CSC 373: Algorithm Design and Analysis Lecture 16
|
|
|
- Cori Webb
- 10 years ago
- Views:
Transcription
1 CSC 373: Algorithm Design and Analysis Lecture 16 Allan Borodin February 25, 2013 Some materials are from Stephen Cook s IIT talk and Keven Wayne s slides. 1 / 17
2 Announcements and Outline Announcements Lecture this Friday. Next assignment is due this Friday, March 1. Due to a seminar at 2PM (on Algorithmic models of wireless communication in PT266), Tuessday office hour starts at 3:10 rather than 2:30 Please hand back your test if you have not already done do. I need to record the grade. I am still missing some tests to be recorded. You must keep all graded work until the term is over just in case there is some inconsistency in the grades recorded and what you have. Please refer to the web page for my policy on regrading. Today s outline Review basic definitions of NP, reductions, and completeness NP-complete problems 2 / 17
3 What is NP? The class NP (Nondeterministic Polynomial Time) NP consists of all search problems for which a solution can be efficiently (i.e. in polynomial time) verified. More specifically, a set (or language) L is in the class NP if there is a polynomial time computable R(x, y) such that for all x L, there is a certificate y such that y poly( x ) and R(x, y). Examples in NP (besides everything in P) Prime Factorization Cracking cryptographic protocols. Scheduling delivery trucks, airlines, hockey matches, exams,... Claim All optimization problems considered thus far have a corresponding NP decision problem. 3 / 17
4 NP-Complete Problems These are the hardest NP problems. A problem A is p-reducible to a problem B if an oracle (i.e. a subroutine) for B can be used to efficiently solve A. If A is p-reducible to B, then any efficient procedure for solving B can be turned into an efficient procedure for A. If A is p-reducible to B and B is in P, then A is in P. Definition A problem B is NP-complete if B is in NP and every problem A in NP is p-reducible to B. Theorem If A is NP-complete and A is in P, then P = NP. To show P = NP you just need to find a fast (polynomial-time) algorithm for any one NP-complete problem!!! 4 / 17
5 Reducing integer prime factorization to an NP decision problem As previosuly mentioned, NP is a class of decision problems whereas integer factorization is a function that takes an integer x (say in binary of decimal) and returns the unique prime factorization of x. And as mentioned we do abuse terminology by saying that integer factorization is an NP problem. The sense in which we interpret such a statement is that there is a related NP decision problem to which the factorization problem can be polyniomial time reduced; namely, consider the decision problem FACTOR = {(x, z) x, z represent positive integers and x has a proper factor y z} Note that the decision problem COMPOSITES = {x xrepresents a postive integer that has a proper factor} and its complement PRIMES are known to be computable in polynomial time whereas FACTOR is believed to be difficult to compute (even in some average sense). 5 / 17
6 On the nature of polynomial time reductions Recalling the reduction of 3-coloring to 3-SAT, it can be seen as a very simple type of reduction. Namely, given an input w to the 3-coloring problem, it is transformed (in polynomial time) to say h(w) such that w {G G can be 3-colored} iff h(w) {F F is a satisfiable 3CNF formula}. This was the same kind of polynomial time reduction that showed that bipartite matching is reducible to maximum flows. Polynomial time transformations We say that a language L1 is polynomial time transformable to L 2 if there exists a polynomial time function h such that w L 1 iff h(w) L 2. The function h is called a polynomial time transformation. 6 / 17
7 Polynomial time reductions and transformations In practice, when we are reducing one NP problem to another NP problem, it will be a polynomial time transformation. We will use the same notation p to denote a polynomial time reduction and polynomial time transformation. As we have observed before if L 1 p L 2 and L 2 P, then L 1 P. The contrapositive says that if L 1 p L 2 and L 1 / P, then L 2 / P. p is transitive An important fact that we will use to prove NP completeness of problems is that polynomial time reductions are transitive. That is L 1 p L 2 and L 2 p L 3 implies L 1 p L 3. The proof for transformations is easy to see. For say that L 1 p L 2 via g and L 2 p L 3 via h, then L 1 p L 3 via h g; that is, w L 1 iff h(g(w) L 3. 7 / 17
8 Polynomial reductions/transformations continued One fact that holds for polynomial time transformation but is believed not to hold for polynomial time reductions is the following: NP closed under polynomial time transformation If L 1 p L 2 and L 2 NP then L 1 NP. The closure of NP under polynomial time transformations is also easy to see. Namely, Suppose L2 = {w y, y q( w ) and R(w, y)} for some polynomial time relation R and polynomial q, and L1 p L 2 via h. Then L 1 = {x y, y q( h(x) and R (x, y )} where R (x, y ) = R(h(x), y ) 8 / 17
9 Polynomial reductions/transformations continued On the other hand we do not believe that NP is closed under general polynomial time reductions. Specifically, for general polynomial time transformations we have L p L. Here L = {w w / L} is the language complement of L. For example, how would you provide a short verification that a propositional formula F is not satisfiable? Or how would you show that a graph G cannot be 3-coloured? We do not believe that NP is closed under language complementation. The complement of FACTOR is an NP language and hence we do not believe that FACTOR is NP complete. While we will use polynomial time transformations between decision problems/languages we need to use the general polynomial reductions to say reduce a search or optimization problem to a decision problem. 9 / 17
10 So how do we show that a problem is NP complete? Showing that a language (i.e. decision problem) L is NP complete involves establishing two facts: 1 L is in NP 2 Showing that L is NP-hard; that is showing L p L for every L NP Usually establishing 1 is relatively easy and is done directly in terms of the definition of L NP. That is, one shows how to verify membership in L by exhibiting an appropriate certificate. (It could also be established by a polynomial time transformation to a known L NP.) Establishing 2, i.e. NP-hardness of L, is usually done by reducing some known NP complete problem L to L. 10 / 17
11 But how do we show that there are any NP complete problems? How do we get started? Once we have established that there exists at least one NP complete problem then we can use polynomial time reductions and transitivity to establish that many other NP problems are NP hard. Following Cook s original result, we will show that SAT (and even 3SAT ) is NP complete from first principles. It is easy to see that SAT is in NP. We will (later) show that SAT is NP hard by showing how to encode an arbitrary polynomial time (Turing) computation by a propositional formula. This will be the basis for shwoing that SAT is NP-hard. 11 / 17
12 A tree of reductions/transformations Polynomial-Time Reductions constraint satisfaction 3-SAT reduces to INDEPENDENT SET 3-SAT Dick Karp (1972) 1985 Turing Award INDEPENDENT SET DIR-HAM-CYCLE GRAPH 3-COLOR SUBSET-SUM VERTEX COVER HAM-CYCLE PLANAR 3-COLOR SCHEDULING SET COVER TSP packing and covering sequencing partitioning numerical 12 / 17
13 A little history of NP-completenes In his original 1971 seminal paper, Cook was interested in theorem proving. Stephen Cook won the Turing award in 1982 Cook used the general notion of polynomial time reducibility which is called polynomial time Turing reducibility and sometimes called Cook reducibility. Cook established the NP completeness of 3SAT as well as a problem that includes CLIQUE = {(G, k) G has a k clique }. Independently, in the (former) Soviet Union, Leonid Levin proved an analogous result for SAT (and other problems) as a search problem. Following Cook s paper, Karp exhibited over 20 prominent problems that were also NP-complete. Karp showed that polynomial time transformations (sometimes called polynomial many to one reductions or Karp reductions) were sufficient to establish the NP completness of these problems. 13 / 17
14 Independent Set Independent Set is NP complete INDEPENDENT SET: Given a graph G = (V, E) and an integer k, is there The independent set problem a subset of vertices S! V such that S " k, and for each edge at Given a graph G = (V, E) and an integer k. most one of its endpoints is in S? Is there a subset of vertices S V such that S k, and for each edge at most one of its endpoints is in S? Ex. Is there an independent set of size " 6? Yes. Ex. Is there an independent set of size " 7? No. independent set 9 Question: Is there an independent set of size 6? 14 / 17
15 Independent Set Independent Set is NP complete INDEPENDENT SET: Given a graph G = (V, E) and an integer k, is there The independent set problem a subset of vertices S! V such that S " k, and for each edge at Given a graph G = (V, E) and an integer k. most one of its endpoints is in S? Is there a subset of vertices S V such that S k, and for each edge at most one of its endpoints is in S? Ex. Is there an independent set of size " 6? Yes. Ex. Is there an independent set of size " 7? No. independent set 9 Question: Is there an independent set of size 6? Yes. 14 / 17
16 Independent Set Independent Set is NP complete INDEPENDENT SET: Given a graph G = (V, E) and an integer k, is there The independent set problem a subset of vertices S! V such that S " k, and for each edge at Given a graph G = (V, E) and an integer k. most one of its endpoints is in S? Is there a subset of vertices S V such that S k, and for each edge at most one of its endpoints is in S? Ex. Is there an independent set of size " 6? Yes. Ex. Is there an independent set of size " 7? No. independent set 9 Question: Is there an independent set of size 6? Yes. Question: Is there an independent set of size 7? 14 / 17
17 Independent Set Independent Set is NP complete INDEPENDENT SET: Given a graph G = (V, E) and an integer k, is there The independent set problem a subset of vertices S! V such that S " k, and for each edge at Given a graph G = (V, E) and an integer k. most one of its endpoints is in S? Is there a subset of vertices S V such that S k, and for each edge at most one of its endpoints is in S? Ex. Is there an independent set of size " 6? Yes. Ex. Is there an independent set of size " 7? No. independent set 9 Question: Is there an independent set of size 6? Yes. Question: Is there an independent set of size 7? No. 14 / 17
18 3 Satisfiability Reduces to Independent Set 3SAT reduces to Independent Set Claim. 3-SAT " P INDEPENDENT-SET. 3SAT Pf. Given p Independent an instance! Set of 3-SAT, we construct an instance (G, k) of INDEPENDENT-SET that has an independent set of size k iff! is satisfiable. Given an instance F of 3SAT, we construct an instance (G, k) of Independent Set that has an independent set of size k iff F is Construction. satisfiable.! G contains 3 vertices for foreach clause, clause; one i.e. for one each forliteral. each literal.! Connect 3 literals in ina aclause in a intriangle. a triangle.! Connect literal to toeach of of its itsnegations. x 1 x 2 x 1 G!!! x 2 x 3 x 1 x 3 x 2 x 4 k = 3 " = ( x 1 # x 2 # x 3 ) $ ( x 1 # x 2 # x 3 ) $ ( x 1 # x 2 # x 4 )!!!!!! / 17
19 Subset Sum The independent set problem Given a set of integers S = {w 1, w 2,..., w n } and an integer W. Is there a subset S S that adds up to exactly W? Example Given S = {1, 4, 16, 64, 256, 1040, 1041, 1093, 1284, 1344} and W = Question: Do we have a solution? Answer: Yes = / 17
20 3SAT reduces to Subset Sum Claim 3SAT p Subset Sum Given an instance F of 3SAT, we construct an instance of Subset Sum that has solution iff F is satisfiable. 17 / 17
Lecture 7: NP-Complete Problems
IAS/PCMI Summer Session 2000 Clay Mathematics Undergraduate Program Basic Course on Computational Complexity Lecture 7: NP-Complete Problems David Mix Barrington and Alexis Maciel July 25, 2000 1. Circuit
NP-complete? NP-hard? Some Foundations of Complexity. Prof. Sven Hartmann Clausthal University of Technology Department of Informatics
NP-complete? NP-hard? Some Foundations of Complexity Prof. Sven Hartmann Clausthal University of Technology Department of Informatics Tractability of Problems Some problems are undecidable: no computer
Page 1. CSCE 310J Data Structures & Algorithms. CSCE 310J Data Structures & Algorithms. P, NP, and NP-Complete. Polynomial-Time Algorithms
CSCE 310J Data Structures & Algorithms P, NP, and NP-Complete Dr. Steve Goddard [email protected] CSCE 310J Data Structures & Algorithms Giving credit where credit is due:» Most of the lecture notes
NP-Completeness. CptS 223 Advanced Data Structures. Larry Holder School of Electrical Engineering and Computer Science Washington State University
NP-Completeness CptS 223 Advanced Data Structures Larry Holder School of Electrical Engineering and Computer Science Washington State University 1 Hard Graph Problems Hard means no known solutions with
1. Nondeterministically guess a solution (called a certificate) 2. Check whether the solution solves the problem (called verification)
Some N P problems Computer scientists have studied many N P problems, that is, problems that can be solved nondeterministically in polynomial time. Traditionally complexity question are studied as languages:
! X is a set of strings. ! Instance: string s. ! Algorithm A solves problem X: A(s) = yes iff s! X.
Decision Problems 8.2 Definition of NP Decision problem. X is a set of strings. Instance: string s. Algorithm A solves problem X: A(s) = yes iff s X. Polynomial time. Algorithm A runs in polytime if for
P versus NP, and More
1 P versus NP, and More Great Ideas in Theoretical Computer Science Saarland University, Summer 2014 If you have tried to solve a crossword puzzle, you know that it is much harder to solve it than to verify
OHJ-2306 Introduction to Theoretical Computer Science, Fall 2012 8.11.2012
276 The P vs. NP problem is a major unsolved problem in computer science It is one of the seven Millennium Prize Problems selected by the Clay Mathematics Institute to carry a $ 1,000,000 prize for the
Outline. NP-completeness. When is a problem easy? When is a problem hard? Today. Euler Circuits
Outline NP-completeness Examples of Easy vs. Hard problems Euler circuit vs. Hamiltonian circuit Shortest Path vs. Longest Path 2-pairs sum vs. general Subset Sum Reducing one problem to another Clique
Chapter. NP-Completeness. Contents
Chapter 13 NP-Completeness Contents 13.1 P and NP......................... 593 13.1.1 Defining the Complexity Classes P and NP...594 13.1.2 Some Interesting Problems in NP.......... 597 13.2 NP-Completeness....................
Tutorial 8. NP-Complete Problems
Tutorial 8 NP-Complete Problems Decision Problem Statement of a decision problem Part 1: instance description defining the input Part 2: question stating the actual yesor-no question A decision problem
Introduction to Algorithms. Part 3: P, NP Hard Problems
Introduction to Algorithms Part 3: P, NP Hard Problems 1) Polynomial Time: P and NP 2) NP-Completeness 3) Dealing with Hard Problems 4) Lower Bounds 5) Books c Wayne Goddard, Clemson University, 2004 Chapter
Introduction to Logic in Computer Science: Autumn 2006
Introduction to Logic in Computer Science: Autumn 2006 Ulle Endriss Institute for Logic, Language and Computation University of Amsterdam Ulle Endriss 1 Plan for Today Now that we have a basic understanding
Why? A central concept in Computer Science. Algorithms are ubiquitous.
Analysis of Algorithms: A Brief Introduction Why? A central concept in Computer Science. Algorithms are ubiquitous. Using the Internet (sending email, transferring files, use of search engines, online
Exponential time algorithms for graph coloring
Exponential time algorithms for graph coloring Uriel Feige Lecture notes, March 14, 2011 1 Introduction Let [n] denote the set {1,..., k}. A k-labeling of vertices of a graph G(V, E) is a function V [k].
A Working Knowledge of Computational Complexity for an Optimizer
A Working Knowledge of Computational Complexity for an Optimizer ORF 363/COS 323 Instructor: Amir Ali Ahmadi TAs: Y. Chen, G. Hall, J. Ye Fall 2014 1 Why computational complexity? What is computational
Computer Algorithms. NP-Complete Problems. CISC 4080 Yanjun Li
Computer Algorithms NP-Complete Problems NP-completeness The quest for efficient algorithms is about finding clever ways to bypass the process of exhaustive search, using clues from the input in order
Guessing Game: NP-Complete?
Guessing Game: NP-Complete? 1. LONGEST-PATH: Given a graph G = (V, E), does there exists a simple path of length at least k edges? YES 2. SHORTEST-PATH: Given a graph G = (V, E), does there exists a simple
Lecture 19: Introduction to NP-Completeness Steven Skiena. Department of Computer Science State University of New York Stony Brook, NY 11794 4400
Lecture 19: Introduction to NP-Completeness Steven Skiena Department of Computer Science State University of New York Stony Brook, NY 11794 4400 http://www.cs.sunysb.edu/ skiena Reporting to the Boss Suppose
Tetris is Hard: An Introduction to P vs NP
Tetris is Hard: An Introduction to P vs NP Based on Tetris is Hard, Even to Approximate in COCOON 2003 by Erik D. Demaine (MIT) Susan Hohenberger (JHU) David Liben-Nowell (Carleton) What s Your Problem?
Theoretical Computer Science (Bridging Course) Complexity
Theoretical Computer Science (Bridging Course) Complexity Gian Diego Tipaldi A scenario You are a programmer working for a logistics company Your boss asks you to implement a program that optimizes the
! Solve problem to optimality. ! Solve problem in poly-time. ! Solve arbitrary instances of the problem. #-approximation algorithm.
Approximation Algorithms 11 Approximation Algorithms Q Suppose I need to solve an NP-hard problem What should I do? A Theory says you're unlikely to find a poly-time algorithm Must sacrifice one of three
NP-Completeness and Cook s Theorem
NP-Completeness and Cook s Theorem Lecture notes for COM3412 Logic and Computation 15th January 2002 1 NP decision problems The decision problem D L for a formal language L Σ is the computational task:
NP-Completeness I. Lecture 19. 19.1 Overview. 19.2 Introduction: Reduction and Expressiveness
Lecture 19 NP-Completeness I 19.1 Overview In the past few lectures we have looked at increasingly more expressive problems that we were able to solve using efficient algorithms. In this lecture we introduce
CAD Algorithms. P and NP
CAD Algorithms The Classes P and NP Mohammad Tehranipoor ECE Department 6 September 2010 1 P and NP P and NP are two families of problems. P is a class which contains all of the problems we solve using
The Classes P and NP
The Classes P and NP We now shift gears slightly and restrict our attention to the examination of two families of problems which are very important to computer scientists. These families constitute the
Complexity Theory. IE 661: Scheduling Theory Fall 2003 Satyaki Ghosh Dastidar
Complexity Theory IE 661: Scheduling Theory Fall 2003 Satyaki Ghosh Dastidar Outline Goals Computation of Problems Concepts and Definitions Complexity Classes and Problems Polynomial Time Reductions Examples
Chapter 1. NP Completeness I. 1.1. Introduction. By Sariel Har-Peled, December 30, 2014 1 Version: 1.05
Chapter 1 NP Completeness I By Sariel Har-Peled, December 30, 2014 1 Version: 1.05 "Then you must begin a reading program immediately so that you man understand the crises of our age," Ignatius said solemnly.
On the Relationship between Classes P and NP
Journal of Computer Science 8 (7): 1036-1040, 2012 ISSN 1549-3636 2012 Science Publications On the Relationship between Classes P and NP Anatoly D. Plotnikov Department of Computer Systems and Networks,
Algorithm Design and Analysis
Algorithm Design and Analysis LECTURE 27 Approximation Algorithms Load Balancing Weighted Vertex Cover Reminder: Fill out SRTEs online Don t forget to click submit Sofya Raskhodnikova 12/6/2011 S. Raskhodnikova;
Diagonalization. Ahto Buldas. Lecture 3 of Complexity Theory October 8, 2009. Slides based on S.Aurora, B.Barak. Complexity Theory: A Modern Approach.
Diagonalization Slides based on S.Aurora, B.Barak. Complexity Theory: A Modern Approach. Ahto Buldas [email protected] Background One basic goal in complexity theory is to separate interesting complexity
Applied Algorithm Design Lecture 5
Applied Algorithm Design Lecture 5 Pietro Michiardi Eurecom Pietro Michiardi (Eurecom) Applied Algorithm Design Lecture 5 1 / 86 Approximation Algorithms Pietro Michiardi (Eurecom) Applied Algorithm Design
! Solve problem to optimality. ! Solve problem in poly-time. ! Solve arbitrary instances of the problem. !-approximation algorithm.
Approximation Algorithms Chapter Approximation Algorithms Q Suppose I need to solve an NP-hard problem What should I do? A Theory says you're unlikely to find a poly-time algorithm Must sacrifice one of
One last point: we started off this book by introducing another famously hard search problem:
S. Dasgupta, C.H. Papadimitriou, and U.V. Vazirani 261 Factoring One last point: we started off this book by introducing another famously hard search problem: FACTORING, the task of finding all prime factors
SIMS 255 Foundations of Software Design. Complexity and NP-completeness
SIMS 255 Foundations of Software Design Complexity and NP-completeness Matt Welsh November 29, 2001 [email protected] 1 Outline Complexity of algorithms Space and time complexity ``Big O'' notation Complexity
Notes on NP Completeness
Notes on NP Completeness Rich Schwartz November 10, 2013 1 Overview Here are some notes which I wrote to try to understand what NP completeness means. Most of these notes are taken from Appendix B in Douglas
Chapter 11. 11.1 Load Balancing. Approximation Algorithms. Load Balancing. Load Balancing on 2 Machines. Load Balancing: Greedy Scheduling
Approximation Algorithms Chapter Approximation Algorithms Q. Suppose I need to solve an NP-hard problem. What should I do? A. Theory says you're unlikely to find a poly-time algorithm. Must sacrifice one
Introduction to NP-Completeness Written and copyright c by Jie Wang 1
91.502 Foundations of Comuter Science 1 Introduction to Written and coyright c by Jie Wang 1 We use time-bounded (deterministic and nondeterministic) Turing machines to study comutational comlexity of
SOLVING NARROW-INTERVAL LINEAR EQUATION SYSTEMS IS NP-HARD PATRICK THOR KAHL. Department of Computer Science
SOLVING NARROW-INTERVAL LINEAR EQUATION SYSTEMS IS NP-HARD PATRICK THOR KAHL Department of Computer Science APPROVED: Vladik Kreinovich, Chair, Ph.D. Luc Longpré, Ph.D. Mohamed Amine Khamsi, Ph.D. Pablo
Lecture 30: NP-Hard Problems [Fa 14]
[I]n his short and broken treatise he provides an eternal example not of laws, or even of method, for there is no method except to be very intelligent, but of intelligence itself swiftly operating the
CMPSCI611: Approximating MAX-CUT Lecture 20
CMPSCI611: Approximating MAX-CUT Lecture 20 For the next two lectures we ll be seeing examples of approximation algorithms for interesting NP-hard problems. Today we consider MAX-CUT, which we proved to
Welcome to... Problem Analysis and Complexity Theory 716.054, 3 VU
Welcome to... Problem Analysis and Complexity Theory 716.054, 3 VU Birgit Vogtenhuber Institute for Software Technology email: [email protected] office hour: Tuesday 10:30 11:30 slides: http://www.ist.tugraz.at/pact.html
Reductions & NP-completeness as part of Foundations of Computer Science undergraduate course
Reductions & NP-completeness as part of Foundations of Computer Science undergraduate course Alex Angelopoulos, NTUA January 22, 2015 Outline Alex Angelopoulos (NTUA) FoCS: Reductions & NP-completeness-
Introduction to computer science
Introduction to computer science Michael A. Nielsen University of Queensland Goals: 1. Introduce the notion of the computational complexity of a problem, and define the major computational complexity classes.
2. (a) Explain the strassen s matrix multiplication. (b) Write deletion algorithm, of Binary search tree. [8+8]
Code No: R05220502 Set No. 1 1. (a) Describe the performance analysis in detail. (b) Show that f 1 (n)+f 2 (n) = 0(max(g 1 (n), g 2 (n)) where f 1 (n) = 0(g 1 (n)) and f 2 (n) = 0(g 2 (n)). [8+8] 2. (a)
Definition 11.1. Given a graph G on n vertices, we define the following quantities:
Lecture 11 The Lovász ϑ Function 11.1 Perfect graphs We begin with some background on perfect graphs. graphs. First, we define some quantities on Definition 11.1. Given a graph G on n vertices, we define
Approximation Algorithms
Approximation Algorithms or: How I Learned to Stop Worrying and Deal with NP-Completeness Ong Jit Sheng, Jonathan (A0073924B) March, 2012 Overview Key Results (I) General techniques: Greedy algorithms
Why Study NP- hardness. NP Hardness/Completeness Overview. P and NP. Scaling 9/3/13. Ron Parr CPS 570. NP hardness is not an AI topic
Why Study NP- hardness NP Hardness/Completeness Overview Ron Parr CPS 570 NP hardness is not an AI topic It s important for all computer scienhsts Understanding it will deepen your understanding of AI
On the Unique Games Conjecture
On the Unique Games Conjecture Antonios Angelakis National Technical University of Athens June 16, 2015 Antonios Angelakis (NTUA) Theory of Computation June 16, 2015 1 / 20 Overview 1 Introduction 2 Preliminary
ON THE COMPLEXITY OF THE GAME OF SET. {kamalika,pbg,dratajcz,hoeteck}@cs.berkeley.edu
ON THE COMPLEXITY OF THE GAME OF SET KAMALIKA CHAUDHURI, BRIGHTEN GODFREY, DAVID RATAJCZAK, AND HOETECK WEE {kamalika,pbg,dratajcz,hoeteck}@cs.berkeley.edu ABSTRACT. Set R is a card game played with a
JUST-IN-TIME SCHEDULING WITH PERIODIC TIME SLOTS. Received December May 12, 2003; revised February 5, 2004
Scientiae Mathematicae Japonicae Online, Vol. 10, (2004), 431 437 431 JUST-IN-TIME SCHEDULING WITH PERIODIC TIME SLOTS Ondřej Čepeka and Shao Chin Sung b Received December May 12, 2003; revised February
Computational complexity theory
Computational complexity theory Goal: A general theory of the resources needed to solve computational problems What types of resources? Time What types of computational problems? decision problem Decision
Lecture 17 : Equivalence and Order Relations DRAFT
CS/Math 240: Introduction to Discrete Mathematics 3/31/2011 Lecture 17 : Equivalence and Order Relations Instructor: Dieter van Melkebeek Scribe: Dalibor Zelený DRAFT Last lecture we introduced the notion
Fairness in Routing and Load Balancing
Fairness in Routing and Load Balancing Jon Kleinberg Yuval Rabani Éva Tardos Abstract We consider the issue of network routing subject to explicit fairness conditions. The optimization of fairness criteria
Lecture 2: Universality
CS 710: Complexity Theory 1/21/2010 Lecture 2: Universality Instructor: Dieter van Melkebeek Scribe: Tyson Williams In this lecture, we introduce the notion of a universal machine, develop efficient universal
Classification - Examples
Lecture 2 Scheduling 1 Classification - Examples 1 r j C max given: n jobs with processing times p 1,...,p n and release dates r 1,...,r n jobs have to be scheduled without preemption on one machine taking
Quantum and Non-deterministic computers facing NP-completeness
Quantum and Non-deterministic computers facing NP-completeness Thibaut University of Vienna Dept. of Business Administration Austria Vienna January 29th, 2013 Some pictures come from Wikipedia Introduction
11. APPROXIMATION ALGORITHMS
11. APPROXIMATION ALGORITHMS load balancing center selection pricing method: vertex cover LP rounding: vertex cover generalized load balancing knapsack problem Lecture slides by Kevin Wayne Copyright 2005
CoNP and Function Problems
CoNP and Function Problems conp By definition, conp is the class of problems whose complement is in NP. NP is the class of problems that have succinct certificates. conp is therefore the class of problems
School Timetabling in Theory and Practice
School Timetabling in Theory and Practice Irving van Heuven van Staereling VU University, Amsterdam Faculty of Sciences December 24, 2012 Preface At almost every secondary school and university, some
Generating models of a matched formula with a polynomial delay
Generating models of a matched formula with a polynomial delay Petr Savicky Institute of Computer Science, Academy of Sciences of Czech Republic, Pod Vodárenskou Věží 2, 182 07 Praha 8, Czech Republic
Mathematics for Computer Science/Software Engineering. Notes for the course MSM1F3 Dr. R. A. Wilson
Mathematics for Computer Science/Software Engineering Notes for the course MSM1F3 Dr. R. A. Wilson October 1996 Chapter 1 Logic Lecture no. 1. We introduce the concept of a proposition, which is a statement
Determination of the normalization level of database schemas through equivalence classes of attributes
Computer Science Journal of Moldova, vol.17, no.2(50), 2009 Determination of the normalization level of database schemas through equivalence classes of attributes Cotelea Vitalie Abstract In this paper,
Lecture 1: Oracle Turing Machines
Computational Complexity Theory, Fall 2008 September 10 Lecture 1: Oracle Turing Machines Lecturer: Kristoffer Arnsfelt Hansen Scribe: Casper Kejlberg-Rasmussen Oracle TM Definition 1 Let A Σ. Then a Oracle
Notes on Complexity Theory Last updated: August, 2011. Lecture 1
Notes on Complexity Theory Last updated: August, 2011 Jonathan Katz Lecture 1 1 Turing Machines I assume that most students have encountered Turing machines before. (Students who have not may want to look
Small Maximal Independent Sets and Faster Exact Graph Coloring
Small Maximal Independent Sets and Faster Exact Graph Coloring David Eppstein Univ. of California, Irvine Dept. of Information and Computer Science The Exact Graph Coloring Problem: Given an undirected
Bounded-width QBF is PSPACE-complete
Bounded-width QBF is PSPACE-complete Albert Atserias 1 and Sergi Oliva 2 1 Universitat Politècnica de Catalunya Barcelona, Spain [email protected] 2 Universitat Politècnica de Catalunya Barcelona, Spain
THE P VERSUS NP PROBLEM
THE P VERSUS NP PROBLEM STEPHEN COOK 1. Statement of the Problem The P versus NP problem is to determine whether every language accepted by some nondeterministic algorithm in polynomial time is also accepted
THE PROBLEM WORMS (1) WORMS (2) THE PROBLEM OF WORM PROPAGATION/PREVENTION THE MINIMUM VERTEX COVER PROBLEM
1 THE PROBLEM OF WORM PROPAGATION/PREVENTION I.E. THE MINIMUM VERTEX COVER PROBLEM Prof. Tiziana Calamoneri Network Algorithms A.y. 2014/15 2 THE PROBLEM WORMS (1)! A computer worm is a standalone malware
Updating Action Domain Descriptions
Updating Action Domain Descriptions Thomas Eiter, Esra Erdem, Michael Fink, and Ján Senko Institute of Information Systems, Vienna University of Technology, Vienna, Austria Email: (eiter esra michael jan)@kr.tuwien.ac.at
Cloud Computing is NP-Complete
Working Paper, February 2, 20 Joe Weinman Permalink: http://www.joeweinman.com/resources/joe_weinman_cloud_computing_is_np-complete.pdf Abstract Cloud computing is a rapidly emerging paradigm for computing,
SEMITOTAL AND TOTAL BLOCK-CUTVERTEX GRAPH
CHAPTER 3 SEMITOTAL AND TOTAL BLOCK-CUTVERTEX GRAPH ABSTRACT This chapter begins with the notion of block distances in graphs. Using block distance we defined the central tendencies of a block, like B-radius
How To Solve A Minimum Set Covering Problem (Mcp)
Measuring Rationality with the Minimum Cost of Revealed Preference Violations Mark Dean and Daniel Martin Online Appendices - Not for Publication 1 1 Algorithm for Solving the MASP In this online appendix
Discuss the size of the instance for the minimum spanning tree problem.
3.1 Algorithm complexity The algorithms A, B are given. The former has complexity O(n 2 ), the latter O(2 n ), where n is the size of the instance. Let n A 0 be the size of the largest instance that can
Single machine parallel batch scheduling with unbounded capacity
Workshop on Combinatorics and Graph Theory 21th, April, 2006 Nankai University Single machine parallel batch scheduling with unbounded capacity Yuan Jinjiang Department of mathematics, Zhengzhou University
Max Flow, Min Cut, and Matchings (Solution)
Max Flow, Min Cut, and Matchings (Solution) 1. The figure below shows a flow network on which an s-t flow is shown. The capacity of each edge appears as a label next to the edge, and the numbers in boxes
CSC2420 Fall 2012: Algorithm Design, Analysis and Theory
CSC2420 Fall 2012: Algorithm Design, Analysis and Theory Allan Borodin November 15, 2012; Lecture 10 1 / 27 Randomized online bipartite matching and the adwords problem. We briefly return to online algorithms
Tree-representation of set families and applications to combinatorial decompositions
Tree-representation of set families and applications to combinatorial decompositions Binh-Minh Bui-Xuan a, Michel Habib b Michaël Rao c a Department of Informatics, University of Bergen, Norway. [email protected]
U.C. Berkeley CS276: Cryptography Handout 0.1 Luca Trevisan January, 2009. Notes on Algebra
U.C. Berkeley CS276: Cryptography Handout 0.1 Luca Trevisan January, 2009 Notes on Algebra These notes contain as little theory as possible, and most results are stated without proof. Any introductory
SHARP BOUNDS FOR THE SUM OF THE SQUARES OF THE DEGREES OF A GRAPH
31 Kragujevac J. Math. 25 (2003) 31 49. SHARP BOUNDS FOR THE SUM OF THE SQUARES OF THE DEGREES OF A GRAPH Kinkar Ch. Das Department of Mathematics, Indian Institute of Technology, Kharagpur 721302, W.B.,
136 CHAPTER 4. INDUCTION, GRAPHS AND TREES
136 TER 4. INDUCTION, GRHS ND TREES 4.3 Graphs In this chapter we introduce a fundamental structural idea of discrete mathematics, that of a graph. Many situations in the applications of discrete mathematics
2.1 Complexity Classes
15-859(M): Randomized Algorithms Lecturer: Shuchi Chawla Topic: Complexity classes, Identity checking Date: September 15, 2004 Scribe: Andrew Gilpin 2.1 Complexity Classes In this lecture we will look
Mathematical Induction. Lecture 10-11
Mathematical Induction Lecture 10-11 Menu Mathematical Induction Strong Induction Recursive Definitions Structural Induction Climbing an Infinite Ladder Suppose we have an infinite ladder: 1. We can reach
Transportation Polytopes: a Twenty year Update
Transportation Polytopes: a Twenty year Update Jesús Antonio De Loera University of California, Davis Based on various papers joint with R. Hemmecke, E.Kim, F. Liu, U. Rothblum, F. Santos, S. Onn, R. Yoshida,
Near Optimal Solutions
Near Optimal Solutions Many important optimization problems are lacking efficient solutions. NP-Complete problems unlikely to have polynomial time solutions. Good heuristics important for such problems.
Private Approximation of Clustering and Vertex Cover
Private Approximation of Clustering and Vertex Cover Amos Beimel, Renen Hallak, and Kobbi Nissim Department of Computer Science, Ben-Gurion University of the Negev Abstract. Private approximation of search
Degree Hypergroupoids Associated with Hypergraphs
Filomat 8:1 (014), 119 19 DOI 10.98/FIL1401119F Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat Degree Hypergroupoids Associated
Triangle deletion. Ernie Croot. February 3, 2010
Triangle deletion Ernie Croot February 3, 2010 1 Introduction The purpose of this note is to give an intuitive outline of the triangle deletion theorem of Ruzsa and Szemerédi, which says that if G = (V,
Analysis of Algorithms, I
Analysis of Algorithms, I CSOR W4231.002 Eleni Drinea Computer Science Department Columbia University Thursday, February 26, 2015 Outline 1 Recap 2 Representing graphs 3 Breadth-first search (BFS) 4 Applications
Handout #1: Mathematical Reasoning
Math 101 Rumbos Spring 2010 1 Handout #1: Mathematical Reasoning 1 Propositional Logic A proposition is a mathematical statement that it is either true or false; that is, a statement whose certainty or
CSC2420 Spring 2015: Lecture 3
CSC2420 Spring 2015: Lecture 3 Allan Borodin January 22, 2015 1 / 1 Announcements and todays agenda Assignment 1 due next Thursday. I may add one or two additional questions today or tomorrow. Todays agenda
Lecture 16 : Relations and Functions DRAFT
CS/Math 240: Introduction to Discrete Mathematics 3/29/2011 Lecture 16 : Relations and Functions Instructor: Dieter van Melkebeek Scribe: Dalibor Zelený DRAFT In Lecture 3, we described a correspondence
Discrete Mathematics & Mathematical Reasoning Chapter 10: Graphs
Discrete Mathematics & Mathematical Reasoning Chapter 10: Graphs Kousha Etessami U. of Edinburgh, UK Kousha Etessami (U. of Edinburgh, UK) Discrete Mathematics (Chapter 6) 1 / 13 Overview Graphs and Graph
Integer factorization is in P
Integer factorization is in P Yuly Shipilevsky Toronto, Ontario, Canada E-mail address: [email protected] Abstract A polynomial-time algorithm for integer factorization, wherein integer factorization
Nan Kong, Andrew J. Schaefer. Department of Industrial Engineering, Univeristy of Pittsburgh, PA 15261, USA
A Factor 1 2 Approximation Algorithm for Two-Stage Stochastic Matching Problems Nan Kong, Andrew J. Schaefer Department of Industrial Engineering, Univeristy of Pittsburgh, PA 15261, USA Abstract We introduce
