SNP Essentials The same SNP story
|
|
|
- Evelyn Rose
- 10 years ago
- Views:
Transcription
1 HOW SNPS HELP RESEARCHERS FIND THE GENETIC CAUSES OF DISEASE
2 SNP Essentials One of the findings of the Human Genome Project is that the DNA of any two people, all 3.1 billion molecules of it, is more than 99.9 percent identical, but that 0.1 percent accounts for all the genetic differences between people. In literal terms, that means that one person might have blue eyes rather than green, or a susceptibility to lung cancer, or perfect pitch, because the sequence of their DNA -- a long chain of adenine (A), guanine (G), cytosine (C) and thymine (T) molecules -- differs from another person s. Rather than having an A-T pair of molecules at a certain spot on the DNA chain, a person might have a G-C pair. On the other hand, that difference might not have any effect at all on a person s health or appearance. These differences in DNA sequence are called single nucleotide polymorphisms, or SNPs. The same SNP story SNPs do not occur randomly. There isn t an equal chance that any one of the 3.1 billion base pairs in your genome will be different from someone else s. SNPs are mutations that occurred once in history and then were passed on to future generations. So if your ancestor developed a SNP 5,000 years ago, you, along with many of your other very distant relatives would inherit that SNP, but those not descended from that ancestor would lack it. Perhaps in 15 percent of the population the 1,253,334,078 th base pair along the genome at the very end of Chromosome 16 is a T-A, not a C-G like it is in the other 85 percent of the population. And most SNPs that we care about are like this, they are common, to a greater or lesser degree, throughout large parts of the population. This makes sense, since very few attributes, like eye color or a disease, occur only in one person.
3 How many SNPs are there? SNP research, like the rest of genome research, is definitely a work in progress. No one knows how many SNPs there are, but some people estimate that there could be as many as 10 million. When scientists are sequencing DNA in drug or disease research and they see a discrepancy in the sequence between people, they will record that in a public SNP database. Right now there are about two million entries like that in public databases. There are far fewer well-annotated SNPs; those are SNPs that have been seen at least twice by researchers. How do SNPs help disease researchers? Finding DNA mutations in genes that cause or contribute to a disease is one of the most challenging tasks for a researcher, because the mutation could be anywhere in the 3.1 billion A, C, T and G molecules that make up our genome. It s like looking for a needle in a haystack, and scientist often don t even know where to begin looking. SNP analysis tells them what section of the genetic haystack to start looking in, and this allows them to find the diseasecausing gene much more quickly.
4 Over 3.1 Billion Molecules To understand how invaluable SNPs are in tracking down mutations that cause disease, you have to appreciate the immense size of genome. Consider this: if each of the DNA molecules in our genome was about the size of a ping pong ball, the long unraveled chain of molecules would circle the earth 3 times, or just over 75,000 miles. The real difficulty is that less than 2 percent of that -- about 1500 miles, or a little less than the distance from Los Angeles to Chicago -- is DNA that we know codes for proteins. These protein-coding areas are what has traditionally been referred to as genes. But those 1500 miles worth of genes isn t all in a row. Genes are scattered throughout the genome, and in between them is the so-called junk DNA. Since scientists estimate that genes are on average about 600 base pairs long, a gene on our global ping pong scale would be 24 meters (80 feet) long. Given a genome that wraps around the world three times, 24 meters is miniscule. If you were walking or swimming the entire trip, you d be likely to encounter a gene an average of once every 2.5 miles (4 kilometers). Genetic Postal Codes Because the genome is so immense, it is practically impossible to find a specific gene or disease-causing mutation without having a rough idea of where to begin looking. Searching for disease genes without SNPs would be like searching for an address without a postal code. The address could be anywhere in the US and you would have no clue where to start. But with a postal code, you could narrow your geographic area and then methodically search a local map to find the street. SNP analysis does the same thing, reduces the possibilities so that researchers can better focus their search and find the disease-causing mutation they are looking for within the vastness of the human genome.
5 How to Find Genes Associated With Disease Researchers make the assumption that if 1000 people share the same disease they should also share the genetic mutations that contribute to that disease. If researchers can pinpoint the genetic differences that all these people share genetic mutations that healthy people don t have they can understand how these mutations contribute to a disease. By understanding the cause, they can hopefully find a treatment. Comparing Genomes In an ideal world, researchers would just sequence the genomes of all 1,000 people effectively lay them side-by-side and compare the sequence of the As, Cs, Gs and Ts in each person s DNA. That would show them the mutations that people with the disease share and scientists would start their research there. Unfortunately, with current technology, sequencing the 3.1 billion bases in a single human genome is too expensive and time consuming to be practical for disease research after all, it took the Human Genome Project 10 years to sequence a single human genome. SNPs offer a more practical way to find the genetic differences that cause disease.
6 DNA Moves in Blocks To understand how SNPs help scientist locate disease genes, you first need to understand how genes are inherited. When you inherit a trait or disease, you don t just inherit the DNA for that trait. Instead you get a long chunk of DNA that may affect many characteristics. So maybe the piece of DNA from your dad that gave you his big blue eyes, also gave you his big feet. In this hypothetical example, big-blue-eyes DNA and big-shoe-size DNA make up a block of DNA that is always inherited together. You inherited this genetic chunk from your father, he from his father, and so on, all the way back to the original ancestor who first developed this particular trait. So, even in a large mixed population, anyone with this specific chunk of DNA would be genetically related to each other, because they share a common ancestor the first big-blue-eyed big foot. Tracking DNA with SNPs The fact that we inherit our DNA in these consistent, predictable blocks is key to understanding how SNPs are used to track down a diseasegene. Once a disease-causing mutation occurs in this block of DNA either by chance or by environmental factors that mutation is passed on to descendents who inherit that block of DNA generations later. The various SNPs that occur within the block of DNA will also be passed on. So when researchers see a SNP shared by a lot of people who have a disease like autism, (but not shared in a group of people that don t,) they think These people share a similar block of inherited DNA and there may be a disease causing mutation in that block. In this way, SNPs from an ancestor who might have lived 5,000 years ago, canserve as a marker for a disease gene you could have inherited today.
7 Finding the Disease Mutation Scientists next step is to look for mutations in the DNA surrounding the SNPs that the patients have in common. The Affymetrix 10K Mapping array basically screens the entire human genome for 10,000 SNPs that scientists have discovered. On average, those SNPs are about 20,000 bases apart (an A, C, G or T molecule is called a base ). In the example we ve been using, scientists have found two SNPs, a G and a T, that are shared by people with a disorder like autism. That means out of the whole genome, scientists only have to look at the block of DNA containing those two SNPs to find the autism mutation. The next step would be to find out the exact order of the As, Cs, Gs and Ts on that block of DNA, which is called sequencing. Researchers would sequence then that block of DNA from everyone in the study and then do a base-by-base comparison to try and find other mutations that people have in common, mutations that might be contributing to the autism. Does that mean the marker SNP is responsible for the disease? It s possible, but it would be quite a stroke of luck. The SNP is a mutation and could be part of the problem, but scientists think that most SNPs have no effect at all. For a researcher, a SNP s primary function is to serve as a marker, or a sort of sign post along the genome that says to the researcher: Out of the 3.1 billion base pairs in the human genome that could have mutations that cause this disease, you might start looking here, around this SNP which everyone with the disease shares. SNPs are not the only types of mutations either. Deletions and duplications of DNA can also cause disease, but by analyzing SNPs, scientist have a way of finding any kind of mutation linked to disease. So is any single base mutation a SNP? By definition, any single base pair that is different from the reference sequence drafted by the Human Genome Project is a SNP. But if, say, only five people in the world share the same SNP, it s not going to be much good to researchers that are trying to find genes associated with diseases. If you have a list of 10,000 SNPs and you want to see if a group of 100 people with colon cancer share any of them, you probably won t get many matches if the SNPs you have only appeared in a handful of people in the population. You want the popular SNPs, the ones that show up a lot. Remember, the SNP s purpose is to point you to a block of DNA that people in the disease group share, it may not have anything to do with the disease. Why are some SNPs rare? If a SNP mutation has happened recently, not much time has elapsed to allow it to be transmitted and inherited by a large number of people. This kind of SNP is a rare SNP. On the other hand, if we are looking at a SNP mutation that happened 25,000 years ago, there s a much greater chance for that SNP to have been inherited by a lot more people. Scientists say that these types of SNPs are common.
Cancer Genomics: What Does It Mean for You?
Cancer Genomics: What Does It Mean for You? The Connection Between Cancer and DNA One person dies from cancer each minute in the United States. That s 1,500 deaths each day. As the population ages, this
14.3 Studying the Human Genome
14.3 Studying the Human Genome Lesson Objectives Summarize the methods of DNA analysis. State the goals of the Human Genome Project and explain what we have learned so far. Lesson Summary Manipulating
Biological Sciences Initiative. Human Genome
Biological Sciences Initiative HHMI Human Genome Introduction In 2000, researchers from around the world published a draft sequence of the entire genome. 20 labs from 6 countries worked on the sequence.
Algorithms in Computational Biology (236522) spring 2007 Lecture #1
Algorithms in Computational Biology (236522) spring 2007 Lecture #1 Lecturer: Shlomo Moran, Taub 639, tel 4363 Office hours: Tuesday 11:00-12:00/by appointment TA: Ilan Gronau, Taub 700, tel 4894 Office
Lecture 6: Single nucleotide polymorphisms (SNPs) and Restriction Fragment Length Polymorphisms (RFLPs)
Lecture 6: Single nucleotide polymorphisms (SNPs) and Restriction Fragment Length Polymorphisms (RFLPs) Single nucleotide polymorphisms or SNPs (pronounced "snips") are DNA sequence variations that occur
12.1 The Role of DNA in Heredity
12.1 The Role of DNA in Heredity Only in the last 50 years have scientists understood the role of DNA in heredity. That understanding began with the discovery of DNA s structure. In 1952, Rosalind Franklin
Human Genome Organization: An Update. Genome Organization: An Update
Human Genome Organization: An Update Genome Organization: An Update Highlights of Human Genome Project Timetable Proposed in 1990 as 3 billion dollar joint venture between DOE and NIH with 15 year completion
Genomes and SNPs in Malaria and Sickle Cell Anemia
Genomes and SNPs in Malaria and Sickle Cell Anemia Introduction to Genome Browsing with Ensembl Ensembl The vast amount of information in biological databases today demands a way of organising and accessing
MAKING AN EVOLUTIONARY TREE
Student manual MAKING AN EVOLUTIONARY TREE THEORY The relationship between different species can be derived from different information sources. The connection between species may turn out by similarities
Worksheet - COMPARATIVE MAPPING 1
Worksheet - COMPARATIVE MAPPING 1 The arrangement of genes and other DNA markers is compared between species in Comparative genome mapping. As early as 1915, the geneticist J.B.S Haldane reported that
Name Date Period. 2. When a molecule of double-stranded DNA undergoes replication, it results in
DNA, RNA, Protein Synthesis Keystone 1. During the process shown above, the two strands of one DNA molecule are unwound. Then, DNA polymerases add complementary nucleotides to each strand which results
Gene mutation and molecular medicine Chapter 15
Gene mutation and molecular medicine Chapter 15 Lecture Objectives What Are Mutations? How Are DNA Molecules and Mutations Analyzed? How Do Defective Proteins Lead to Diseases? What DNA Changes Lead to
The Human Genome Project. From genome to health From human genome to other genomes and to gene function Structural Genomics initiative
The Human Genome Project From genome to health From human genome to other genomes and to gene function Structural Genomics initiative June 2000 What is the Human Genome Project? U.S. govt. project coordinated
Polar Covalent Bonds and Hydrogen Bonds
Lesson 6.1: Polar Covalent Bonds and Hydrogen Bonds The last section of code will add hydrogen bonding functionality between molecules. To do so, we have to understand the chemistry of polar covalent bonds
2. True or False? The sequence of nucleotides in the human genome is 90.9% identical from one person to the next. False (it s 99.
1. True or False? A typical chromosome can contain several hundred to several thousand genes, arranged in linear order along the DNA molecule present in the chromosome. True 2. True or False? The sequence
How Cancer Begins???????? Chithra Manikandan Nov 2009
Cancer Cancer is one of the most common diseases in the developed world: 1 in 4 deaths are due to cancer 1 in 17 deaths are due to lung cancer Lung cancer is the most common cancer in men Breast cancer
Good morning, Chairman Kingston, Ranking Member DeLauro, and distinguished. The Unique Role of Academic Medical Centers in Health Care Transformation
Statement by Vivian S. Lee, M.D., Ph.D., M.B.A., Senior Vice President for Health Sciences, Dean of the School of Medicine, and CEO of University of Utah Health Care on FY 2015 Appropriations for the Department
DNA, RNA, Protein synthesis, and Mutations. Chapters 12-13.3
DNA, RNA, Protein synthesis, and Mutations Chapters 12-13.3 1A)Identify the components of DNA and explain its role in heredity. DNA s Role in heredity: Contains the genetic information of a cell that can
Thymine = orange Adenine = dark green Guanine = purple Cytosine = yellow Uracil = brown
1 DNA Coloring - Transcription & Translation Transcription RNA, Ribonucleic Acid is very similar to DNA. RNA normally exists as a single strand (and not the double stranded double helix of DNA). It contains
Human Genome and Human Genome Project. Louxin Zhang
Human Genome and Human Genome Project Louxin Zhang A Primer to Genomics Cells are the fundamental working units of every living systems. DNA is made of 4 nucleotide bases. The DNA sequence is the particular
Genetic information (DNA) determines structure of proteins DNA RNA proteins cell structure 3.11 3.15 enzymes control cell chemistry ( metabolism )
Biology 1406 Exam 3 Notes Structure of DNA Ch. 10 Genetic information (DNA) determines structure of proteins DNA RNA proteins cell structure 3.11 3.15 enzymes control cell chemistry ( metabolism ) Proteins
Just the Facts: A Basic Introduction to the Science Underlying NCBI Resources
1 of 8 11/7/2004 11:00 AM National Center for Biotechnology Information About NCBI NCBI at a Glance A Science Primer Human Genome Resources Model Organisms Guide Outreach and Education Databases and Tools
Basic Concepts of DNA, Proteins, Genes and Genomes
Basic Concepts of DNA, Proteins, Genes and Genomes Kun-Mao Chao 1,2,3 1 Graduate Institute of Biomedical Electronics and Bioinformatics 2 Department of Computer Science and Information Engineering 3 Graduate
I Have the Results of My Genetic Genealogy Test, Now What?
I Have the Results of My Genetic Genealogy Test, Now What? Version 2.1 1 I Have the Results of My Genetic Genealogy Test, Now What? Chapter 1: What Is (And Isn t) Genetic Genealogy? Chapter 2: How Do I
Genetic Testing in Research & Healthcare
We Innovate Healthcare Genetic Testing in Research & Healthcare We Innovate Healthcare Genetic Testing in Research and Healthcare Human genetic testing is a growing science. It is used to study genes
Biology Behind the Crime Scene Week 4: Lab #4 Genetics Exercise (Meiosis) and RFLP Analysis of DNA
Page 1 of 5 Biology Behind the Crime Scene Week 4: Lab #4 Genetics Exercise (Meiosis) and RFLP Analysis of DNA Genetics Exercise: Understanding how meiosis affects genetic inheritance and DNA patterns
Genetics Module B, Anchor 3
Genetics Module B, Anchor 3 Key Concepts: - An individual s characteristics are determines by factors that are passed from one parental generation to the next. - During gamete formation, the alleles for
The Human Genome Project
The Human Genome Project Brief History of the Human Genome Project Physical Chromosome Maps Genetic (or Linkage) Maps DNA Markers Sequencing and Annotating Genomic DNA What Have We learned from the HGP?
DNA Replication & Protein Synthesis. This isn t a baaaaaaaddd chapter!!!
DNA Replication & Protein Synthesis This isn t a baaaaaaaddd chapter!!! The Discovery of DNA s Structure Watson and Crick s discovery of DNA s structure was based on almost fifty years of research by other
Mitochondrial DNA Analysis
Mitochondrial DNA Analysis Lineage Markers Lineage markers are passed down from generation to generation without changing Except for rare mutation events They can help determine the lineage (family tree)
About The Causes of Hearing Loss
About 1 in 500 infants is born with or develops hearing loss during early childhood. Hearing loss has many causes: some are genetic (that is, caused by a baby s genes) or non-genetic (such as certain infections
Bioinformatics Resources at a Glance
Bioinformatics Resources at a Glance A Note about FASTA Format There are MANY free bioinformatics tools available online. Bioinformaticists have developed a standard format for nucleotide and protein sequences
Genetics Test Biology I
Genetics Test Biology I Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Avery s experiments showed that bacteria are transformed by a. RNA. c. proteins.
DNA Damage and Repair
infoaging guides BIOLOGY OF AGING DNA Damage and Repair An introduction to aging science brought to you by the American Federation for Aging Research DNA BASICS DNA stands for deoxyribonucleic acid. The
Teacher Guide: Have Your DNA and Eat It Too ACTIVITY OVERVIEW. http://gslc.genetics.utah.edu
ACTIVITY OVERVIEW Abstract: Students build an edible model of DNA while learning basic DNA structure and the rules of base pairing. Module: The Basics and Beyond Prior Knowledge Needed: DNA contains heritable
To be able to describe polypeptide synthesis including transcription and splicing
Thursday 8th March COPY LO: To be able to describe polypeptide synthesis including transcription and splicing Starter Explain the difference between transcription and translation BATS Describe and explain
School of Nursing. Presented by Yvette Conley, PhD
Presented by Yvette Conley, PhD What we will cover during this webcast: Briefly discuss the approaches introduced in the paper: Genome Sequencing Genome Wide Association Studies Epigenomics Gene Expression
DNA Paper Model Activity Level: Grade 6-8
Karen Mayes DNA Paper Model Activity Level: Grade 6-8 Students will be able to: 1. Identify the component molecules of DNA. 2. Construct a model of the DNA double-helix. 3. Identify which bases are found
Got Lactase? The Co-evolution of Genes and Culture
The Making of the Fittest: Natural The Making Selection of the and Fittest: Adaptation Natural Selection and Adaptation OVERVIEW PEDIGREES AND THE INHERITANCE OF LACTOSE INTOLERANCE This activity serves
CCR Biology - Chapter 9 Practice Test - Summer 2012
Name: Class: Date: CCR Biology - Chapter 9 Practice Test - Summer 2012 Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Genetic engineering is possible
Lifebushido/Best Agent Business
Lifebushido/Best Agent Business Key Assistant Training Call Database Management Overview Steve Kantor: Good morning, this is Steve Kantor with Lifebushido and Best Agent Business and this is a training
GenBank: A Database of Genetic Sequence Data
GenBank: A Database of Genetic Sequence Data Computer Science 105 Boston University David G. Sullivan, Ph.D. An Explosion of Scientific Data Scientists are generating ever increasing amounts of data. Relevant
Cystic Fibrosis Webquest Sarah Follenweider, The English High School 2009 Summer Research Internship Program
Cystic Fibrosis Webquest Sarah Follenweider, The English High School 2009 Summer Research Internship Program Introduction: Cystic fibrosis (CF) is an inherited chronic disease that affects the lungs and
RETRIEVING SEQUENCE INFORMATION. Nucleotide sequence databases. Database search. Sequence alignment and comparison
RETRIEVING SEQUENCE INFORMATION Nucleotide sequence databases Database search Sequence alignment and comparison Biological sequence databases Originally just a storage place for sequences. Currently the
Fact Sheet 14 EPIGENETICS
This fact sheet describes epigenetics which refers to factors that can influence the way our genes are expressed in the cells of our body. In summary Epigenetics is a phenomenon that affects the way cells
Gene Mapping Techniques
Gene Mapping Techniques OBJECTIVES By the end of this session the student should be able to: Define genetic linkage and recombinant frequency State how genetic distance may be estimated State how restriction
Next Generation Sequencing: Technology, Mapping, and Analysis
Next Generation Sequencing: Technology, Mapping, and Analysis Gary Benson Computer Science, Biology, Bioinformatics Boston University [email protected] http://tandem.bu.edu/ The Human Genome Project took
Worksheet: The theory of natural selection
Worksheet: The theory of natural selection Senior Phase Grade 7-9 Learning area: Natural Science Strand: Life and living Theme: Biodiversity, change and continuity Specific Aim 1: Acquiring knowledge of
DNA and Forensic Science
DNA and Forensic Science Micah A. Luftig * Stephen Richey ** I. INTRODUCTION This paper represents a discussion of the fundamental principles of DNA technology as it applies to forensic testing. A brief
Forensic DNA Testing Terminology
Forensic DNA Testing Terminology ABI 310 Genetic Analyzer a capillary electrophoresis instrument used by forensic DNA laboratories to separate short tandem repeat (STR) loci on the basis of their size.
A Genomic Timeline Tim Shank 2003
A Genomic Timeline Tim Shank 2003 1800s 1865 Gregor Mendel reports the results of his pea plant expts, from which he discerned several fundamental laws of heredity. His results appeared in an obscure journal
Lab # 12: DNA and RNA
115 116 Concepts to be explored: Structure of DNA Nucleotides Amino Acids Proteins Genetic Code Mutation RNA Transcription to RNA Translation to a Protein Figure 12. 1: DNA double helix Introduction Long
Over-the-counter Genetic Susceptibility Tests
Over-the-counter Genetic Susceptibility Tests Information for individuals, families and non-specialist health professionals Over-the-counter Genetic Susceptibility Tests In recent years, there has been
X Linked Inheritance
X Linked Inheritance Information for Patients and Families 2 X linked Inheritance The following will give you information about what X linked inheritance means and how X linked conditions are inherited.
Biomedical Big Data and Precision Medicine
Biomedical Big Data and Precision Medicine Jie Yang Department of Mathematics, Statistics, and Computer Science University of Illinois at Chicago October 8, 2015 1 Explosion of Biomedical Data 2 Types
Basic Concepts Recombinant DNA Use with Chapter 13, Section 13.2
Name Date lass Master 19 Basic oncepts Recombinant DN Use with hapter, Section.2 Formation of Recombinant DN ut leavage Splicing opyright lencoe/mcraw-hill, a division of he Mcraw-Hill ompanies, Inc. Bacterial
Factors for success in big data science
Factors for success in big data science Damjan Vukcevic Data Science Murdoch Childrens Research Institute 16 October 2014 Big Data Reading Group (Department of Mathematics & Statistics, University of Melbourne)
DNA and the Cell. Version 2.3. English version. ELLS European Learning Laboratory for the Life Sciences
DNA and the Cell Anastasios Koutsos Alexandra Manaia Julia Willingale-Theune Version 2.3 English version ELLS European Learning Laboratory for the Life Sciences Anastasios Koutsos, Alexandra Manaia and
LEUKODYSTROPHY GENETICS AND REPRODUCTIVE OPTIONS FOR AFFECTED FAMILIES. Leila Jamal, ScM Kennedy Krieger Institute, Baltimore MD
LEUKODYSTROPHY GENETICS AND REPRODUCTIVE OPTIONS FOR AFFECTED FAMILIES Leila Jamal, ScM Kennedy Krieger Institute, Baltimore MD 2 Outline Genetics 101: Basic Concepts and Myth Busting Inheritance Patterns
DNA is found in all organisms from the smallest bacteria to humans. DNA has the same composition and structure in all organisms!
Biological Sciences Initiative HHMI DNA omponents and Structure Introduction Nucleic acids are molecules that are essential to, and characteristic of, life on Earth. There are two basic types of nucleic
13.4 Gene Regulation and Expression
13.4 Gene Regulation and Expression Lesson Objectives Describe gene regulation in prokaryotes. Explain how most eukaryotic genes are regulated. Relate gene regulation to development in multicellular organisms.
DNA Determines Your Appearance!
DNA Determines Your Appearance! Summary DNA contains all the information needed to build your body. Did you know that your DNA determines things such as your eye color, hair color, height, and even the
Make a model DNA strand
Make a model DNA strand Summary A strand of DNA looks like a ladder that has been twisted into a corkscrew. Just like a ladder, a DNA strand has two rails running parallel to each other and rungs that
ASSIGNMENT DISCOVERY ONLINE CURRICULUM
Lesson title: Building a Model DNA Grade level: 6-8 Subject area: Life Science Duration: Two class periods ASSIGNMENT DISCOVERY ONLINE CURRICULUM Objectives: Students will: 1. Understand that chromosomes
Next Generation Sequencing: Adjusting to Big Data. Daniel Nicorici, Dr.Tech. Statistikot Suomen Lääketeollisuudessa 29.10.2013
Next Generation Sequencing: Adjusting to Big Data Daniel Nicorici, Dr.Tech. Statistikot Suomen Lääketeollisuudessa 29.10.2013 Outline Human Genome Project Next-Generation Sequencing Personalized Medicine
PAPER RFLP TEACHER GUIDE
PAPER RFLP TEACHER GUIDE Paper = DNA Scissors = Restriction Enzyme Desktop = Electrophoresis NOTE: There are TWO versions of this activity one where the students write their own sentences (to represent
BRCA Genes and Inherited Breast and Ovarian Cancer. Patient information leaflet
BRCA Genes and Inherited Breast and Ovarian Cancer Patient information leaflet This booklet has been written for people who have a personal or family history of breast and/or ovarian cancer that could
Duchenne muscular dystrophy (DMD)
Duchenne muscular dystrophy (DMD) What is Duchenne muscular dystrophy or DMD? Muscular Dystrophy is a group of inherited muscle disorders, in which muscles weaken over time. Duchenne muscular dystrophy
patient education Fact Sheet PFS007: BRCA1 and BRCA2 Mutations MARCH 2015
patient education Fact Sheet PFS007: BRCA1 and BRCA2 Mutations MARCH 2015 BRCA1 and BRCA2 Mutations Cancer is a complex disease thought to be caused by several different factors. A few types of cancer
Chapter 8: Recombinant DNA 2002 by W. H. Freeman and Company Chapter 8: Recombinant DNA 2002 by W. H. Freeman and Company
Genetic engineering: humans Gene replacement therapy or gene therapy Many technical and ethical issues implications for gene pool for germ-line gene therapy what traits constitute disease rather than just
From DNA to Protein. Proteins. Chapter 13. Prokaryotes and Eukaryotes. The Path From Genes to Proteins. All proteins consist of polypeptide chains
Proteins From DNA to Protein Chapter 13 All proteins consist of polypeptide chains A linear sequence of amino acids Each chain corresponds to the nucleotide base sequence of a gene The Path From Genes
Cancer Patients Urgently Need Effective, Genetically-Targeted Treatments
Cancer Patients Urgently Need Effective, Genetically-Targeted Treatments The Core Problem One Symptom, Not One Disease The disease we call cancer is the second most common cause of death in the United
13.2 Ribosomes & Protein Synthesis
13.2 Ribosomes & Protein Synthesis Introduction: *A specific sequence of bases in DNA carries the directions for forming a polypeptide, a chain of amino acids (there are 20 different types of amino acid).
SICKLE CELL ANEMIA & THE HEMOGLOBIN GENE TEACHER S GUIDE
AP Biology Date SICKLE CELL ANEMIA & THE HEMOGLOBIN GENE TEACHER S GUIDE LEARNING OBJECTIVES Students will gain an appreciation of the physical effects of sickle cell anemia, its prevalence in the population,
Modeling DNA Replication and Protein Synthesis
Skills Practice Lab Modeling DNA Replication and Protein Synthesis OBJECTIVES Construct and analyze a model of DNA. Use a model to simulate the process of replication. Use a model to simulate the process
Evolution (18%) 11 Items Sample Test Prep Questions
Evolution (18%) 11 Items Sample Test Prep Questions Grade 7 (Evolution) 3.a Students know both genetic variation and environmental factors are causes of evolution and diversity of organisms. (pg. 109 Science
Analyzing A DNA Sequence Chromatogram
LESSON 9 HANDOUT Analyzing A DNA Sequence Chromatogram Student Researcher Background: DNA Analysis and FinchTV DNA sequence data can be used to answer many types of questions. Because DNA sequences differ
BI122 Introduction to Human Genetics, Fall 2014
BI122 Introduction to Human Genetics, Fall 2014 Course Overview We will explore 1) the genetic and molecular basis of heredity and inherited traits, 2) how genetics & genomics reveals an understanding
Patient Support Guide
Patient Support Guide to genetic testing for hereditary breast and ovarian cancer syndrome Testing for BRCA1 and BRCA2 is available from Quest Diagnostics. Quest Diagnostics Patient Support Guide to Genetic
Single Nucleotide Polymorphisms (SNPs)
Single Nucleotide Polymorphisms (SNPs) Additional Markers 13 core STR loci Obtain further information from additional markers: Y STRs Separating male samples Mitochondrial DNA Working with extremely degraded
Protein Synthesis. Page 41 Page 44 Page 47 Page 42 Page 45 Page 48 Page 43 Page 46 Page 49. Page 41. DNA RNA Protein. Vocabulary
Protein Synthesis Vocabulary Transcription Translation Translocation Chromosomal mutation Deoxyribonucleic acid Frame shift mutation Gene expression Mutation Point mutation Page 41 Page 41 Page 44 Page
Appendix 2 Molecular Biology Core Curriculum. Websites and Other Resources
Appendix 2 Molecular Biology Core Curriculum Websites and Other Resources Chapter 1 - The Molecular Basis of Cancer 1. Inside Cancer http://www.insidecancer.org/ From the Dolan DNA Learning Center Cold
CHAPTER 2: UNDERSTANDING CANCER
CHAPTER 2: UNDERSTANDING CANCER INTRODUCTION We are witnessing an era of great discovery in the field of cancer research. New insights into the causes and development of cancer are emerging. These discoveries
CCR Biology - Chapter 7 Practice Test - Summer 2012
Name: Class: Date: CCR Biology - Chapter 7 Practice Test - Summer 2012 Multiple Choice Identify the choice that best completes the statement or answers the question. 1. A person who has a disorder caused
Intro to the Art of Computer Science
1 LESSON NAME: Intro to the Art of Computer Science Lesson time: 45 60 Minutes : Prep time: 15 Minutes Main Goal: Give the class a clear understanding of what computer science is and how it could be helpful
Chapter 3 Type 1 Diabetes
Chapter 3 Type 1 Diabetes Type 1 diabetes is one of the most common chronic disorders of childhood. Unfortunately, it is increasing in incidence, particularly in young children. The reason for this is
Information leaflet. Centrum voor Medische Genetica. Version 1/20150504 Design by Ben Caljon, UZ Brussel. Universitair Ziekenhuis Brussel
Information on genome-wide genetic testing Array Comparative Genomic Hybridization (array CGH) Single Nucleotide Polymorphism array (SNP array) Massive Parallel Sequencing (MPS) Version 120150504 Design
Academic Nucleic Acids and Protein Synthesis Test
Academic Nucleic Acids and Protein Synthesis Test Multiple Choice Identify the letter of the choice that best completes the statement or answers the question. 1. Each organism has a unique combination
Crime Scenes and Genes
Glossary Agarose Biotechnology Cell Chromosome DNA (deoxyribonucleic acid) Electrophoresis Gene Micro-pipette Mutation Nucleotide Nucleus PCR (Polymerase chain reaction) Primer STR (short tandem repeats)
Chromosomes, Mapping, and the Meiosis Inheritance Connection
Chromosomes, Mapping, and the Meiosis Inheritance Connection Carl Correns 1900 Chapter 13 First suggests central role for chromosomes Rediscovery of Mendel s work Walter Sutton 1902 Chromosomal theory
Name Class Date. Figure 13 1. 2. Which nucleotide in Figure 13 1 indicates the nucleic acid above is RNA? a. uracil c. cytosine b. guanine d.
13 Multiple Choice RNA and Protein Synthesis Chapter Test A Write the letter that best answers the question or completes the statement on the line provided. 1. Which of the following are found in both
The Faith Hall of Fame: Everyday People
The Faith Hall of Fame: Everyday People Lesson 6 LESSON OVERVIEW Key Point: God uses ordinary, everyday people. Bible Story: Gideon is chosen for great things. Hebrew 11:32-40 Challenge Verse: Jeremiah
2. The number of different kinds of nucleotides present in any DNA molecule is A) four B) six C) two D) three
Chem 121 Chapter 22. Nucleic Acids 1. Any given nucleotide in a nucleic acid contains A) two bases and a sugar. B) one sugar, two bases and one phosphate. C) two sugars and one phosphate. D) one sugar,
Marrying a relative. Is there an increased chance that a child will have genetic problems if its parents are related to each other?
Marrying a relative Is there an increased chance that a child will have genetic problems if its parents are related to each other? The simple answer to this question is Yes, there is an increased chance.
Today you will extract DNA from some of your cells and learn more about DNA. Extracting DNA from Your Cells
DNA Based on and adapted from the Genetic Science Learning Center s How to Extract DNA from Any Living Thing (http://learn.genetics.utah.edu/units/activities/extraction/) and BioRad s Genes in a bottle
