modena and Reggio Emilia
Department of Engineering Enzo Ferrari University of Modena and Reggio Emilia Object: Measurement of solar reflectance, thermal emittance and Solar Reflectance Index Report Reference person: Alberto Muscio
WSR - Weather Surveillance Radar
1 of 7 Radar by Paul Sirvatka College of DuPage Meteorology WSR - Weather Surveillance Radar It was learned during World War II that electromagnetic radiation could be sent out, bounced off an object and
The Three Heat Transfer Modes in Reflow Soldering
Section 5: Reflow Oven Heat Transfer The Three Heat Transfer Modes in Reflow Soldering There are three different heating modes involved with most SMT reflow processes: conduction, convection, and infrared
