Passive Millimeter-Wave Imaging and Potential Applications in Homeland Security and Aeronautics
|
|
|
- Jason Phelps
- 10 years ago
- Views:
Transcription
1 Passive Millimeter-Wave Imaging and Potential Applications in Homeland Security and Aeronautics Magdy Attia, Ph.D. James B. Duke Distinguished Professor Chair, Computer Science & Engineering Department Director, Technology Center Johnson C. Smith University; Charlotte, NC Voice: (704)
2 Objectives and Scope of Research Explore the potential applications of passive millimeter-wave imaging technology in aviation safety and homeland security To discuss some systems engineering aspects of the design of passive millimeter-wave imagine cameras To design and implement a passive millimeterwave imagine camera at 94 GHz using optomechanical scanning
3 Electromagnetic Spectrum
4 Atmospheric Effects on Attenuation of the Electromagnetic Spectrum
5 Why Passive Millimeter-Wave Imaging? All Natural objects whose temperatures are above absolute zero emit passive millimeter-wave radiation. Millimeter-waves are much more effective (Lower attenuation) than infrared in poor weather conditions such as fog, clouds, snow, millimeter-waves have natural appearances. The amount of radiation emitted in the millimeter-wave range is 10 8 times smaller than the amount emitted in the infrared range.
6 Why Passive Millimeter-Wave Imaging? (continued) However, current millimeter-wave receivers have at least 10 5 times better noise performance than infrared detectors and the temperature contrast recovers the remaining This makes millimeter-wave imagine comparable in performance with current I infrared systems. Electromagnetic radiation windows occur at 35 GHz, 94 GHz, 140 GHz, and 220 GHz. Choice of frequency depends on specific application
7 Potential Applications 1. Homeland Security: 1. Detection of concealed weapons 2. Airport security 3. Corporate Security 2. Aeronautics: 1. Airport safety in landing and taxiing operations in bad weather conditions 3. Diagnostics: 1. Medical diagnostics 2. Plasma 4. General Applications 1. Defense 2. Environmental
8 Passive Millimeter-Wave Imager Concept Passive Millimeter-Wave Imager Concept Antenna Scanning System
9 Some Systems Engineering Aspects in the Design of Passive Millimeter-Wave Imagine Cameras Emission of Radiation: All Objects whose temperatures are above absolute zero emit millimeter-wave radiation In practice, natural objects behave as a grey-body emitters and their actual emission is the black-body value multiplied by a wavelength-dependent emissivity which is specific to that material. Atmospheric windows exit at 35, 94, 140 and 220 GHz In the millimeter-wave region the sky temperature is about 100 K
10 Methods of Detection of Millimeter-Wave Traditional methods, using doped germanium bolometers cooled to liquid helium temperatures to improve noise performance over a large bandwidth. Using tuned amplifiers before the detector in superheterodyne receivers. Bandwidth of 3 GHz and a typical gain of 60 db. Direct detection receivers.
11 System Performance Special Resolution: In a diffraction limited system, the angle α,subtended by the smallest resolvable object in the scene is given by α = λ D (1) The wavelength of the incident radiation :ג D: The diameter of the collection optics
12 For N picture points across the horizontal FOV = ө α = θ N (2) That is, N = Dθ λ (3) In optically immersed systems, ndθ N = λ Where n is the refractive index of the medium. (4) The quality Dө is called the lagrange invariant and it remains a constant throughout an imaging system.
13 A typical thermal imager operating at 10 μm having an objective diameter of 100 mm and FOV of 6 has a performance value of N = In practice, the value is less due to aberrations introduced by the detector array and a value closer to 500 would be appropriate. In millimeter-wave imaging, an aperture of 1 meter operating at wavelength of 3 mm would have a performance of N=330, which is comparable with that above. An aperture of 1 meter is too large for most applications. Super-resolution techniques are used to decreased the physical size.
14 Thermal Sensitivity The thermal sensitivity of an imager is the lowest temperature, T, in the scene that is detectable by the imager. It is given by NT Δ T = (5) Bτ where N T is the noise temperature of the imager, B the RF bandwidth and τ is the post detector integration time. For the highest thermal sensitivity, NT must be low and B and τ must be as high as possible. For a typical system, N T may be 3000K, B may be 3GHz and τ 10msec. This gives a ΔT of 0.5K.
15 Real-Time Operation To operate in real time the integration time of the whole imager should not be greater than about msec. This can be achieved in a number of different ways. For example there could be a focal plane array of receivers each having this integration time. Or else much higher performance receivers having shorter integration times could be scanned across the scene to still give the same overall thermal sensitivity and frame rate. If the total number of picture points in the image is m and if this is achieved by scanning n detectors across the scene, then the integration time, τ, of each receiver is given by = Where t is the required integration time of the whole imager and is slightly shorter than the frame rate. tn τ (6) m
16 We then have that ΔT = Btn m This equation may be rearranged to give N T (7) 3.4. Cost Effective Solutions In the equation above, n represents the total number of receiver channels and can be used to calculate the overall cost of the receiver electronics. the total cost = c N N ΔT Where c is the cost of one receiver. n T ΔT = 2 m Bt T 2 m Bt (8) (9)
17 Cost-effective Solutions The cost of a receiver in a large focal plane array of cheap receivers would have to be as low as $4 to compete with the cost of a smaller number of more expensive, higher-performance, scanned receivers having a noise temperature of 500 K, a bandwidth of 5 GHz and a cost of $3000, operating at half the TV rate
18 This cost comparison assume that the scanned system is optimized to make full use of the small number or receivers required. Otherwise the costs would be higher than necessary. Clearly some form of scanning is the preferred option at present. It will require highly integrated mass production for the cost of a focal plane array to become lower than, or comparable with, the price of the scanned solution.
19 General Description of the Passive Millimeter-Wave Imaging Camera Opto-Mechanical Scanner
20 The RF Front End A block diagram of the downconverter is illustrated:
21 System Specification Specifications RF Frequency Range : 87-99GHz LNA : Model FLNA Gain : 18dB min GHz Noise Figure : 6dB max, 4.5dB typical at 94GHz LO Frequency : 94.0 GHz within +/-100MHz LO Drive : +13dBm typical LO Source : Gunn oscillator, GN-10 type, free running, 10MHz/deg.C typical Mixer IF Frequency Range : Dc 8GHz minimum Mixer Conversion Loss : 8dB max, <7.0dB typical IF Amplifier Gain : 35dB minimum per module, overall 70dB min. IF Noise Figure : <1.5dB first module Detector : 10MHz to 12.4GHz 0.5mV/mico W zero biased Schottky Diode Overall System Noise Figure : <6.20dB Overall Gain : >50dB
22
23
24
25
26
27
28
29
30 Thank You I would be glad to answer all of your questions
Treasure Hunt. Lecture 2 How does Light Interact with the Environment? EMR Principles and Properties. EMR and Remote Sensing
Lecture 2 How does Light Interact with the Environment? Treasure Hunt Find and scan all 11 QR codes Choose one to watch / read in detail Post the key points as a reaction to http://www.scoop.it/t/env202-502-w2
Overview. What is EMR? Electromagnetic Radiation (EMR) LA502 Special Studies Remote Sensing
LA502 Special Studies Remote Sensing Electromagnetic Radiation (EMR) Dr. Ragab Khalil Department of Landscape Architecture Faculty of Environmental Design King AbdulAziz University Room 103 Overview What
Synthetic Sensing: Proximity / Distance Sensors
Synthetic Sensing: Proximity / Distance Sensors MediaRobotics Lab, February 2010 Proximity detection is dependent on the object of interest. One size does not fit all For non-contact distance measurement,
RF Communication System. EE 172 Systems Group Presentation
RF Communication System EE 172 Systems Group Presentation RF System Outline Transmitter Components Receiver Components Noise Figure Link Budget Test Equipment System Success Design Remedy Transmitter Components
Introduction to Receivers
Introduction to Receivers Purpose: translate RF signals to baseband Shift frequency Amplify Filter Demodulate Why is this a challenge? Interference (selectivity, images and distortion) Large dynamic range
Projects. Objective To gain hands-on design and measurement experience with real-world applications. Contents
Projects Contents 9-1 INTRODUCTION...................... 43 9-2 PROJECTS......................... 43 9-2.1 Alarm Radar Sensor................ 43 9-2.2 Microwave FM Communication Link....... 46 9-2.3 Optical
AN1200.04. Application Note: FCC Regulations for ISM Band Devices: 902-928 MHz. FCC Regulations for ISM Band Devices: 902-928 MHz
AN1200.04 Application Note: FCC Regulations for ISM Band Devices: Copyright Semtech 2006 1 of 15 www.semtech.com 1 Table of Contents 1 Table of Contents...2 1.1 Index of Figures...2 1.2 Index of Tables...2
Application Note: Spread Spectrum Oscillators Reduce EMI for High Speed Digital Systems
Application Note: Spread Spectrum Oscillators Reduce EMI for High Speed Digital Systems Introduction to Electro-magnetic Interference Design engineers seek to minimize harmful interference between components,
The front end of the receiver performs the frequency translation, channel selection and amplification of the signal.
Many receivers must be capable of handling a very wide range of signal powers at the input while still producing the correct output. This must be done in the presence of noise and interference which occasionally
Chapter 4 Solution to Problems
Chapter 4 Solution to Problems Question #1. A C-band earth station has an antenna with a transmit gain of 54 db. The transmitter output power is set to 100 W at a frequency of 6.100 GHz. The signal is
is the power reference: Specifically, power in db is represented by the following equation, where P0 P db = 10 log 10
RF Basics - Part 1 This is the first article in the multi-part series on RF Basics. We start the series by reviewing some basic RF concepts: Decibels (db), Antenna Gain, Free-space RF Propagation, RF Attenuation,
Experiment 5. Lasers and laser mode structure
Northeastern University, PHYS5318 Spring 2014, 1 1. Introduction Experiment 5. Lasers and laser mode structure The laser is a very important optical tool that has found widespread use in science and industry,
RF Network Analyzer Basics
RF Network Analyzer Basics A tutorial, information and overview about the basics of the RF Network Analyzer. What is a Network Analyzer and how to use them, to include the Scalar Network Analyzer (SNA),
Optical Communications
Optical Communications Telecommunication Engineering School of Engineering University of Rome La Sapienza Rome, Italy 2005-2006 Lecture #2, May 2 2006 The Optical Communication System BLOCK DIAGRAM OF
Study of the Human Eye Working Principle: An impressive high angular resolution system with simple array detectors
Study of the Human Eye Working Principle: An impressive high angular resolution system with simple array detectors Diego Betancourt and Carlos del Río Antenna Group, Public University of Navarra, Campus
102 26-m Antenna Subnet Telecommunications Interfaces
DSMS Telecommunications Link Design Handbook 26-m Antenna Subnet Telecommunications Interfaces Effective November 30, 2000 Document Owner: Approved by: Released by: [Signature on file in TMOD Library]
HP 8970B Option 020. Service Manual Supplement
HP 8970B Option 020 Service Manual Supplement Service Manual Supplement HP 8970B Option 020 HP Part no. 08970-90115 Edition 1 May 1998 UNIX is a registered trademark of AT&T in the USA and other countries.
Jeff Thomas Tom Holmes Terri Hightower. Learn RF Spectrum Analysis Basics
Jeff Thomas Tom Holmes Terri Hightower Learn RF Spectrum Analysis Basics Agenda Overview: Spectrum analysis and its measurements Theory of Operation: Spectrum analyzer hardware Frequency Specifications
A Guide to Calibrating Your Spectrum Analyzer
A Guide to Calibrating Your Application Note Introduction As a technician or engineer who works with electronics, you rely on your spectrum analyzer to verify that the devices you design, manufacture,
Company presentation. Closed Joint Stock Company Superconducting nanotechnology SCONTEL
Company presentation Closed Joint Stock Company Superconducting nanotechnology SCONTEL 1 About us SCONTEL was founded in 2004 as a spinoff of the Radio-Physics Research&Education Center (RPhREC) (group
SpectraTec II. Polarized Multi-Laser Source BLUE SKY RESEARCH WAVELENGTHS. The SpectraTec II
BLUE SKY RESEARCH The SpectraTec II, two wavelength laser module is a highly integrated system comprised of two lasers, individual driving and temperature control electronics, wavelength combining, and
Technical Datasheet Scalar Network Analyzer Model 8003-10 MHz to 40 GHz
Technical Datasheet Scalar Network Analyzer Model 8003-10 MHz to 40 GHz The Giga-tronics Model 8003 Precision Scalar Network Analyzer combines a 90 db wide dynamic range with the accuracy and linearity
Jeff Thomas Tom Holmes Terri Hightower. Learn RF Spectrum Analysis Basics
Jeff Thomas Tom Holmes Terri Hightower Learn RF Spectrum Analysis Basics Learning Objectives Name the major measurement strengths of a swept-tuned spectrum analyzer Explain the importance of frequency
INFRARED PARTS MANUAL
INFRARED PARTS MANUAL PIR325 FL65 GLOLAB CORPORATION Thank you for buying our Pyroelectric Infrared components. The goal of Glolab is to produce top quality electronic kits, products and components. All
Antennas & Propagation. CS 6710 Spring 2010 Rajmohan Rajaraman
Antennas & Propagation CS 6710 Spring 2010 Rajmohan Rajaraman Introduction An antenna is an electrical conductor or system of conductors o Transmission - radiates electromagnetic energy into space o Reception
RESULTS FROM A SIMPLE INFRARED CLOUD DETECTOR
RESULTS FROM A SIMPLE INFRARED CLOUD DETECTOR A. Maghrabi 1 and R. Clay 2 1 Institute of Astronomical and Geophysical Research, King Abdulaziz City For Science and Technology, P.O. Box 6086 Riyadh 11442,
A Guide to Acousto-Optic Modulators
A Guide to Acousto-Optic Modulators D. J. McCarron December 7, 2007 1 Introduction Acousto-optic modulators (AOMs) are useful devices which allow the frequency, intensity and direction of a laser beam
5. The Nature of Light. Does Light Travel Infinitely Fast? EMR Travels At Finite Speed. EMR: Electric & Magnetic Waves
5. The Nature of Light Light travels in vacuum at 3.0. 10 8 m/s Light is one form of electromagnetic radiation Continuous radiation: Based on temperature Wien s Law & the Stefan-Boltzmann Law Light has
Thermal Imaging Test Target THERMAKIN Manufacture and Test Standard
Thermal Imaging Test Target THERMAKIN Manufacture and Test Standard June 2014 This document has been produced by CPNI as the standard for the physical design, manufacture and method of use of the Thermal
Data Transmission. Data Communications Model. CSE 3461 / 5461: Computer Networking & Internet Technologies. Presentation B
CSE 3461 / 5461: Computer Networking & Internet Technologies Data Transmission Presentation B Kannan Srinivasan 08/30/2012 Data Communications Model Figure 1.2 Studying Assignment: 3.1-3.4, 4.1 Presentation
for Communication Systems Protection EMI CD-ROM INCLUDED
Krešimir Malarić EMI Protection for Communication Systems CD-ROM INCLUDED Contents Preface xiii CHAPTER 1 Communications Systems 1 1.1 Components of Communications Systems 1 1.2 Transmitter Systems 2 1.2.1
Principle of Thermal Imaging
Section 8 All materials, which are above 0 degrees Kelvin (-273 degrees C), emit infrared energy. The infrared energy emitted from the measured object is converted into an electrical signal by the imaging
ESCI 107/109 The Atmosphere Lesson 2 Solar and Terrestrial Radiation
ESCI 107/109 The Atmosphere Lesson 2 Solar and Terrestrial Radiation Reading: Meteorology Today, Chapters 2 and 3 EARTH-SUN GEOMETRY The Earth has an elliptical orbit around the sun The average Earth-Sun
Antenna Properties and their impact on Wireless System Performance. Dr. Steven R. Best. Cushcraft Corporation 48 Perimeter Road Manchester, NH 03013
Antenna Properties and their impact on Wireless System Performance Dr. Steven R. Best Cushcraft Corporation 48 Perimeter Road Manchester, NH 03013 Phone (603) 627-7877 FAX: (603) 627-1764 Email: [email protected]
INTRODUCTION FIGURE 1 1. Cosmic Rays. Gamma Rays. X-Rays. Ultraviolet Violet Blue Green Yellow Orange Red Infrared. Ultraviolet.
INTRODUCTION Fibre optics behave quite different to metal cables. The concept of information transmission is the same though. We need to take a "carrier" signal, identify a signal parameter we can modulate,
Light as a Wave. The Nature of Light. EM Radiation Spectrum. EM Radiation Spectrum. Electromagnetic Radiation
The Nature of Light Light and other forms of radiation carry information to us from distance astronomical objects Visible light is a subset of a huge spectrum of electromagnetic radiation Maxwell pioneered
Features. Applications. Description. Blockdiagram. K-LC1a RADAR TRANSCEIVER. Datasheet
Features 24 GHz K-band miniature transceiver 180MHz sweep FM input (n.a. for K-LC1a_V2) Dual 4 patch antenna Single balanced mixer with 50MHz bandwidth Beam aperture 80 /34 15dBm EIRP output power 25x25mm
DEVELOPMENT OF AN OPTIMIZED ANTENNA AND OTHER ENHANCEMENTS OF A SPECTROMETER FOR THE STUDY OF OZONE IN THE MESOSPHERE
DEVELOPMENT OF AN OPTIMIZED ANTENNA AND OTHER ENHANCEMENTS OF A SPECTROMETER FOR THE STUDY OF OZONE IN THE MESOSPHERE Sai N. Tenneti University of Massachusetts, Amherst MA Summer REU Student Alan E. E.
General Survey of Radio Frequency Bands 30 MHz to 3 GHz
General Survey of Radio Frequency Bands 30 MHz to 3 GHz Version 2.0 September 23, 2010 Prepared by: Shared Spectrum Company 1595 Spring Hill Road Suite 110 Vienna, VA 22182-2228 703-761-2818 Fax: 703-761-2817
Use the following image to answer the next question. 1. Which of the following rows identifies the electrical charge on A and B shown above?
Old Science 30 Physics Practice Test A on Fields and EMR Test Solutions on the Portal Site Use the following image to answer the next question 1. Which of the following rows identifies the electrical charge
Application Note Noise Frequently Asked Questions
: What is? is a random signal inherent in all physical components. It directly limits the detection and processing of all information. The common form of noise is white Gaussian due to the many random
Agilent AN 1316 Optimizing Spectrum Analyzer Amplitude Accuracy
Agilent AN 1316 Optimizing Spectrum Analyzer Amplitude Accuracy Application Note RF & Microwave Spectrum Analyzers Table of Contents 3 3 4 4 5 7 8 8 13 13 14 16 16 Introduction Absolute versus relative
RPG MWR PRO TN03 2012 09 Page 1 / 12 www.radiometer physics.de Radiometer Physics GmbH +49 2225 99981 0
Applications Tropospheric profiling of temperature, humidity and liquid water High resolution boundary layer temperature profiles, better resolution than balloons Input for weather and climate models (data
Data Sheet. HFBR-0600Z Series SERCOS Fiber Optic Transmitters and Receivers
HFBR-0600Z Series SERCOS Fiber Optic Transmitters and Receivers Data Sheet SERCOS SERCOS is a SErial Realtime COmmunication System, a standard digital interface for communication between controls and drives
RX-AM4SF Receiver. Pin-out. Connections
RX-AM4SF Receiver The super-heterodyne receiver RX-AM4SF can provide a RSSI output indicating the amplitude of the received signal: this output can be used to create a field-strength meter capable to indicate
0HDVXULQJWKHHOHFWULFDOSHUIRUPDQFH FKDUDFWHULVWLFVRI5),)DQGPLFURZDYHVLJQDO SURFHVVLQJFRPSRQHQWV
0HDVXULQJWKHHOHFWULFDOSHUIRUPDQFH FKDUDFWHULVWLFVRI5),)DQGPLFURZDYHVLJQDO SURFHVVLQJFRPSRQHQWV The treatment given here is introductory, and will assist the reader who wishes to consult the standard texts
Overview of the IR channels and their applications
Ján Kaňák Slovak Hydrometeorological Institute [email protected] Overview of the IR channels and their applications EUMeTrain, 14 June 2011 Ján Kaňák, SHMÚ 1 Basics in satellite Infrared image interpretation
S. Oka, H. Togo, N. Kukutsu, and T. Nagatsuma NTT Microsystem Integration Laboratories 3-1, Morinosato Wakamiya Atsugi-shi, Kanagawa 243 0198, Japan
Progress In Electromagnetics Research Letters, Vol. 1, 197 204, 2008 LATEST TRENDS IN MILLIMETER-WAVE IMAGING TECHNOLOGY S. Oka, H. Togo, N. Kukutsu, and T. Nagatsuma NTT Microsystem Integration Laboratories
Waves - Transverse and Longitudinal Waves
Waves - Transverse and Longitudinal Waves wave may be defined as a periodic disturbance in a medium that carries energy from one point to another. ll waves require a source and a medium of propagation.
Challenges in DWDM System Spectral Analysis By Laurent Begin and Jim Nerschook
Challenges in DWDM System Spectral Analysis By Laurent Begin and Jim Nerschook TABLE OF CONTENTS: 1.0 Satisfying the Thirst for Bandwidth 02 2.0 The Solution, DWDM 02 3.0 Resolution 04 4.0 Wavelength Accuracy
Understanding Noise Figure
Understanding Noise Figure Iulian Rosu, YO3DAC / VA3IUL, http://www.qsl.net/va3iul One of the most frequently discussed forms of noise is known as Thermal Noise. Thermal noise is a random fluctuation in
Solar Energy. Outline. Solar radiation. What is light?-- Electromagnetic Radiation. Light - Electromagnetic wave spectrum. Electromagnetic Radiation
Outline MAE 493R/593V- Renewable Energy Devices Solar Energy Electromagnetic wave Solar spectrum Solar global radiation Solar thermal energy Solar thermal collectors Solar thermal power plants Photovoltaics
BASICS OF C & Ku BAND TRANSMISSIONS & LNBs
Page 1 of 6 BASICS OF C & Ku BAND TRANSMISSIONS & LNBs A satellite broadcasts a few watts of microwave signals from the geostationary orbit 36,000 kilometers above the earth. The transmissions are also
Small Entity Compliance Guide
Federal Communications Commission Washington, D.C. 20554 April 18, 2013 DA 13-791 Small Entity Compliance Guide Operation of Unlicensed Personal Communications Service Devices in the 1920-1930 MHz Band
Agilent AN 1315 Optimizing RF and Microwave Spectrum Analyzer Dynamic Range. Application Note
Agilent AN 1315 Optimizing RF and Microwave Spectrum Analyzer Dynamic Range Application Note Table of Contents 3 3 3 4 4 4 5 6 7 7 7 7 9 10 10 11 11 12 12 13 13 14 15 1. Introduction What is dynamic range?
Sweep-able sub-millimeter sources and detectors for THz Vector Network Analyzers and Applications
AFFILIATION LOGO Sweep-able sub-millimeter sources and detectors for THz Vector Network Analyzers and Applications Presenter: Philippe GOY, AB MILLIMETRE, Paris, France, tel:+33 1 47077100 [email protected],
Integration of a passive micro-mechanical infrared sensor package with a commercial smartphone camera system
1 Integration of a passive micro-mechanical infrared sensor package with a commercial smartphone camera system Nathan Eigenfeld Abstract This report presents an integration plan for a passive micro-mechanical
Chapter 2: Solar Radiation and Seasons
Chapter 2: Solar Radiation and Seasons Spectrum of Radiation Intensity and Peak Wavelength of Radiation Solar (shortwave) Radiation Terrestrial (longwave) Radiations How to Change Air Temperature? Add
Selecting Receiving Antennas for Radio Tracking
Selecting Receiving Antennas for Radio Tracking Larry B Kuechle, Advanced Telemetry Systems, Inc. Isanti, Minnesota 55040 [email protected] The receiving antenna is an integral part of any radio location
Reliability Test Station. David Cheney Electrical & Computing Engineering
Reliability Test Station David Cheney Electrical & Computing Engineering Overview Turnkey vs. In-house Electrical Stress Protocols System Specifications & Features UF Semiconductor Reliability System Development
Communication Systems
AM/FM Receiver Communication Systems We have studied the basic blocks o any communication system Modulator Demodulator Modulation Schemes: Linear Modulation (DSB, AM, SSB, VSB) Angle Modulation (FM, PM)
Labs in Bologna & Potenza Menzel. Lab 3 Interrogating AIRS Data and Exploring Spectral Properties of Clouds and Moisture
Labs in Bologna & Potenza Menzel Lab 3 Interrogating AIRS Data and Exploring Spectral Properties of Clouds and Moisture Figure 1: High resolution atmospheric absorption spectrum and comparative blackbody
GLOBAL COLLEGE OF ENGINEERING &TECHNOLOGY: YSR DIST. Unit VII Fiber Optics Engineering Physics
Introduction Fiber optics deals with the light propagation through thin glass fibers. Fiber optics plays an important role in the field of communication to transmit voice, television and digital data signals
Video eavesdropping- RF
Security : Forensic Signal Analysis: MPHIL ACS 2009 Security : Forensic Signal Analysis Video eavesdropping- RF Y.K. Roland Tai 1. Introduction 2. History of TEMPEST 3. Type of RF leakages 4. Counter-measures.
Understanding Mixers Terms Defined, and Measuring Performance
Understanding Mixers Terms Defined, and Measuring Performance Mixer Terms Defined Statistical Processing Applied to Mixers Today's stringent demands for precise electronic systems place a heavy burden
Lab 9: The Acousto-Optic Effect
Lab 9: The Acousto-Optic Effect Incoming Laser Beam Travelling Acoustic Wave (longitudinal wave) O A 1st order diffracted laser beam A 1 Introduction qb d O 2qb rarefractions compressions Refer to Appendix
LVDS Technology Solves Typical EMI Problems Associated with Cell Phone Cameras and Displays
AN-5059 Fairchild Semiconductor Application Note May 2005 Revised May 2005 LVDS Technology Solves Typical EMI Problems Associated with Cell Phone Cameras and Displays Differential technologies such as
Impedance 50 (75 connectors via adapters)
VECTOR NETWORK ANALYZER PLANAR TR1300/1 DATA SHEET Frequency range: 300 khz to 1.3 GHz Measured parameters: S11, S21 Dynamic range of transmission measurement magnitude: 130 db Measurement time per point:
UNIVERSITY OF SASKATCHEWAN Department of Physics and Engineering Physics
UNIVERSITY OF SASKATCHEWAN Department of Physics and Engineering Physics Physics 111.6 MIDTERM TEST #4 March 15, 2007 Time: 90 minutes NAME: (Last) Please Print (Given) STUDENT NO.: LECTURE SECTION (please
Features. Applications. Transmitter. Receiver. General Description MINIATURE MODULE. QM MODULATION OPTIMAL RANGE 1000m
Features MINIATURE MODULE QM MODULATION OPTIMAL RANGE 1000m 433.05 434.79 ISM BAND 34 CHANNELS AVAILABLE SINGLE SUPPLY VOLTAGE Applications IN VEHICLE TELEMETRY SYSTEMS WIRELESS NETWORKING DOMESTIC AND
Human Exposure Limits
Human Exposure Limits Session 3 0 Version December 2014 Learning objectives In this session we will: Learn about the international exposure limits for workers and the public Learn about methods for assessing
SHARING BETWEEN TERRESTRIAL FLIGHT TELEPHONE SYSTEM (TFTS) AND RADIO ASTRONOMY IN THE 1.6 GHz BAND. Paris, May 1992
European Radiocommunications Committee (ERC) within the European Conference of Postal and Telecommunications Administrations (CEPT) SHARING BETWEEN TERRESTRIAL FLIGHT TELEPHONE SYSTEM (TFTS) AND RADIO
Blackbody Radiation References INTRODUCTION
Blackbody Radiation References 1) R.A. Serway, R.J. Beichner: Physics for Scientists and Engineers with Modern Physics, 5 th Edition, Vol. 2, Ch.40, Saunders College Publishing (A Division of Harcourt
GRF-3300 RF Training Kits
RF Training Kits Presenter : Cooper Liu, Engineer Department : Marketing & Service Division Date : Aug. 20, 2008 Educational challenges coped in RF circuits training Short of proper training tools The
D.S. Boyd School of Earth Sciences and Geography, Kingston University, U.K.
PHYSICAL BASIS OF REMOTE SENSING D.S. Boyd School of Earth Sciences and Geography, Kingston University, U.K. Keywords: Remote sensing, electromagnetic radiation, wavelengths, target, atmosphere, sensor,
Thermal Antenna for Passive THz Security Screening System and Current- Mode Active-Feedback Readout Circuit for Thermal Sensor
Department of Electrical Engineering Thermal Antenna for Passive THz Security Screening System and Current- Mode Active-Feedback Readout Circuit for Thermal Sensor 1. Background Alon Rotman and Roy Nicolet
AMPLIFIED HIGH SPEED FIBER PHOTODETECTOR USER S GUIDE
AMPLIFIED HIGH SPEED FIBER PHOTODETECTOR USER S GUIDE Thank you for purchasing your Amplified High Speed Fiber Photodetector. This user s guide will help answer any questions you may have regarding the
Avalanche Photodiodes: A User's Guide
!"#$%& Abstract Avalanche Photodiodes: A User's Guide Avalanche photodiode detectors have and will continue to be used in many diverse applications such as laser range finders and photon correlation studies.
INTELLIGENT INTERACTIVE SYNTHESIZER SURFACE MOUNT MODEL: MFSH615712-100
SURFACE MOUNT MODEL: MFSH6572 65-72 MHz FEATURES: Small Size, Surface Mount (.6" x.6") Low Phase Noise Standard Programming Interface Ultra Wide Tuning Range Lead Free - RoHS Compliant Patented REL-PRO
SAMBA: SUPERCONDUCTING ANTENNA-COUPLED, MULTI-FREQUENCY, BOLOMETRIC ARRAY
SAMBA: SUPERCONDUCTING ANTENNA-COUPLED, MULTI-FREQUENCY, BOLOMETRIC ARRAY Alexey Goldin, James J. Bock, Cynthia Hunt, Andrew E. Lange, Henry LeDuc, Anastasios Vayonakis and Jonas Zmuidzinas JPL, 48 Oak
R&S ZCxxx Millimeter-Wave Converters Specifications
ZCxxx_dat-sw_en_3607-1471-22_v0200_cover.indd 1 Data Sheet 02.00 Test & Measurement R&S ZCxxx Millimeter-Wave Converters Specifications 21.07.2015 15:09:16 CONTENTS Definitions... 3 General information...
AT-41486 Up to 6 GHz Low Noise Silicon Bipolar Transistor
AT- Up to 6 GHz Low Noise Silicon Bipolar Transistor Data Sheet Description Avago s AT- is a general purpose NPN bipolar transistor that offers excellent high frequency performance. The AT- is housed in
16 th IOCCG Committee annual meeting. Plymouth, UK 15 17 February 2011. mission: Present status and near future
16 th IOCCG Committee annual meeting Plymouth, UK 15 17 February 2011 The Meteor 3M Mt satellite mission: Present status and near future plans MISSION AIMS Satellites of the series METEOR M M are purposed
Agilent N8973A, N8974A, N8975A NFA Series Noise Figure Analyzers. Data Sheet
Agilent N8973A, N8974A, N8975A NFA Series Noise Figure Analyzers Data Sheet Specifications Specifications are only valid for the stated operating frequency, and apply over 0 C to +55 C unless otherwise
Welcome. Rulon VanDyke RF System Architect, Agilent Technologies. David Leiss Senior RF Simulation Consultant, Agilent Technologies
Welcome Rulon VanDyke RF System Architect, Agilent Technologies David Leiss Senior RF Simulation Consultant, Agilent Technologies January 12, 2012 Agenda RF Architecture Definition Costs of Poor Architecture
Various Technics of Liquids and Solids Level Measurements. (Part 3)
(Part 3) In part one of this series of articles, level measurement using a floating system was discusses and the instruments were recommended for each application. In the second part of these articles,
Internal GPS Active Patch Antenna Application Note
Internal GPS Active Patch Antenna Application Note APN-13-8-002/A Page 1 of 14 1. BASICS 2. APPLICATIONS 3. SIZE 4. SHAPE 5. GROUND PLANE 6. IMPEDANCE 7. BANDWIDTH 8. VSWR 9. LINK BUDGET 10. GAIN 11. NOISE
Development of Optical Wave Microphone Measuring Sound Waves with No Diaphragm
Progress In Electromagnetics Research Symposium Proceedings, Taipei, March 5 8, 3 359 Development of Optical Wave Microphone Measuring Sound Waves with No Diaphragm Yoshito Sonoda, Takashi Samatsu, and
Flexible PCB Antenna with Cable Integration Application Note Version 2
Flexible PCB Antenna with Cable Integration Application Note Version 2 CONTENTS 1. BASICS 2. APPLICATIONS 3. SIZE 4. SHAPE 5. GROUND PLANE SIZE 6. IMPEDANCE 7. BANDWIDTH 8. VSWR 9. GAIN 10. EFFICIENCY
Sky Monitoring Techniques using Thermal Infrared Sensors. sabino piazzolla Optical Communications Group JPL
Sky Monitoring Techniques using Thermal Infrared Sensors sabino piazzolla Optical Communications Group JPL Atmospheric Monitoring The atmospheric channel has a great impact on the channel capacity at optical
Agilent PN 8753-1 RF Component Measurements: Amplifier Measurements Using the Agilent 8753 Network Analyzer. Product Note
Agilent PN 8753-1 RF Component Measurements: Amplifier Measurements Using the Agilent 8753 Network Analyzer Product Note 2 3 4 4 4 4 6 7 8 8 10 10 11 12 12 12 13 15 15 Introduction Table of contents Introduction
ELEMENTS OF CABLE TELEVISION
1 ELEMENTS OF CABLE TELEVISION Introduction Cable television, from its inception, developed in western countries into two separate systems called Master Antenna Television (MATV) and Community Cable Television
How To Sell A Talan
The TALAN represents state-of-the-art capability to rapidly and reliably detect and locate illicit tampering and security vulnerabilities on both digital and analog telephone systems. Marketing Characteristics
Power Amplifier Gain Compression Measurements
Technical Brief Power Amplifier Gain Compression Measurements GPIB Private Bus Sweep Out Sweep In Pulse In AC Mod Out Blank/Marker Out Blanking In Overview The 1 db gain compression of an amplifier describes
Components for Infrared Spectroscopy. Dispersive IR Spectroscopy
Components for Infrared Spectroscopy Mid-IR light: 00-000 cm - (5.5 m wavelength) Sources: Blackbody emitters Globar metal oxides Nernst Glower: Silicon Carbide Detectors: Not enough energy for photoelectric
Electromagnetic Radiation (EMR) and Remote Sensing
Electromagnetic Radiation (EMR) and Remote Sensing 1 Atmosphere Anything missing in between? Electromagnetic Radiation (EMR) is radiated by atomic particles at the source (the Sun), propagates through
Optical Metrology. Third Edition. Kjell J. Gasvik Spectra Vision AS, Trondheim, Norway JOHN WILEY & SONS, LTD
2008 AGI-Information Management Consultants May be used for personal purporses only or by libraries associated to dandelon.com network. Optical Metrology Third Edition Kjell J. Gasvik Spectra Vision AS,
