Quantum Monte Carlo and the negative sign problem
|
|
|
- Clemence Wiggins
- 10 years ago
- Views:
Transcription
1 Quantum Monte Carlo and the negative sign problem or how to earn one million dollar Matthias Troyer, ETH Zürich Uwe-Jens Wiese, Universität Bern
2 Complexity of many particle problems Classical 1 particle: 6-dimensional ODE 3 position and 3 velocity coordinates N particles: 6N-dimensional ODE m d 2 x dt 2 = F Quantum 1 particle: 3-dimensional PDE N particles: 3N dimensional PDE Quantum or classical lattice model 1 site: q states N sites: q N states i Ψ( x ) t = 1 2m ΔΨ( x ) + V ( x )Ψ( x ) Effort grows exponentially with N How can we solve this exponential problem?
3 The Metropolis Algorithm (1953)
4 Mapping quantum to classical systems Classical: Quantum: A = A c e E c /T e E c /T c c A = Tr Ae H /T Tre H /T Calculate exponential by integrating a diffusion equation dψ dτ = HΨ Ψ(1/T) = e (1/T )H Ψ(0) Map to world lines of the trajectories of the particles use Monte Carlo samples these world lines imaginary time 1/Τ space
5 The negative sign problem In mapping of quantum to classical system Z =Tre βh = i p i there is a sign problem if some of the pi < 0 Appears e.g. in simulation of electrons when two electrons exchange places (Pauli principle) i 1 > i 4 > i 3 > i 2 > i 1 >
6 The negative sign problem Sample with respect to absolute values of the weights A = i A i p i p i = i Exponentially growing cancellation in the sign sign = i A i sgn p i p i Exponential growth of errors i i p i sgn p i p i i i p i p i A sign p sign p i p i = Z/Z p = e βv (f f p ) sign sign = sign2 sign 2 M sign eβv (f f p ) M NP-hard problem (no general solution) [Troyer and Wiese, PRL 2005]
7 Is the sign problem exponentially hard? The sign problem is basis-dependent Diagonalize the Hamiltonian matrix $ $ exp(!"# i ) A = Tr[ Aexp(!"H) ] Tr[ exp(!"h) ] = i A i i exp(!"# i ) All weights are positive But this is an exponentially hard problem since dim(h)=2 N! Good news: the sign problem is basis-dependent! But: the sign problem is still not solved Despite decades of attempts Reminiscent of the NP-hard problems No proof that they are exponentially hard No polynomial solution either i i
8 Complexity of decision problems Partial hierarchy of decision problems Undecidable ( This sentence is false ) Partially decidable (halting problem of Turing machines) EXPSPACE Exponential space and time complexity: diagonalization of Hamiltonian PSPACE NP P Exponential time, polynomial space complexity: Monte Carlo Polynomial complexity on non-deterministic machine Traveling salesman problem 3D Ising spin glass Polynomial complexity on Turing machine
9 Complexity of decision problems Some problems are harder than others: Complexity class P Can be solved in polynomial time on a Turing machine Eulerian circuit problem Minimum spanning Tree (decision version) Detecting primality Complexity class NP Polynomial complexity using non-deterministic algorithms Hamiltonian cirlce problem Traveling salesman problem (decision version) Factorization of integers 3D spin glasses
10 The complexity class P The Eulerian circuit problem Seven bridges in Königsberg (now Kaliningrad) crossed the river Pregel Can we do a roundtrip by crossing each bridge exactly once? Is there a closed walk on the graph going through each edge exactly once? Looks like an expensive task by testing all possible paths. Euler: Desired path exits only if the coordination of each edge is even. This is of order O(N 2 ) Concering Königsberg: NO!
11 The complexity class NP The Hamiltonian cycle problem Sir Hamilton's Icosian game: Is there a closed walk on going through each vertex exactly once? Looks like an expensive task by testing all possible paths. No polynomial algorithm is known, nor a proof that it cannot be constructed
12 The complexity class NP Polynomial time complexity on a nondeterministic machine Can execute both branches of an if-statement, but branches cannot merge again Has exponential number of CPUs but no communication It can in polynomial time Test all possible paths on the graph to see whether there is a Hamiltonian cycle Test all possible configurations of a spin glass for a configuration smaller than a given energy c : E c < E It cannot Calculate a partition function since the sum over all states cannot be performed Z = exp( βε c ) c
13 NP-hardness and NP-completeness Polynomial reduction Two decision problems Q and P: Q P: there is an polynomial algorithm for Q, provided there is one for P Typical proof: Use the algorithm for P as a subroutine in an algorithm for P Many problems have been reduced to other problems NP-hardness A problem P is NP-hard if Q NP : Q P This means that solving it in polynomial time solves all problems in NP too NP-completeness A problem P is NP-complete, if P is NP-hard and Most Problems in NP were shown to be NP-complete P NP
14 The P versus NP problem Hundreds of important NP-complete problems in computer science Despite decades of research no polynomial time algorithm was found Exponential complexity has not been proven either The P versus NP problem Is P=NP or is P NP? One of the millenium challenges of the Clay Math Foundation 1 million US$ for proving either P=NP or P NP? The situation is similar to the sign problem
15 The Ising spin glass: NP-complete 3D Ising spin glass H = J ij σ j σ j with J ij = 0,±1 The NP-complete question is: Is there a configuration with energy E 0? i, j Solution by Monte Carlo: Perform a Monte Carlo simulation at β = N ln2 + ln N + ln Measure the energy: E < E if there exists a state with energy E 0 E > E 0 +1 otherwise A Monte Carlo simulation can decide the question
16 The Ising spin glass: NP-complete 3D Ising spin glass is NP-complete H = J ij σ j σ j with J ij = 0,±1 i, j Frustration leads to NP-hardness of Monte Carlo? Exponentially long tunneling and autocorrelation times c 1! c 2!...! c i! c i +1!... ΔA = ( A A ) 2 = Var A M (1 + 2τ A )
17 Antiferronmagnetic couplings on a triangle:? Frustration Leads to frustration, cannot have each bond in lowest energy state With random couplings finding the ground state is NP-hard Quantum mechanical: negative probabilities for a world line configuration Due to exchange of fermions Negative weight (-J) 3 -J! -J! -J!
18 What is a solution of the sign problem? Consider a fermionic quantum system with a sign problem (some p i < 0 ) A = Tr[ Aexp( βh )] Tr [ exp( βh )] = A i p i i i p i Where the sampling of the bosonic system with respect to p i scales polynomially T ε 2 N n β m A solution of the sign problem is defined as an algorithm that can calculate the average with respect to p i also in polynomial time Note that changing basis to make all p i 0 might not be enough: the algorithm might still exhibit exponential scaling
19 Solving an NP-hard problem by QMC Take 3D Ising spin glass H = J ij σ j σ j with J ij = 0,±1 i, j View it as a quantum problem in basis where H it is not diagonal H (SG ) = J ij σ x jσ x j with J ij = 0,±1 i, j The randomness ends up in the sign of offdiagonal matrix elements Ignoring the sign gives the ferromagnet and loop algorithm is in P H (FM ) = σ x jσ x j The sign problem causes NP-hardness solving the sign problem solves all the NP-complete problems and prove NP=P i, j
20 Summary A solution to the sign problem solves all problems in NP Hence a general solution to the sign problem does not exist unless P=NP If you still find one and thus prove that NP=P you will get 1 million US $! A Nobel prize? A Fields medal? What does this imply? A general method cannot exist Look for specific solutions to the sign problem or model-specific methods
21 The origin of the sign problem We sample with the wrong distribution by ignoring the sign! We simulate bosons and expect to learn about fermions? will only work in insulators and superfluids We simulate a ferromagnet and expect to learn something useful about a frustrated antiferromagnet? We simulate a ferromagnet and expect to learn something about a spin glass? This is the idea behind the proof of NP-hardness
22 Working around the sign problem 1. Simulate bosonic systems Bosonic atoms in optical lattices Helium-4 supersolids Nonfrustrated magnets 2. Simulate sign-problem free fermionic systems Attractive on-site interactions Half-filled Mott insulators 3. Restriction to quasi-1d systems Use the density matrix renormalization group method (DMRG) 4. Use approximate methods Dynamical mean field theory (DMFT)
Computer Algorithms. NP-Complete Problems. CISC 4080 Yanjun Li
Computer Algorithms NP-Complete Problems NP-completeness The quest for efficient algorithms is about finding clever ways to bypass the process of exhaustive search, using clues from the input in order
Outline. NP-completeness. When is a problem easy? When is a problem hard? Today. Euler Circuits
Outline NP-completeness Examples of Easy vs. Hard problems Euler circuit vs. Hamiltonian circuit Shortest Path vs. Longest Path 2-pairs sum vs. general Subset Sum Reducing one problem to another Clique
NP-Completeness. CptS 223 Advanced Data Structures. Larry Holder School of Electrical Engineering and Computer Science Washington State University
NP-Completeness CptS 223 Advanced Data Structures Larry Holder School of Electrical Engineering and Computer Science Washington State University 1 Hard Graph Problems Hard means no known solutions with
Introduction to Logic in Computer Science: Autumn 2006
Introduction to Logic in Computer Science: Autumn 2006 Ulle Endriss Institute for Logic, Language and Computation University of Amsterdam Ulle Endriss 1 Plan for Today Now that we have a basic understanding
Complexity Theory. IE 661: Scheduling Theory Fall 2003 Satyaki Ghosh Dastidar
Complexity Theory IE 661: Scheduling Theory Fall 2003 Satyaki Ghosh Dastidar Outline Goals Computation of Problems Concepts and Definitions Complexity Classes and Problems Polynomial Time Reductions Examples
NP-complete? NP-hard? Some Foundations of Complexity. Prof. Sven Hartmann Clausthal University of Technology Department of Informatics
NP-complete? NP-hard? Some Foundations of Complexity Prof. Sven Hartmann Clausthal University of Technology Department of Informatics Tractability of Problems Some problems are undecidable: no computer
CAD Algorithms. P and NP
CAD Algorithms The Classes P and NP Mohammad Tehranipoor ECE Department 6 September 2010 1 P and NP P and NP are two families of problems. P is a class which contains all of the problems we solve using
Page 1. CSCE 310J Data Structures & Algorithms. CSCE 310J Data Structures & Algorithms. P, NP, and NP-Complete. Polynomial-Time Algorithms
CSCE 310J Data Structures & Algorithms P, NP, and NP-Complete Dr. Steve Goddard [email protected] CSCE 310J Data Structures & Algorithms Giving credit where credit is due:» Most of the lecture notes
Complexity Classes P and NP
Complexity Classes P and NP MATH 3220 Supplemental Presentation by John Aleshunas The cure for boredom is curiosity. There is no cure for curiosity Dorothy Parker Computational Complexity Theory In computer
OHJ-2306 Introduction to Theoretical Computer Science, Fall 2012 8.11.2012
276 The P vs. NP problem is a major unsolved problem in computer science It is one of the seven Millennium Prize Problems selected by the Clay Mathematics Institute to carry a $ 1,000,000 prize for the
Tutorial 8. NP-Complete Problems
Tutorial 8 NP-Complete Problems Decision Problem Statement of a decision problem Part 1: instance description defining the input Part 2: question stating the actual yesor-no question A decision problem
V. Adamchik 1. Graph Theory. Victor Adamchik. Fall of 2005
V. Adamchik 1 Graph Theory Victor Adamchik Fall of 2005 Plan 1. Basic Vocabulary 2. Regular graph 3. Connectivity 4. Representing Graphs Introduction A.Aho and J.Ulman acknowledge that Fundamentally, computer
Open Problems in Quantum Information Processing. John Watrous Department of Computer Science University of Calgary
Open Problems in Quantum Information Processing John Watrous Department of Computer Science University of Calgary #1 Open Problem Find new quantum algorithms. Existing algorithms: Shor s Algorithm (+ extensions)
SIMS 255 Foundations of Software Design. Complexity and NP-completeness
SIMS 255 Foundations of Software Design Complexity and NP-completeness Matt Welsh November 29, 2001 [email protected] 1 Outline Complexity of algorithms Space and time complexity ``Big O'' notation Complexity
2. (a) Explain the strassen s matrix multiplication. (b) Write deletion algorithm, of Binary search tree. [8+8]
Code No: R05220502 Set No. 1 1. (a) Describe the performance analysis in detail. (b) Show that f 1 (n)+f 2 (n) = 0(max(g 1 (n), g 2 (n)) where f 1 (n) = 0(g 1 (n)) and f 2 (n) = 0(g 2 (n)). [8+8] 2. (a)
Quantum and Non-deterministic computers facing NP-completeness
Quantum and Non-deterministic computers facing NP-completeness Thibaut University of Vienna Dept. of Business Administration Austria Vienna January 29th, 2013 Some pictures come from Wikipedia Introduction
Tetris is Hard: An Introduction to P vs NP
Tetris is Hard: An Introduction to P vs NP Based on Tetris is Hard, Even to Approximate in COCOON 2003 by Erik D. Demaine (MIT) Susan Hohenberger (JHU) David Liben-Nowell (Carleton) What s Your Problem?
Diagonalization. Ahto Buldas. Lecture 3 of Complexity Theory October 8, 2009. Slides based on S.Aurora, B.Barak. Complexity Theory: A Modern Approach.
Diagonalization Slides based on S.Aurora, B.Barak. Complexity Theory: A Modern Approach. Ahto Buldas [email protected] Background One basic goal in complexity theory is to separate interesting complexity
A Working Knowledge of Computational Complexity for an Optimizer
A Working Knowledge of Computational Complexity for an Optimizer ORF 363/COS 323 Instructor: Amir Ali Ahmadi TAs: Y. Chen, G. Hall, J. Ye Fall 2014 1 Why computational complexity? What is computational
CSC 373: Algorithm Design and Analysis Lecture 16
CSC 373: Algorithm Design and Analysis Lecture 16 Allan Borodin February 25, 2013 Some materials are from Stephen Cook s IIT talk and Keven Wayne s slides. 1 / 17 Announcements and Outline Announcements
NP-Completeness and Cook s Theorem
NP-Completeness and Cook s Theorem Lecture notes for COM3412 Logic and Computation 15th January 2002 1 NP decision problems The decision problem D L for a formal language L Σ is the computational task:
Introduction to computer science
Introduction to computer science Michael A. Nielsen University of Queensland Goals: 1. Introduce the notion of the computational complexity of a problem, and define the major computational complexity classes.
Notes on NP Completeness
Notes on NP Completeness Rich Schwartz November 10, 2013 1 Overview Here are some notes which I wrote to try to understand what NP completeness means. Most of these notes are taken from Appendix B in Douglas
Euler Paths and Euler Circuits
Euler Paths and Euler Circuits An Euler path is a path that uses every edge of a graph exactly once. An Euler circuit is a circuit that uses every edge of a graph exactly once. An Euler path starts and
Sucesses and limitations of dynamical mean field theory. A.-M. Tremblay G. Sordi, D. Sénéchal, K. Haule, S. Okamoto, B. Kyung, M.
Sucesses and limitations of dynamical mean field theory A.-M. Tremblay G. Sordi, D. Sénéchal, K. Haule, S. Okamoto, B. Kyung, M. Civelli MIT, 20 October, 2011 How to make a metal Courtesy, S. Julian r
The Classes P and NP. [email protected]
Intractable Problems The Classes P and NP Mohamed M. El Wakil [email protected] 1 Agenda 1. What is a problem? 2. Decidable or not? 3. The P class 4. The NP Class 5. TheNP Complete class 2 What is a
Discuss the size of the instance for the minimum spanning tree problem.
3.1 Algorithm complexity The algorithms A, B are given. The former has complexity O(n 2 ), the latter O(2 n ), where n is the size of the instance. Let n A 0 be the size of the largest instance that can
Ian Stewart on Minesweeper
Ian Stewart on Minesweeper It's not often you can win a million dollars by analysing a computer game, but by a curious conjunction of fate, there's a chance that you might. However, you'll only pick up
How To Solve A Minimum Set Covering Problem (Mcp)
Measuring Rationality with the Minimum Cost of Revealed Preference Violations Mark Dean and Daniel Martin Online Appendices - Not for Publication 1 1 Algorithm for Solving the MASP In this online appendix
Why? A central concept in Computer Science. Algorithms are ubiquitous.
Analysis of Algorithms: A Brief Introduction Why? A central concept in Computer Science. Algorithms are ubiquitous. Using the Internet (sending email, transferring files, use of search engines, online
Quantum Computability and Complexity and the Limits of Quantum Computation
Quantum Computability and Complexity and the Limits of Quantum Computation Eric Benjamin, Kenny Huang, Amir Kamil, Jimmy Kittiyachavalit University of California, Berkeley December 7, 2003 This paper will
Lecture 7: NP-Complete Problems
IAS/PCMI Summer Session 2000 Clay Mathematics Undergraduate Program Basic Course on Computational Complexity Lecture 7: NP-Complete Problems David Mix Barrington and Alexis Maciel July 25, 2000 1. Circuit
Approximation Algorithms
Approximation Algorithms or: How I Learned to Stop Worrying and Deal with NP-Completeness Ong Jit Sheng, Jonathan (A0073924B) March, 2012 Overview Key Results (I) General techniques: Greedy algorithms
Universality in the theory of algorithms and computer science
Universality in the theory of algorithms and computer science Alexander Shen Computational models The notion of computable function was introduced in 1930ies. Simplifying (a rather interesting and puzzling)
ON THE COMPLEXITY OF THE GAME OF SET. {kamalika,pbg,dratajcz,hoeteck}@cs.berkeley.edu
ON THE COMPLEXITY OF THE GAME OF SET KAMALIKA CHAUDHURI, BRIGHTEN GODFREY, DAVID RATAJCZAK, AND HOETECK WEE {kamalika,pbg,dratajcz,hoeteck}@cs.berkeley.edu ABSTRACT. Set R is a card game played with a
Single machine parallel batch scheduling with unbounded capacity
Workshop on Combinatorics and Graph Theory 21th, April, 2006 Nankai University Single machine parallel batch scheduling with unbounded capacity Yuan Jinjiang Department of mathematics, Zhengzhou University
Guessing Game: NP-Complete?
Guessing Game: NP-Complete? 1. LONGEST-PATH: Given a graph G = (V, E), does there exists a simple path of length at least k edges? YES 2. SHORTEST-PATH: Given a graph G = (V, E), does there exists a simple
P versus NP, and More
1 P versus NP, and More Great Ideas in Theoretical Computer Science Saarland University, Summer 2014 If you have tried to solve a crossword puzzle, you know that it is much harder to solve it than to verify
P vs NP problem in the field anthropology
Research Article P vs NP problem in the field anthropology Michael.A. Popov, Oxford, UK Email [email protected] Keywords P =?NP - complexity anthropology - M -decision - quantum -like game - game-theoretical
Exponential time algorithms for graph coloring
Exponential time algorithms for graph coloring Uriel Feige Lecture notes, March 14, 2011 1 Introduction Let [n] denote the set {1,..., k}. A k-labeling of vertices of a graph G(V, E) is a function V [k].
Introduction to Algorithms. Part 3: P, NP Hard Problems
Introduction to Algorithms Part 3: P, NP Hard Problems 1) Polynomial Time: P and NP 2) NP-Completeness 3) Dealing with Hard Problems 4) Lower Bounds 5) Books c Wayne Goddard, Clemson University, 2004 Chapter
Discrete Mathematics & Mathematical Reasoning Chapter 10: Graphs
Discrete Mathematics & Mathematical Reasoning Chapter 10: Graphs Kousha Etessami U. of Edinburgh, UK Kousha Etessami (U. of Edinburgh, UK) Discrete Mathematics (Chapter 6) 1 / 13 Overview Graphs and Graph
Computational complexity theory
Computational complexity theory Goal: A general theory of the resources needed to solve computational problems What types of resources? Time What types of computational problems? decision problem Decision
One last point: we started off this book by introducing another famously hard search problem:
S. Dasgupta, C.H. Papadimitriou, and U.V. Vazirani 261 Factoring One last point: we started off this book by introducing another famously hard search problem: FACTORING, the task of finding all prime factors
Lecture 19: Introduction to NP-Completeness Steven Skiena. Department of Computer Science State University of New York Stony Brook, NY 11794 4400
Lecture 19: Introduction to NP-Completeness Steven Skiena Department of Computer Science State University of New York Stony Brook, NY 11794 4400 http://www.cs.sunysb.edu/ skiena Reporting to the Boss Suppose
A Fast Algorithm For Finding Hamilton Cycles
A Fast Algorithm For Finding Hamilton Cycles by Andrew Chalaturnyk A thesis presented to the University of Manitoba in partial fulfillment of the requirements for the degree of Masters of Science in Computer
Transportation Polytopes: a Twenty year Update
Transportation Polytopes: a Twenty year Update Jesús Antonio De Loera University of California, Davis Based on various papers joint with R. Hemmecke, E.Kim, F. Liu, U. Rothblum, F. Santos, S. Onn, R. Yoshida,
Handout #Ch7 San Skulrattanakulchai Gustavus Adolphus College Dec 6, 2010. Chapter 7: Digraphs
MCS-236: Graph Theory Handout #Ch7 San Skulrattanakulchai Gustavus Adolphus College Dec 6, 2010 Chapter 7: Digraphs Strong Digraphs Definitions. A digraph is an ordered pair (V, E), where V is the set
CMPSCI611: Approximating MAX-CUT Lecture 20
CMPSCI611: Approximating MAX-CUT Lecture 20 For the next two lectures we ll be seeing examples of approximation algorithms for interesting NP-hard problems. Today we consider MAX-CUT, which we proved to
Reductions & NP-completeness as part of Foundations of Computer Science undergraduate course
Reductions & NP-completeness as part of Foundations of Computer Science undergraduate course Alex Angelopoulos, NTUA January 22, 2015 Outline Alex Angelopoulos (NTUA) FoCS: Reductions & NP-completeness-
3. Eulerian and Hamiltonian Graphs
3. Eulerian and Hamiltonian Graphs There are many games and puzzles which can be analysed by graph theoretic concepts. In fact, the two early discoveries which led to the existence of graphs arose from
Berkeley CS191x: Quantum Mechanics and Quantum Computation Optional Class Project
Berkeley CS191x: Quantum Mechanics and Quantum Computation Optional Class Project This document describes the optional class project for the Fall 2013 offering of CS191x. The project will not be graded.
NP-Completeness I. Lecture 19. 19.1 Overview. 19.2 Introduction: Reduction and Expressiveness
Lecture 19 NP-Completeness I 19.1 Overview In the past few lectures we have looked at increasingly more expressive problems that we were able to solve using efficient algorithms. In this lecture we introduce
Chapter 7 Uncomputability
Chapter 7 Uncomputability 190 7.1 Introduction Undecidability of concrete problems. First undecidable problem obtained by diagonalisation. Other undecidable problems obtained by means of the reduction
Million Dollar Mathematics!
Million Dollar Mathematics! Alissa S. Crans Loyola Marymount University Southern California Undergraduate Math Day University of California, San Diego April 30, 2011 This image is from the Wikipedia article
On the Relationship between Classes P and NP
Journal of Computer Science 8 (7): 1036-1040, 2012 ISSN 1549-3636 2012 Science Publications On the Relationship between Classes P and NP Anatoly D. Plotnikov Department of Computer Systems and Networks,
CoNP and Function Problems
CoNP and Function Problems conp By definition, conp is the class of problems whose complement is in NP. NP is the class of problems that have succinct certificates. conp is therefore the class of problems
IE 680 Special Topics in Production Systems: Networks, Routing and Logistics*
IE 680 Special Topics in Production Systems: Networks, Routing and Logistics* Rakesh Nagi Department of Industrial Engineering University at Buffalo (SUNY) *Lecture notes from Network Flows by Ahuja, Magnanti
Lecture 15 An Arithmetic Circuit Lowerbound and Flows in Graphs
CSE599s: Extremal Combinatorics November 21, 2011 Lecture 15 An Arithmetic Circuit Lowerbound and Flows in Graphs Lecturer: Anup Rao 1 An Arithmetic Circuit Lower Bound An arithmetic circuit is just like
Boulder Dash is NP hard
Boulder Dash is NP hard Marzio De Biasi marziodebiasi [at] gmail [dot] com December 2011 Version 0.01:... now the difficult part: is it NP? Abstract Boulder Dash is a videogame created by Peter Liepa and
NP-completeness and the real world. NP completeness. NP-completeness and the real world (2) NP-completeness and the real world
-completeness and the real world completeness Course Discrete Biological Models (Modelli Biologici Discreti) Zsuzsanna Lipták Imagine you are working for a biotech company. One day your boss calls you
The Classes P and NP
The Classes P and NP We now shift gears slightly and restrict our attention to the examination of two families of problems which are very important to computer scientists. These families constitute the
Can linear programs solve NP-hard problems?
Can linear programs solve NP-hard problems? p. 1/9 Can linear programs solve NP-hard problems? Ronald de Wolf Linear programs Can linear programs solve NP-hard problems? p. 2/9 Can linear programs solve
1. Nondeterministically guess a solution (called a certificate) 2. Check whether the solution solves the problem (called verification)
Some N P problems Computer scientists have studied many N P problems, that is, problems that can be solved nondeterministically in polynomial time. Traditionally complexity question are studied as languages:
Mathematics for Algorithm and System Analysis
Mathematics for Algorithm and System Analysis for students of computer and computational science Edward A. Bender S. Gill Williamson c Edward A. Bender & S. Gill Williamson 2005. All rights reserved. Preface
2.1 Complexity Classes
15-859(M): Randomized Algorithms Lecturer: Shuchi Chawla Topic: Complexity classes, Identity checking Date: September 15, 2004 Scribe: Andrew Gilpin 2.1 Complexity Classes In this lecture we will look
Theoretical Computer Science (Bridging Course) Complexity
Theoretical Computer Science (Bridging Course) Complexity Gian Diego Tipaldi A scenario You are a programmer working for a logistics company Your boss asks you to implement a program that optimizes the
Applied Algorithm Design Lecture 5
Applied Algorithm Design Lecture 5 Pietro Michiardi Eurecom Pietro Michiardi (Eurecom) Applied Algorithm Design Lecture 5 1 / 86 Approximation Algorithms Pietro Michiardi (Eurecom) Applied Algorithm Design
JUST-IN-TIME SCHEDULING WITH PERIODIC TIME SLOTS. Received December May 12, 2003; revised February 5, 2004
Scientiae Mathematicae Japonicae Online, Vol. 10, (2004), 431 437 431 JUST-IN-TIME SCHEDULING WITH PERIODIC TIME SLOTS Ondřej Čepeka and Shao Chin Sung b Received December May 12, 2003; revised February
Why Study NP- hardness. NP Hardness/Completeness Overview. P and NP. Scaling 9/3/13. Ron Parr CPS 570. NP hardness is not an AI topic
Why Study NP- hardness NP Hardness/Completeness Overview Ron Parr CPS 570 NP hardness is not an AI topic It s important for all computer scienhsts Understanding it will deepen your understanding of AI
Chapter 6: Graph Theory
Chapter 6: Graph Theory Graph theory deals with routing and network problems and if it is possible to find a best route, whether that means the least expensive, least amount of time or the least distance.
Quantum Computation with Bose-Einstein Condensation and. Capable of Solving NP-Complete and #P Problems. Abstract
Quantum Computation with Bose-Einstein Condensation and Capable of Solving NP-Complete and #P Problems Yu Shi Cavendish Laboratory, University of Cambridge, Cambridge CB3 0HE, United Kingdom Abstract It
MCMC Using Hamiltonian Dynamics
5 MCMC Using Hamiltonian Dynamics Radford M. Neal 5.1 Introduction Markov chain Monte Carlo (MCMC) originated with the classic paper of Metropolis et al. (1953), where it was used to simulate the distribution
The Limits of Adiabatic Quantum Computation
The Limits of Adiabatic Quantum Computation Alper Sarikaya June 11, 2009 Presentation of work given on: Thesis and Presentation approved by: Date: Contents Abstract ii 1 Introduction to Quantum Computation
arxiv:1008.4792v2 [hep-ph] 20 Jun 2013
A Note on the IR Finiteness of Fermion Loop Diagrams Ambresh Shivaji Harish-Chandra Research Initute, Chhatnag Road, Junsi, Allahabad-09, India arxiv:008.479v hep-ph] 0 Jun 03 Abract We show that the mo
8.1 Min Degree Spanning Tree
CS880: Approximations Algorithms Scribe: Siddharth Barman Lecturer: Shuchi Chawla Topic: Min Degree Spanning Tree Date: 02/15/07 In this lecture we give a local search based algorithm for the Min Degree
5.1 Bipartite Matching
CS787: Advanced Algorithms Lecture 5: Applications of Network Flow In the last lecture, we looked at the problem of finding the maximum flow in a graph, and how it can be efficiently solved using the Ford-Fulkerson
MATHEMATICS: CONCEPTS, AND FOUNDATIONS Vol. III - Logic and Computer Science - Phokion G. Kolaitis
LOGIC AND COMPUTER SCIENCE Phokion G. Kolaitis Computer Science Department, University of California, Santa Cruz, CA 95064, USA Keywords: algorithm, Armstrong s axioms, complete problem, complexity class,
Reading DNA Sequences:
Reading DNA Sequences: 18-th Century Mathematics for 21-st Century Technology Michael Waterman University of Southern California Tsinghua University DNA Genetic information of an organism Double helix,
A New Nature-inspired Algorithm for Load Balancing
A New Nature-inspired Algorithm for Load Balancing Xiang Feng East China University of Science and Technology Shanghai, China 200237 Email: xfeng{@ecusteducn, @cshkuhk} Francis CM Lau The University of
Algorithm Design and Analysis
Algorithm Design and Analysis LECTURE 27 Approximation Algorithms Load Balancing Weighted Vertex Cover Reminder: Fill out SRTEs online Don t forget to click submit Sofya Raskhodnikova 12/6/2011 S. Raskhodnikova;
Welcome to... Problem Analysis and Complexity Theory 716.054, 3 VU
Welcome to... Problem Analysis and Complexity Theory 716.054, 3 VU Birgit Vogtenhuber Institute for Software Technology email: [email protected] office hour: Tuesday 10:30 11:30 slides: http://www.ist.tugraz.at/pact.html
Fundamentals of Statistical Physics Leo P. Kadanoff University of Chicago, USA
Fundamentals of Statistical Physics Leo P. Kadanoff University of Chicago, USA text: Statistical Physics, Statics, Dynamics, Renormalization Leo Kadanoff I also referred often to Wikipedia and found it
Foundations of Operations Research
Foundations of Operations Research Master of Science in Computer Engineering Roberto Cordone [email protected] Tuesday 13.15-15.15 Thursday 10.15-13.15 http://homes.di.unimi.it/~cordone/courses/2013-for/2013-for.html
Solutions to Homework 6
Solutions to Homework 6 Debasish Das EECS Department, Northwestern University [email protected] 1 Problem 5.24 We want to find light spanning trees with certain special properties. Given is one example
Factoring & Primality
Factoring & Primality Lecturer: Dimitris Papadopoulos In this lecture we will discuss the problem of integer factorization and primality testing, two problems that have been the focus of a great amount
Master of Arts in Mathematics
Master of Arts in Mathematics Administrative Unit The program is administered by the Office of Graduate Studies and Research through the Faculty of Mathematics and Mathematics Education, Department of
Lecture 30: NP-Hard Problems [Fa 14]
[I]n his short and broken treatise he provides an eternal example not of laws, or even of method, for there is no method except to be very intelligent, but of intelligence itself swiftly operating the
MATHEMATICAL ENGINEERING TECHNICAL REPORTS. An Improved Approximation Algorithm for the Traveling Tournament Problem
MATHEMATICAL ENGINEERING TECHNICAL REPORTS An Improved Approximation Algorithm for the Traveling Tournament Problem Daisuke YAMAGUCHI, Shinji IMAHORI, Ryuhei MIYASHIRO, Tomomi MATSUI METR 2009 42 September
Complex Networks Analysis: Clustering Methods
Complex Networks Analysis: Clustering Methods Nikolai Nefedov Spring 2013 ISI ETH Zurich [email protected] 1 Outline Purpose to give an overview of modern graph-clustering methods and their applications
Offline sorting buffers on Line
Offline sorting buffers on Line Rohit Khandekar 1 and Vinayaka Pandit 2 1 University of Waterloo, ON, Canada. email: [email protected] 2 IBM India Research Lab, New Delhi. email: [email protected]
Graph Classification and Easy Reliability Polynomials
Mathematical Assoc. of America American Mathematical Monthly 121:1 November 18, 2014 1:11 a.m. AMM.tex page 1 Graph Classification and Easy Reliability Polynomials Pablo Romero and Gerardo Rubino Abstract.
Review of Statistical Mechanics
Review of Statistical Mechanics 3. Microcanonical, Canonical, Grand Canonical Ensembles In statistical mechanics, we deal with a situation in which even the quantum state of the system is unknown. The
Quantum Computing and Grover s Algorithm
Quantum Computing and Grover s Algorithm Matthew Hayward January 14, 2015 1 Contents 1 Motivation for Study of Quantum Computing 3 1.1 A Killer App for Quantum Computing.............. 3 2 The Quantum Computer
