Lidar 101: Intro to Lidar. Jason Stoker USGS EROS / SAIC

Size: px
Start display at page:

Download "Lidar 101: Intro to Lidar. Jason Stoker USGS EROS / SAIC"

Transcription

1 Lidar 101: Intro to Lidar Jason Stoker USGS EROS / SAIC

2 Lidar Light Detection and Ranging Laser altimetry ALTM (Airborne laser terrain mapping) Airborne laser scanning

3 Lidar Laser IMU (INS) GPS Scanning Mirror On board computer

4 Laser Pulse laser Records distance to target Time * c / 2 Laser wavelengths can differ 1064 nm khz systems available today

5

6 Lidar Laser L A S E R L A S E R

7 IMU Inertial Measurement Unit Gyroscopes and accelerometer Roll Pitch Records roll, pitch, yaw of aircraft Yaw Courtesy of NASA

8 GPS Global positioning system Differentially corrected Provides cm accuracy of aircraft Allows cm accuracy of laser pulse

9 Scanning Lidar Courtesy of Dodson & Associates

10

11 Records data Photon detector (intensity) Laser timing IMU info GPS info Mirror scan angle Converts into XYZ Millions of points On-board display On-board Computer

12 X r X r G o r X G LIDAR Equation r r = X o + R φ, κ RΔ ω, Δφ, Δκ PG + Rω, φ, κ RΔ ω, Δφ, Δ 0 ρ ω, κ Rα, β 0 ground coordinates of object point under consideration ground coordinates of GPS antenna phase center P r G offset between laser unit and phase center w.r.t. the laser unit coordinate system R ω, φ, κ rotation matrix that needs to be applied to the ground coordinate system until it is parallel to the IMU coordinate system R rotation matrix that needs to be applied to the IMU coordinate system until it is parallel to the Δ ω, Δφ, Δκ laser unit coordinate system R α,β rotation matrix that needs to be applied to the laser unit coordinate system until it is parallel to the laser beam coordinate system Ayman Habib

13 Error Sources Bore-sighting offset error (P G ) Bore-sighting angular error (Δω, Δφ, and Δκ) Laser range error (ρ) Laser beam angular error (α, β) Laser range noise (ρ) GPS noise (X o ) IMU noise (ω, φ, and κ) Laser beam angular noise (α, β) Ayman Habib

14 Error Budget Detector Bias and gain Diff b/w electronical and mechanical sensor origin Fluctuations in pulse caused by atmosphere Variance caused by SNR, variance of pulse length and variance of sampling frequency Pointing Jitter Horizontal position dependent on stability of mirror (tan of terrain slope- high relief, higher error) INS (IMU) errors Misalignment and time-dependent gyro-drift

15 Error Budget (cont) GPS Errors Orbit Errors Ionospheric and tropospheric delays, Phase ambiguities Multipath returns Atmospheric influences Propagation delays Defraction, absorption and scattering Dependent on flying height, moisture

16 Slope and flight line effects: FLIGHT LINE dz dz dz

17 Error Budget (cont) Reflectivity of target Influences SNR and consequently point precision GPS and INS integration When use the same clock, errors are minimal When don t, asychronation in the clocks cause positioning errors in the order of the velocity of the aircraft time the sync error

18 Courtesy of Amar Nayegandhi

19 Platform type Lidar Differences Profile or scanning Single, multiple, or waveform returns Footprint Size Posting density Atmospheric / terrestrial / bathymetric

20 Space- based Platforms Atmospheric Airborne Ground

21 Courtesy of Robert Kayen

22 Pulses vs Returns

23 Courtesy of Dave Harding

24 Returns Single Return Multiple returns Waveform Returns

25 Returns Single Return Multiple returns Waveform Returns 1 st return 2 nd return 3 rd return 4 th return

26

27 Courtesy of Amar Nayegandhi

28 Intensity Intensity = amount of energy reflected for each return Different surfaces reflect differently Hard to quantify DNs

29 Returns Single Return Multiple returns H E I G H T Waveform Returns Energy Returned

30 Returns Single Return Multiple returns H E I G H T Waveform Returns Energy Returned

31 Footprints Different types of systems: Large footprint

32 Footprints Different types of systems: Large footprint Small footprint

33 Beam Divergence Light tends to spread out Laser is coherent light, but spreads too Beam divergence Measured in mrads Higher up, the larger the footprint will be

34 Beam Divergence Light tends to spread out Laser is coherent light, but spreads too Beam divergence Measured in mrads Higher up, the larger the footprint will be

35 Posting Density Returns called postings Function of: Laser pulse rate Hz or khz Flying ht/speed Scan angle Not regular interval 0.5m 0.5m 0.5m 0.5m 0.5m 0.5m 0.5m 0.5m 0.5m 0.5m 0.5m 0.5m 0.5m 0.5m 0.5m 0.5m 1.5m 0.5m 0.5m 0.5m 0.5m 0.5m 0.5m 0.5m 0.5m 0.5m

36 Courtesy of Amar Nayegandhi

37 Raw lidar returns

38

39 Introduction Most commercial systems today are: Small footprint Multiple return Collecting imagery simultaneously Large footprint continuous waveform operated by NASA Some systems sample in the waveform

40 Current Lidar Representations Point Cloud of 3D data Triangulated Irregular Network (TIN) Raster

41

42

43 Current Lidar Representations Point Cloud of 3D data Triangulated Irregular Network (TIN) Raster

44 Converting Points to TIN

45 TIN Without Breaklines Not Hydro-Enforced Courtesy of Dave Maune

46 TIN With Breaklines Hydro Hydro- Enforced Courtesy of Dave Maune

47 Current Lidar Representations Point Cloud of 3D data Triangulated Irregular Network (TIN) Raster (Grid)

48 Interpolating a Raster- IDW

49 Research and Applications

50 A wealth of information derived from lidar Volcano monitoring Vegetation / Biomass Land Cover Earthquake faults Hydrologic / Hydraulic Urban / Suburban Response Coastal Studies Carbon studies

51 Lidar Applications Visualization Vendor Data Dissemination Bare Earth Analyses Vegetative Analyses Structural Analyses

52 Bare Earth Analysis Primary focus of commercial sector $$$$$ Technology is become widely accepted More cost effective / accurate than photogrammetry

53

54 1-arc-second resolution 1/3-arc-second resolution 1/9-arc-second resolution

55 Multi-resolution NED: 1-arc-second 1/3-arc-second 1/9-arc-second

56 Multi-Resolution NED 1 arc second 1/3 arc second 1/9 arc second

57 Manual Post-Processing

58 Northern San Andreas LIDAR: fault geomorphology Courtesy of Carol Prentice

59 Vegetation

60 Bare Earth Filtering

61

62 Vegetation Identified

63 Canopy Height

64 Canopy Height

65 Canopy Height Model Leon County, FL

66 Canopy Height

67

68 Crown Base Height Distance from the ground to the lowest needle-bearing branch Important in fire modeling Surface fire / crown fire Crown Base Height

69 Length Length of of live live crown crown Crown base height

70 Multi-temporal LIDAR As LIDAR collections increase, there will be more availability to use LIDAR for monitoring change detection purposes

71 Monitoring Growth with LIDAR Individual Tree LIDAR Datasets m height growth Courtesy of Hans-Erik Andersen

72 Mount Saint Helens Courtesy of Dave Harding

73

74 Bare earth difference

75

76 Bare earth difference

77 Lidar / Spectral Fusions

78

79 Intensity information Trees Roof types Grass Water

80 Lidar point cloud of Structures

81

82 Feature Extraction using Lidar

83 National Lidar Initiative Meeting February th 2007, USGS headquarters

84

85

LIDAR and Digital Elevation Data

LIDAR and Digital Elevation Data LIDAR and Digital Elevation Data Light Detection and Ranging (LIDAR) is being used by the North Carolina Floodplain Mapping Program to generate digital elevation data. These highly accurate topographic

More information

High Resolution RF Analysis: The Benefits of Lidar Terrain & Clutter Datasets

High Resolution RF Analysis: The Benefits of Lidar Terrain & Clutter Datasets 0 High Resolution RF Analysis: The Benefits of Lidar Terrain & Clutter Datasets January 15, 2014 Martin Rais 1 High Resolution Terrain & Clutter Datasets: Why Lidar? There are myriad methods, techniques

More information

LiDAR for vegetation applications

LiDAR for vegetation applications LiDAR for vegetation applications UoL MSc Remote Sensing Dr Lewis plewis@geog.ucl.ac.uk Introduction Introduction to LiDAR RS for vegetation Review instruments and observational concepts Discuss applications

More information

Managing Lidar (and other point cloud) Data. Lindsay Weitz Cody Benkelman

Managing Lidar (and other point cloud) Data. Lindsay Weitz Cody Benkelman (and other point cloud) Data Lindsay Weitz Cody Benkelman Presentation Context What is lidar, and how does it work? Not this presentation! What can you do with lidar in ArcGIS? What does Esri recommend

More information

Quality Assurance and Quality Control of LiDAR Systems and Derived Data

Quality Assurance and Quality Control of LiDAR Systems and Derived Data Quality Assurance and Quality Control of LiDAR Systems and Derived Data Prepared by Ayman Habib & Jim Van Rens Abstract LiDAR systems have been widely adopted for the acquisition of dense and accurate

More information

Full Waveform Digitizing, Dual Channel Airborne LiDAR Scanning System for Ultra Wide Area Mapping

Full Waveform Digitizing, Dual Channel Airborne LiDAR Scanning System for Ultra Wide Area Mapping Full Waveform Digitizing, Dual Channel Airborne LiDAR Scanning System for Ultra Wide Area Mapping RIEGL LMS-Q56 high laser pulse repetition rate up to 8 khz digitization electronics for full waveform data

More information

How To Fuse A Point Cloud With A Laser And Image Data From A Pointcloud

How To Fuse A Point Cloud With A Laser And Image Data From A Pointcloud REAL TIME 3D FUSION OF IMAGERY AND MOBILE LIDAR Paul Mrstik, Vice President Technology Kresimir Kusevic, R&D Engineer Terrapoint Inc. 140-1 Antares Dr. Ottawa, Ontario K2E 8C4 Canada paul.mrstik@terrapoint.com

More information

Submitted to: Submitted by: Department of Geology and Mineral Industries 800 NE Oregon Street, Suite 965 Portland, OR 97232

Submitted to: Submitted by: Department of Geology and Mineral Industries 800 NE Oregon Street, Suite 965 Portland, OR 97232 LIDAR REMOTE SENSING DATA COLLECTION DEPARTMENT OF F GEOLOGY AND MINERAL INDUSTRIES CRATER LAKE, OREGON NOVEMBER 30, 2010 Submitted to: Department of Geology and Mineral Industries 800 NE Oregon Street,

More information

The following was presented at DMT 14 (June 1-4, 2014, Newark, DE).

The following was presented at DMT 14 (June 1-4, 2014, Newark, DE). DMT 2014 The following was presented at DMT 14 (June 1-4, 2014, Newark, DE). The contents are provisional and will be superseded by a paper in the DMT 14 Proceedings. See also presentations and Proceedings

More information

Using Optech LMS to Calibrate Survey Data Without Ground Control Points

Using Optech LMS to Calibrate Survey Data Without Ground Control Points Challenge An Optech client conducted an airborne lidar survey over a sparsely developed river valley. The data processors were finding that the data acquired in this survey was particularly difficult to

More information

FOREST PARAMETER ESTIMATION BY LIDAR DATA PROCESSING

FOREST PARAMETER ESTIMATION BY LIDAR DATA PROCESSING P.-F. Mursa Forest parameter estimation by LIDAR data processing FOREST PARAMETER ESTIMATION BY LIDAR DATA PROCESSING Paula-Florina MURSA, Master Student Military Technical Academy, paula.mursa@gmail.com

More information

AUTOMATED DEM VALIDATION USING ICESAT GLAS DATA INTRODUCTION

AUTOMATED DEM VALIDATION USING ICESAT GLAS DATA INTRODUCTION AUTOMATED DEM VALIDATION USING ICESAT GLAS DATA Mary Pagnutti Robert E. Ryan Innovative Imaging and Research Corp. Building 1103, Suite 140C Stennis Space Center, MS 39529 mpagnutti@i2rcorp.com rryan@i2rcorp.com

More information

Fabrizio Tadina Regional Sales Manager Western Europe Airborne Products Optech Incorporated

Fabrizio Tadina Regional Sales Manager Western Europe Airborne Products Optech Incorporated Fabrizio Tadina Regional Sales Manager Western Europe Airborne Products Optech Incorporated Airborne Trends Analysis Review of market pressures that are driving Optech development efforts Product Announcements

More information

3D Building Roof Extraction From LiDAR Data

3D Building Roof Extraction From LiDAR Data 3D Building Roof Extraction From LiDAR Data Amit A. Kokje Susan Jones NSG- NZ Outline LiDAR: Basics LiDAR Feature Extraction (Features and Limitations) LiDAR Roof extraction (Workflow, parameters, results)

More information

Robot Perception Continued

Robot Perception Continued Robot Perception Continued 1 Visual Perception Visual Odometry Reconstruction Recognition CS 685 11 Range Sensing strategies Active range sensors Ultrasound Laser range sensor Slides adopted from Siegwart

More information

Inter Swath Data Quality Measures to Assess Quality of Calibration of Lidar System. U.S. Department of the Interior U.S.

Inter Swath Data Quality Measures to Assess Quality of Calibration of Lidar System. U.S. Department of the Interior U.S. Inter Swath Data Quality Measures to Assess Quality of Calibration of Lidar System U.S. Department of the Interior U.S. Geological Survey Ajit Sampath, HK Heidemann, Greg Stensaas JACIE, 5/5/2015 Outline

More information

Review for Introduction to Remote Sensing: Science Concepts and Technology

Review for Introduction to Remote Sensing: Science Concepts and Technology Review for Introduction to Remote Sensing: Science Concepts and Technology Ann Johnson Associate Director ann@baremt.com Funded by National Science Foundation Advanced Technological Education program [DUE

More information

Digital Remote Sensing Data Processing Digital Remote Sensing Data Processing and Analysis: An Introduction and Analysis: An Introduction

Digital Remote Sensing Data Processing Digital Remote Sensing Data Processing and Analysis: An Introduction and Analysis: An Introduction Digital Remote Sensing Data Processing Digital Remote Sensing Data Processing and Analysis: An Introduction and Analysis: An Introduction Content Remote sensing data Spatial, spectral, radiometric and

More information

Module 13 : Measurements on Fiber Optic Systems

Module 13 : Measurements on Fiber Optic Systems Module 13 : Measurements on Fiber Optic Systems Lecture : Measurements on Fiber Optic Systems Objectives In this lecture you will learn the following Measurements on Fiber Optic Systems Attenuation (Loss)

More information

AN OBJECT-ORIENTED SOFTWARE DEVELOPMENT APPROACH TO DESIGN SIMULATOR FOR AIRBORNE ALTIMETRIC LIDAR. Rakesh Kumar Mishra, Bharat Lohani

AN OBJECT-ORIENTED SOFTWARE DEVELOPMENT APPROACH TO DESIGN SIMULATOR FOR AIRBORNE ALTIMETRIC LIDAR. Rakesh Kumar Mishra, Bharat Lohani AN OBJECT-ORIENTED SOFTWARE DEVELOPMENT APPROACH TO DESIGN SIMULATOR FOR AIRBORNE ALTIMETRIC LIDAR Rakesh Kumar Mishra, Bharat Lohani Geoinformatics division, Indian Institute of Technology Kanpur, Kanpur

More information

IP-S2 Compact+ 3D Mobile Mapping System

IP-S2 Compact+ 3D Mobile Mapping System IP-S2 Compact+ 3D Mobile Mapping System 3D scanning of road and roadside features Delivers high density point clouds and 360 spherical imagery High accuracy IMU options without export control Simple Map,

More information

Evaluation of surface runoff conditions. scanner in an intensive apple orchard

Evaluation of surface runoff conditions. scanner in an intensive apple orchard Evaluation of surface runoff conditions by high resolution terrestrial laser scanner in an intensive apple orchard János Tamás 1, Péter Riczu 1, Attila Nagy 1, Éva Lehoczky 2 1 Faculty of Agricultural

More information

Lidar Remote Sensing for Forestry Applications

Lidar Remote Sensing for Forestry Applications Lidar Remote Sensing for Forestry Applications Ralph O. Dubayah* and Jason B. Drake** Department of Geography, University of Maryland, College Park, MD 0 *rdubayah@geog.umd.edu **jasdrak@geog.umd.edu 1

More information

RIEGL VQ-480. Airborne Laser Scanning. Airborne Laser Scanner with Online Waveform Processing. visit our website www.riegl.com

RIEGL VQ-480. Airborne Laser Scanning. Airborne Laser Scanner with Online Waveform Processing. visit our website www.riegl.com Airborne Laser Scanner with Online Waveform Processing RIEGL VQ-48 high-accuracy ranging based on echo digitization and online waveform processing high laser repetition rate - fast data acquisition multiple

More information

How To Make An Orthophoto

How To Make An Orthophoto ISSUE 2 SEPTEMBER 2014 TSA Endorsed by: CLIENT GUIDE TO DIGITAL ORTHO- PHOTOGRAPHY The Survey Association s Client Guides are primarily aimed at other professionals such as engineers, architects, planners

More information

Cost Considerations of Using LiDAR for Timber Inventory 1

Cost Considerations of Using LiDAR for Timber Inventory 1 Cost Considerations of Using LiDAR for Timber Inventory 1 Bart K. Tilley, Ian A. Munn 3, David L. Evans 4, Robert C. Parker 5, and Scott D. Roberts 6 Acknowledgements: Mississippi State University College

More information

SHOALS Toolbox: Software to Support Visualization and Analysis of Large, High-Density Data Sets

SHOALS Toolbox: Software to Support Visualization and Analysis of Large, High-Density Data Sets SHOALS Toolbox: Software to Support Visualization and Analysis of Large, High-Density Data Sets by Jennifer M. Wozencraft, W. Jeff Lillycrop, and Nicholas C. Kraus PURPOSE: The Coastal and Hydraulics Engineering

More information

LiDAR Remote Sensing Data Collection: Panther Creek, Oregon April 27, 2012

LiDAR Remote Sensing Data Collection: Panther Creek, Oregon April 27, 2012 LiDAR Remote Sensing Data Collection: Panther Creek, Oregon April 27, 2012 Submitted to: Department of Interior Bureau of Land Management Oregon State Office 333 SW 3 rd Ave Portland, OR 97204 Submitted

More information

IP-S2 HD. High Definition 3D Mobile Mapping System

IP-S2 HD. High Definition 3D Mobile Mapping System IP-S2 HD High Definition 3D Mobile Mapping System Integrated, turnkey solution High Density, Long Range LiDAR sensor for ultimate in visual detail High Accuracy IMU and DMI Odometry for positional accuracy

More information

Active and Passive Microwave Remote Sensing

Active and Passive Microwave Remote Sensing Active and Passive Microwave Remote Sensing Passive remote sensing system record EMR that was reflected (e.g., blue, green, red, and near IR) or emitted (e.g., thermal IR) from the surface of the Earth.

More information

Lidar 101: An Introduction to Lidar Technology, Data, and Applications

Lidar 101: An Introduction to Lidar Technology, Data, and Applications Lidar 101: An Introduction to Lidar Technology, Data, and Applications National Oceanic and Atmospheric Administration (NOAA) Coastal Services Center Coastal Geospatial Services Division Coastal Remote

More information

LiDAR REMOTE SENSING

LiDAR REMOTE SENSING LiDAR REMOTE SENSING LOS OSOS CALIFORNIA 5/18/2011 (Updated 2/19/2013) Prepared for: Prepared by: WSI Corvallis Office 517 SW 2 nd St, Suite 400 Corvallis, OR 97333 LIDAR REMOTE SENSING DATA COLLECTION:

More information

Big Data in OpenTopography

Big Data in OpenTopography Big Data in OpenTopography Vishu Nandigam San Diego Supercomputer Center NSF Big Data in Educa

More information

SHOALS Toolbox: Software to Support Visualization and Analysis of Large, High-Density Data Sets

SHOALS Toolbox: Software to Support Visualization and Analysis of Large, High-Density Data Sets SHOALS Toolbox: Software to Support Visualization and Analysis of Large, High-Density Data Sets by Jennifer M. Wozencraft, W. Jeff Lillycrop, and Nicholas C. Kraus PURPOSE: The Coastal and Hydraulics Engineering

More information

REGISTRATION OF LASER SCANNING POINT CLOUDS AND AERIAL IMAGES USING EITHER ARTIFICIAL OR NATURAL TIE FEATURES

REGISTRATION OF LASER SCANNING POINT CLOUDS AND AERIAL IMAGES USING EITHER ARTIFICIAL OR NATURAL TIE FEATURES REGISTRATION OF LASER SCANNING POINT CLOUDS AND AERIAL IMAGES USING EITHER ARTIFICIAL OR NATURAL TIE FEATURES P. Rönnholm a, *, H. Haggrén a a Aalto University School of Engineering, Department of Real

More information

Hyperspectral Satellite Imaging Planning a Mission

Hyperspectral Satellite Imaging Planning a Mission Hyperspectral Satellite Imaging Planning a Mission Victor Gardner University of Maryland 2007 AIAA Region 1 Mid-Atlantic Student Conference National Institute of Aerospace, Langley, VA Outline Objective

More information

COMPARISON OF AERIAL IMAGES, SATELLITE IMAGES AND LASER SCANNING DSM IN A 3D CITY MODELS PRODUCTION FRAMEWORK

COMPARISON OF AERIAL IMAGES, SATELLITE IMAGES AND LASER SCANNING DSM IN A 3D CITY MODELS PRODUCTION FRAMEWORK COMPARISON OF AERIAL IMAGES, SATELLITE IMAGES AND LASER SCANNING DSM IN A 3D CITY MODELS PRODUCTION FRAMEWORK G. Maillet, D. Flamanc Institut Géographique National, Laboratoire MATIS, Saint-Mandé, France

More information

National Performance Evaluation Facility for LADARs

National Performance Evaluation Facility for LADARs National Performance Evaluation Facility for LADARs Kamel S. Saidi (presenter) Geraldine S. Cheok William C. Stone The National Institute of Standards and Technology Construction Metrology and Automation

More information

Antennas & Propagation. CS 6710 Spring 2010 Rajmohan Rajaraman

Antennas & Propagation. CS 6710 Spring 2010 Rajmohan Rajaraman Antennas & Propagation CS 6710 Spring 2010 Rajmohan Rajaraman Introduction An antenna is an electrical conductor or system of conductors o Transmission - radiates electromagnetic energy into space o Reception

More information

LiDAR Point Cloud Processing with

LiDAR Point Cloud Processing with LiDAR Research Group, Uni Innsbruck LiDAR Point Cloud Processing with SAGA Volker Wichmann Wichmann, V.; Conrad, O.; Jochem, A.: GIS. In: Hamburger Beiträge zur Physischen Geographie und Landschaftsökologie

More information

GEOENGINE MSc in Geomatics Engineering (Master Thesis) Anamelechi, Falasy Ebere

GEOENGINE MSc in Geomatics Engineering (Master Thesis) Anamelechi, Falasy Ebere Master s Thesis: ANAMELECHI, FALASY EBERE Analysis of a Raster DEM Creation for a Farm Management Information System based on GNSS and Total Station Coordinates Duration of the Thesis: 6 Months Completion

More information

Geography 403 Lecture 7 Scanners, Thermal, and Microwave

Geography 403 Lecture 7 Scanners, Thermal, and Microwave Geography 403 Lecture 7 Scanners, Thermal, and Microwave Needs: Lect_403_7.ppt A. Basics of Passive Electric Sensors 1. Sensors absorb EMR and produce some sort of response, such as voltages differences

More information

Point Clouds: Big Data, Simple Solutions. Mike Lane

Point Clouds: Big Data, Simple Solutions. Mike Lane Point Clouds: Big Data, Simple Solutions Mike Lane Light Detection and Ranging Point Cloud is the Third Type of Data Vector Point Measurements and Contours Sparse, highly irregularly spaced X,Y,Z values

More information

E190Q Lecture 5 Autonomous Robot Navigation

E190Q Lecture 5 Autonomous Robot Navigation E190Q Lecture 5 Autonomous Robot Navigation Instructor: Chris Clark Semester: Spring 2014 1 Figures courtesy of Siegwart & Nourbakhsh Control Structures Planning Based Control Prior Knowledge Operator

More information

Synthetic Sensing: Proximity / Distance Sensors

Synthetic Sensing: Proximity / Distance Sensors Synthetic Sensing: Proximity / Distance Sensors MediaRobotics Lab, February 2010 Proximity detection is dependent on the object of interest. One size does not fit all For non-contact distance measurement,

More information

Global Positioning System

Global Positioning System B. Hofmann-Wellenhof, H. Lichtenegger, and J. Collins Global Positioning System Theory and Practice Third, revised edition Springer-Verlag Wien New York Contents Abbreviations Numerical constants xix xxiii

More information

Basic Principles of Inertial Navigation. Seminar on inertial navigation systems Tampere University of Technology

Basic Principles of Inertial Navigation. Seminar on inertial navigation systems Tampere University of Technology Basic Principles of Inertial Navigation Seminar on inertial navigation systems Tampere University of Technology 1 The five basic forms of navigation Pilotage, which essentially relies on recognizing landmarks

More information

GPS/INS Integration with the imar-fsas IMU

GPS/INS Integration with the imar-fsas IMU Sandy KENNEDY, Canada Jason HAMILTON, Canada Hugh MARTELL, Canada Key words: GPS, INS, integrated navigation, inertial navigation SUMMARY This paper discusses NovAtel's approach to GPS/INS system architecture

More information

Vorstellung eines photogrammetrischen Kamerasystems für UAVs mit hochgenauer GNSS/INS Information für standardisierte Verarbeitungsverfahren

Vorstellung eines photogrammetrischen Kamerasystems für UAVs mit hochgenauer GNSS/INS Information für standardisierte Verarbeitungsverfahren Vorstellung eines photogrammetrischen Kamerasystems für UAVs mit hochgenauer GNSS/INS Information für standardisierte Verarbeitungsverfahren T. Kraft a, M. Geßner a, H. Meißner a, H. J. Przybilla b, M.

More information

The Applanix SmartBase TM Software for Improved Robustness, Accuracy, and Productivity of Mobile Mapping and Positioning

The Applanix SmartBase TM Software for Improved Robustness, Accuracy, and Productivity of Mobile Mapping and Positioning The Applanix SmartBase TM Software for Improved Robustness, Accuracy, and Productivity of Mobile Mapping and Positioning Joe Hutton and Edith Roy, Applanix Corporation Introduction Applanix, along with

More information

Remote Sensing, GPS and GIS Technique to Produce a Bathymetric Map

Remote Sensing, GPS and GIS Technique to Produce a Bathymetric Map Remote Sensing, GPS and GIS Technique to Produce a Bathymetric Map Mark Schnur EES 5053 Remote Sensing Fall 2007 University of Texas at San Antonio, Department of Earth and Environmental Science, San Antonio,

More information

METHODOLOGY FOR LANDSLIDE SUSCEPTIBILITY AND HAZARD MAPPING USING GIS AND SDI

METHODOLOGY FOR LANDSLIDE SUSCEPTIBILITY AND HAZARD MAPPING USING GIS AND SDI The 8th International Conference on Geo-information for Disaster Management Intelligent Systems for Crisis Management METHODOLOGY FOR LANDSLIDE SUSCEPTIBILITY AND HAZARD MAPPING USING GIS AND SDI T. Fernández

More information

3D City Modelling from LIDAR Data

3D City Modelling from LIDAR Data Chapter 10 3D City Modelling from LIDAR Data Rebecca (O.C.) Tse, Christopher Gold, and Dave Kidner Abstract Airborne Laser Surveying (ALS) or LIDAR (Light Detection and Ranging) becomes more and more popular

More information

A remote sensing instrument collects information about an object or phenomenon within the

A remote sensing instrument collects information about an object or phenomenon within the Satellite Remote Sensing GE 4150- Natural Hazards Some slides taken from Ann Maclean: Introduction to Digital Image Processing Remote Sensing the art, science, and technology of obtaining reliable information

More information

Information Contents of High Resolution Satellite Images

Information Contents of High Resolution Satellite Images Information Contents of High Resolution Satellite Images H. Topan, G. Büyüksalih Zonguldak Karelmas University K. Jacobsen University of Hannover, Germany Keywords: satellite images, mapping, resolution,

More information

A non-contact optical technique for vehicle tracking along bounded trajectories

A non-contact optical technique for vehicle tracking along bounded trajectories Home Search Collections Journals About Contact us My IOPscience A non-contact optical technique for vehicle tracking along bounded trajectories This content has been downloaded from IOPscience. Please

More information

Post Processing Service

Post Processing Service Post Processing Service The delay of propagation of the signal due to the ionosphere is the main source of generation of positioning errors. This problem can be bypassed using a dual-frequency receivers

More information

3D Model of the City Using LiDAR and Visualization of Flood in Three-Dimension

3D Model of the City Using LiDAR and Visualization of Flood in Three-Dimension 3D Model of the City Using LiDAR and Visualization of Flood in Three-Dimension R.Queen Suraajini, Department of Civil Engineering, College of Engineering Guindy, Anna University, India, suraa12@gmail.com

More information

Examination Space Missions and Applications I (AE2103) Faculty of Aerospace Engineering Delft University of Technology SAMPLE EXAM

Examination Space Missions and Applications I (AE2103) Faculty of Aerospace Engineering Delft University of Technology SAMPLE EXAM Examination Space Missions and Applications I AE2103 Faculty of Aerospace Engineering Delft University of Technology SAMPLE EXAM Please read these instructions first: This are a series of multiple-choice

More information

Введение в спутниковую радиолокацию: Радиолокаторы с синтезированной апертурой (РСА) Introduction to satellite radars: Synthetic Aperture Radars (SAR)

Введение в спутниковую радиолокацию: Радиолокаторы с синтезированной апертурой (РСА) Introduction to satellite radars: Synthetic Aperture Radars (SAR) Введение в спутниковую радиолокацию: Радиолокаторы с синтезированной апертурой (РСА) Introduction to satellite radars: Synthetic Aperture Radars (SAR) проф. Бертран Шапрон IFREMER / ЛСО РГГМУ Prof. Bertrand

More information

IMPERVIOUS SURFACE MAPPING UTILIZING HIGH RESOLUTION IMAGERIES. Authors: B. Acharya, K. Pomper, B. Gyawali, K. Bhattarai, T.

IMPERVIOUS SURFACE MAPPING UTILIZING HIGH RESOLUTION IMAGERIES. Authors: B. Acharya, K. Pomper, B. Gyawali, K. Bhattarai, T. IMPERVIOUS SURFACE MAPPING UTILIZING HIGH RESOLUTION IMAGERIES Authors: B. Acharya, K. Pomper, B. Gyawali, K. Bhattarai, T. Tsegaye ABSTRACT Accurate mapping of artificial or natural impervious surfaces

More information

Global environmental information Examples of EIS Data sets and applications

Global environmental information Examples of EIS Data sets and applications METIER Graduate Training Course n 2 Montpellier - february 2007 Information Management in Environmental Sciences Global environmental information Examples of EIS Data sets and applications Global datasets

More information

Introduction to Imagery and Raster Data in ArcGIS

Introduction to Imagery and Raster Data in ArcGIS Esri International User Conference San Diego, California Technical Workshops July 25, 2012 Introduction to Imagery and Raster Data in ArcGIS Simon Woo slides Cody Benkelman - demos Overview of Presentation

More information

Files Used in this Tutorial

Files Used in this Tutorial Generate Point Clouds Tutorial This tutorial shows how to generate point clouds from IKONOS satellite stereo imagery. You will view the point clouds in the ENVI LiDAR Viewer. The estimated time to complete

More information

Control of a quadrotor UAV (slides prepared by M. Cognetti)

Control of a quadrotor UAV (slides prepared by M. Cognetti) Sapienza Università di Roma Corso di Laurea in Ingegneria Elettronica Corso di Fondamenti di Automatica Control of a quadrotor UAV (slides prepared by M. Cognetti) Unmanned Aerial Vehicles (UAVs) autonomous/semi-autonomous

More information

CHAPTER 6. Precision Approach Systems

CHAPTER 6. Precision Approach Systems ELEC4504 Avionics Systems 77 CHAPTER 6. Precision Approach Systems 6.1. Introduction The word approach is used to describe the phase of flight which immediately precedes the landing. While the approach

More information

How To Monitor Sea Level With Satellite Radar

How To Monitor Sea Level With Satellite Radar Satellite Altimetry Wolfgang Bosch Deutsches Geodätisches Forschungsinstitut (DGFI), München email: bosch@dgfi.badw.de Objectives You shall recognize satellite altimetry as an operational remote sensing

More information

The most widely used active remote sensing systems include:

The most widely used active remote sensing systems include: Active and Passive Remote Sensing Passive remote sensing systems record EMR that is reflected (e.g., blue, green, red, and near-infrared light) or emitted (e.g., thermal infrared energy) from the surface

More information

How To Understand And Use Light Detection And Ranging (Lidar)

How To Understand And Use Light Detection And Ranging (Lidar) United States Department of Agriculture Forest Service Pacific Northwest Research Station General Technical Report PNW-GTR-768 July 2008 A Guide to LIDAR Data Acquisition and Processing for the Forests

More information

Automatic Labeling of Lane Markings for Autonomous Vehicles

Automatic Labeling of Lane Markings for Autonomous Vehicles Automatic Labeling of Lane Markings for Autonomous Vehicles Jeffrey Kiske Stanford University 450 Serra Mall, Stanford, CA 94305 jkiske@stanford.edu 1. Introduction As autonomous vehicles become more popular,

More information

How To Use Lidar Data Processing Software

How To Use Lidar Data Processing Software Civil and Coastal Engineering Department An Overview of Lidar Point Cloud Processing Software GEM Center Report No. Rep_2007-12-001 J.C. Fernandez, A. Singhania, J. Caceres, K.C. Slatton, M Starek, R.

More information

3-D Object recognition from point clouds

3-D Object recognition from point clouds 3-D Object recognition from point clouds Dr. Bingcai Zhang, Engineering Fellow William Smith, Principal Engineer Dr. Stewart Walker, Director BAE Systems Geospatial exploitation Products 10920 Technology

More information

Chapter Contents Page No

Chapter Contents Page No Chapter Contents Page No Preface Acknowledgement 1 Basics of Remote Sensing 1 1.1. Introduction 1 1.2. Definition of Remote Sensing 1 1.3. Principles of Remote Sensing 1 1.4. Various Stages in Remote Sensing

More information

PERFORMANCE TESTING OF 3D POINT CLOUD SOFTWARE

PERFORMANCE TESTING OF 3D POINT CLOUD SOFTWARE PERFORMANCE TESTING OF 3D POINT CLOUD SOFTWARE M. Varela-González a, H. González-Jorge a*, B. Riveiro b, and P. Arias a a Applied Geotechnology Group, Department of Natural Resources and Environmental

More information

Notable near-global DEMs include

Notable near-global DEMs include Visualisation Developing a very high resolution DEM of South Africa by Adriaan van Niekerk, Stellenbosch University DEMs are used in many applications, including hydrology [1, 2], terrain analysis [3],

More information

Performance of a Deeply Coupled Commercial Grade GPS/INS System from KVH and NovAtel Inc.

Performance of a Deeply Coupled Commercial Grade GPS/INS System from KVH and NovAtel Inc. Performance of a Deeply Coupled Commercial Grade GPS/INS System from KVH and NovAtel Inc. Sandy Kennedy 1 and Jim Rossi 2 1 NovAtel Inc., 112 68 th Ave. N.E. Calgary, Alberta, T2E 8S5, Canada 2 KVH Industries,

More information

Survey Sensors Hydrofest 2014. Ross Leitch Project Surveyor

Survey Sensors Hydrofest 2014. Ross Leitch Project Surveyor Survey Sensors Hydrofest 2014 Ross Leitch Project Surveyor Satellite Positioning Only provides position of antenna Acoustic Positioning Only provides position of transponder relative to transceiver How

More information

<Insert Picture Here> Data Management Innovations for Massive Point Cloud, DEM, and 3D Vector Databases

<Insert Picture Here> Data Management Innovations for Massive Point Cloud, DEM, and 3D Vector Databases Data Management Innovations for Massive Point Cloud, DEM, and 3D Vector Databases Xavier Lopez, Director, Product Management 3D Data Management Technology Drivers: Challenges & Benefits

More information

DIRECT POSITIONING AND ORIENTATION SYSTEMS HOW DO THEY WORK? WHAT IS THE ATTAINABLE ACCURACY? ABSTRACT INTRODUCTION

DIRECT POSITIONING AND ORIENTATION SYSTEMS HOW DO THEY WORK? WHAT IS THE ATTAINABLE ACCURACY? ABSTRACT INTRODUCTION DIRECT OSITIONING AND ORIENTATION SYSTEMS HOW DO THEY WORK? WHAT IS THE ATTAINABLE ACCURACY? Mohamed M.R. Mostafa, R&D Airborne Applications Joseph Hutton, roduct Manager Airborne Applications ALANIX Corporation,

More information

Opportunities for Mapping Rooftop Solar Energy using LiDAR

Opportunities for Mapping Rooftop Solar Energy using LiDAR Opportunities for Mapping Rooftop Solar Energy using LiDAR An Introduction for BC Local Governments March 2013 Thoreau Rory Tooke Opportunities for Mapping Rooftop Solar Energy using LiDAR An Introduction

More information

RIEGL VZ-4000. Terrestrial Laser Scanning. 3D Very Long Range Terrestrial Laser Scanner with Online Waveform Processing

RIEGL VZ-4000. Terrestrial Laser Scanning. 3D Very Long Range Terrestrial Laser Scanner with Online Waveform Processing 3D Very Long Range Terrestrial Laser Scanner with Online Waveform Processing RIEGL VZ-4000 very long range up to 4000 m eye safe operation at Laser Class 1 wide field of view, 60 x 360 high speed data

More information

If you want to use an inertial measurement system...

If you want to use an inertial measurement system... If you want to use an inertial measurement system...... which technical data you should analyse and compare before making your decision by Dr.-Ing. Edgar v. Hinueber, CEO imar Navigation GmbH Keywords:

More information

Leica WDM65 Waveform Digitizer Module Product Specifications

Leica WDM65 Waveform Digitizer Module Product Specifications Waveform Digitizer Module OVERVIEW The Leica WDM65 is a Full Waveform Digitizing (FWD) module designed specifically for use with ALS50-II and ALS60 Airborne Laser Scanners. It records the complete waveform

More information

IP-S3 HD1. Compact, High-Density 3D Mobile Mapping System

IP-S3 HD1. Compact, High-Density 3D Mobile Mapping System IP-S3 HD1 Compact, High-Density 3D Mobile Mapping System Integrated, turnkey solution Ultra-compact design Multiple lasers minimize scanning shades Unparalleled ease-of-use No user calibration required

More information

INTEGRATED GEOPHYSICAL AND REMOTE SENSING STUDIES ON GROTTA GIGANTE SHOW CAVE (TRIESTE ITALY) P. Paganini, A. Pavan, F. Coren, A.

INTEGRATED GEOPHYSICAL AND REMOTE SENSING STUDIES ON GROTTA GIGANTE SHOW CAVE (TRIESTE ITALY) P. Paganini, A. Pavan, F. Coren, A. INTEGRATED GEOPHYSICAL AND REMOTE SENSING STUDIES ON GROTTA GIGANTE SHOW CAVE (TRIESTE ITALY) P. Paganini, A. Pavan, F. Coren, A. Fabbricatore Aerial lidar survey - strumentation Piper Seneca II - PA34

More information

Time Domain and Frequency Domain Techniques For Multi Shaker Time Waveform Replication

Time Domain and Frequency Domain Techniques For Multi Shaker Time Waveform Replication Time Domain and Frequency Domain Techniques For Multi Shaker Time Waveform Replication Thomas Reilly Data Physics Corporation 1741 Technology Drive, Suite 260 San Jose, CA 95110 (408) 216-8440 This paper

More information

GNSS Reflectometry at GFZ: ocean altimetry and land surface monitoring

GNSS Reflectometry at GFZ: ocean altimetry and land surface monitoring GNSS Reflectometry at GFZ: ocean altimetry and land surface monitoring M. Semmling 1 S. Vey 1 J. Beckheinrich 1 V. Leister 1,2 J. Saynisch 1 J. Wickert 1 1 Research Centre for Geoscience GFZ, Potsdam 2

More information

Monitoring a Changing Environment with Synthetic Aperture Radar. Alaska Satellite Facility National Park Service Don Atwood

Monitoring a Changing Environment with Synthetic Aperture Radar. Alaska Satellite Facility National Park Service Don Atwood Monitoring a Changing Environment with Synthetic Aperture Radar Don Atwood Alaska Satellite Facility 1 Entering the SAR Age 2 SAR Satellites RADARSAT-1 Launched 1995 by CSA 5.6 cm (C-Band) HH Polarization

More information

Request for Proposals for Topographic Mapping. Issued by: Teton County GIS and Teton County Engineering Teton County, Wyoming

Request for Proposals for Topographic Mapping. Issued by: Teton County GIS and Teton County Engineering Teton County, Wyoming Request for Proposals for Topographic Mapping Issued by: Teton County GIS and Teton County Engineering Teton County, Wyoming Proposals due: 2:00PM MDT July 1, 2015 Proposals may be delivered to: Teton

More information

AS COMPETITION PAPER 2008

AS COMPETITION PAPER 2008 AS COMPETITION PAPER 28 Name School Town & County Total Mark/5 Time Allowed: One hour Attempt as many questions as you can. Write your answers on this question paper. Marks allocated for each question

More information

Passive Remote Sensing of Clouds from Airborne Platforms

Passive Remote Sensing of Clouds from Airborne Platforms Passive Remote Sensing of Clouds from Airborne Platforms Why airborne measurements? My instrument: the Solar Spectral Flux Radiometer (SSFR) Some spectrometry/radiometry basics How can we infer cloud properties

More information

MSDI: Workflows, Software and Related Data Standards

MSDI: Workflows, Software and Related Data Standards MSDI: Workflows, Software and Related Data Standards By Andy Hoggarth October 2009 Introduction Leveraging SDI principles for hydrographic operational efficiency French INFRAGEOS example (SHOM - Service

More information

The State of North Carolina, the

The State of North Carolina, the Report North Carolina to Produce Flood Insurance Rate Maps in Partnership with the Federal Emergency Management Agency (FEMA) By Gary W. Thompson, PLS, Director, North Carolina Geodetic Survey, and Dave

More information

RECOMMENDATION ITU-R P.1546-1. Method for point-to-area predictions for terrestrial services in the frequency range 30 MHz to 3 000 MHz

RECOMMENDATION ITU-R P.1546-1. Method for point-to-area predictions for terrestrial services in the frequency range 30 MHz to 3 000 MHz Rec. ITU-R P.546- RECOMMENDATION ITU-R P.546- Method for point-to-area predictions for terrestrial services in the frequency range 30 MHz to 3 000 MHz (200-2003) The ITU Radiocommunication Assembly, considering

More information

NEW DIGITAL TERRAIN MODELING (DTM) TOOLS FOR CABLE ROUTE PLANNING by Dr. Jose M. Andres Makai Ocean Engineering Inc.

NEW DIGITAL TERRAIN MODELING (DTM) TOOLS FOR CABLE ROUTE PLANNING by Dr. Jose M. Andres Makai Ocean Engineering Inc. NEW DIGITAL TERRAIN MODELING (DTM) TOOLS FOR CABLE ROUTE PLANNING by Dr. Jose M. Andres Makai Ocean Engineering Inc. EXISTING CABLE ROUTE PLANNING TOOLS In recent years, methods used for submarine cable

More information

Günter Seeber. Satellite Geodesy 2nd completely revised and extended edition

Günter Seeber. Satellite Geodesy 2nd completely revised and extended edition Günter Seeber Satellite Geodesy 2nd completely revised and extended edition Walter de Gruyter Berlin New York 2003 Contents Preface Abbreviations vii xvii 1 Introduction 1 1.1 Subject of Satellite Geodesy...

More information

How To Use A Karlsruhe Doppler Lidar

How To Use A Karlsruhe Doppler Lidar Andreas Wieser Institut für Meteorologie und Klimaforschung Forschungsbereich Troposphäre (IMK-TRO) First measurements with the new Karlsruhe Doppler Lidar June 03, 2004 Forschungszentrum Karlsruhe we

More information

Northern San Andreas Fault, CA and West Rainier Seismic Zone, WA LiDAR Metadata Report

Northern San Andreas Fault, CA and West Rainier Seismic Zone, WA LiDAR Metadata Report Northern San Andreas Fault, CA and West Rainier Seismic Zone, WA LiDAR Metadata Report Documentation prepared by TerraPoint, LLC & David Harding, NASA GSFC (11/16/04 & 12/02/04) For purposes of distribution

More information

SIX DEGREE-OF-FREEDOM MODELING OF AN UNINHABITED AERIAL VEHICLE. A thesis presented to. the faculty of

SIX DEGREE-OF-FREEDOM MODELING OF AN UNINHABITED AERIAL VEHICLE. A thesis presented to. the faculty of SIX DEGREE-OF-FREEDOM MODELING OF AN UNINHABITED AERIAL VEHICLE A thesis presented to the faculty of the Russ College of Engineering and Technology of Ohio University In partial fulfillment of the requirement

More information

D.S. Boyd School of Earth Sciences and Geography, Kingston University, U.K.

D.S. Boyd School of Earth Sciences and Geography, Kingston University, U.K. PHYSICAL BASIS OF REMOTE SENSING D.S. Boyd School of Earth Sciences and Geography, Kingston University, U.K. Keywords: Remote sensing, electromagnetic radiation, wavelengths, target, atmosphere, sensor,

More information