Graph Classification and Easy Reliability Polynomials
|
|
|
- Esmond Logan
- 9 years ago
- Views:
Transcription
1 Mathematical Assoc. of America American Mathematical Monthly 121:1 November 18, :11 a.m. AMM.tex page 1 Graph Classification and Easy Reliability Polynomials Pablo Romero and Gerardo Rubino Abstract. A graph classification is provided, inspired in an interplay between a celebrated network reliability problem and counting. This problem is precisely the probability that a random graph is connected following Gilbert edge-deletion rule. The graph classification induces a classification of reliability polynomials. Finally, a level of difficulty is assigned to graphs, and provides a corresponding notion of easy reliability polynomials. 1. INTRODUCTION. Historically, several counting problems are related with graphs. They appear naturally in the practice of engineering, physics, chemistry, biology, economics, and other branches of knowledge. For instance, counting spanning trees helped to solve electrical circuits to Gustav Kirchhoff in the nineteenth century [8], and counting marriages in bipartite graphs launched a new complexity hierarchy in classes of counting problems, headed by Leslie Valiant [10]. Up to that moment, mathematicians were surprised with the fact that it is simple to find the determinant of a matrix but the permanent (in brief words, a permanent is a determinant but where all permutations have the same sign). Indeed, finding the permanent of a matrix is a hard task, and it was formalized by Leslie Valiant proving that it is the first problem inside a special hard counting class, called #P-Complete class. Informally, this class captures the complexity of NP-Hard decision problems in counting. In this paper, we want to play with a counting problem which captures an abstract setting from telecommunications. We are given a connected graph, where nodes are perfect but edges may fail with identical and independent probability q = 1 p [0, 1] (this is Gilbert model for random graphs, where p is the probability of edgepresence [6]). The resulting graph may be either connected or not. We aim to find the probability that the random graph is connected, or connectedness probability, denoted by R(p). At a first sight, it does not seem a counting problem. However, we will see this is nothing but a counting problem! Indeed, let us consider a simple graph G = (V, E) with m = E edges and n = V nodes. We will stick to this symbology during the treatment. Let us call F i to the number of subgraphs with precisely m i edges. They all have the same probability, to know, p m i (1 p) i. Summing all events we get that: R(p) = m F i p m i (1 p) i. (1) i=0 Therefore, finding R(p) is equivalent to count all entries of the F -vector F = (F 0,..., F m ). This counting problem is called network reliability analysis problem, and it remains in the heart of network reliability theory [1]. Effort performed by Michael Ball and Scott Provan permitted to determine that counting the F -vector is a hard task again [2]. In this paper we want to answer two questions: This work has been partially supported by the Stic AmSud project AMMA January 2014]GRAPH CLASSIFICATION AND EASY RELIABILITY POLYNOMIALS 1
2 Mathematical Assoc. of America American Mathematical Monthly 121:1 November 18, :11 a.m. AMM.tex page 2 (I) Which kind of graphs have an easy counting procedure for the F -vector? (II) Is there a natural classification for those graphs? Question (I) is a source of inspiration for network reliability analysis. Here, we classify all graphs were the F -vector is completely known. They represent the easiest counting problems under study. Then, we introduce a level of difficulty, which is a function l that assigns each graph an integer from the set { 1, 0, 1,...}. Gracefully, easiest graphs have level of difficulty 1 or 0, while non-easiest graphs assume positive level of difficulty. The main results only use the first theorem of Graph Theory, to know, Handshaking [7]. 2. BACKGROUND. Your intuition is correct: if we delete too many edges, the graph will be disconnected. On the other hand, if we delete none or few edges, normally the graph will be connected. In this section, both corners are formalized. We just state the results but do not spend time with the proofs, since they are thoroughly covered in the related literature. All spanning trees have n 1 edges. Since they are minimally connected, there is no hope to find a graph with less than n 1 edges and to be connected. This implies that F x = 0 for all x > m n + 1. Gustav Kirchhoff found in 1847 a closed formula to count the number of spanning trees in a given graph [8]. Specifically, the number of spanning trees, or tree number of, κ(g), is any cofactor of the Laplacian matrix of G 1. So, F m n+1 = κ(g), and since determinants are easy to find, we are able to count F m n+1 as well! On the other hand, let us denote by c to the minimum number of edges we must remove in order to disconnect the graph, sometimes called edge-connectivity, or simply connectivity. Naturally, by its definition we get that F x = ( m x) for all x < c. The minimum number of links required to disconnect two fixed nodes has been solved by Ford and Fulkerson [5], in the context of flows in networks 2. Curiously, the number of ways to delete such c links is a hard problem (again, in the class #P-Complete), but it is not hard for our problem. Michael Ball and Scott Provan [2] found the number n c of ways to delete c edges and disconnect G. Therefore, F c = ( ) m c nc. We summarize the known results on the F -vector with the following items: F x = ( m x) for all x < c. F c = ( m c ) nc. F m n+1 = κ(g). F x = 0 for all x > m n + 1. Observe that m n + 1 is precisely the difference between the number of edges of the graph and the ones of a certain spanning tree. This is the number of independent cycles, or the co-rank of G 3. We will denote it by c(g). Clearly, if we delete more edges than the co-rank, the resulting graph is disconnected, since it has less edges than a tree. Therefore, c c(g) + 1. The key question for our graph classification is the following: is the equality possible? In that case, which graphs achieve the equality? 1 This result is sometimes known as Matrix-Tree Theorem, and connects algebra with graphs in an elegant way. Moreover, the birth of a new area of mathematics began with this result, called Algebraic Graph Theory 2 Indeed, the authors found an algorithm to find the maximum flow between a source and a sink in a capacitated network with natural capacities. This is a foundational result of Flow Theory in networks. 3 In algebraic graph theory, it is the dimension of the kernel of the incidence matrix for the graph G. For a neat cover of this topic, we invite the reader to see the book [3] 2 c THE MATHEMATICAL ASSOCIATION OF AMERICA [Monthly 121
3 Mathematical Assoc. of America American Mathematical Monthly 121:1 November 18, :11 a.m. AMM.tex page 3 3. CLASSIFICATION. Definition (Level of difficulty). The level of difficulty of a graph G is the difference between its co-rank and connectivity: By previous observations, we know that d(g) 1. Definition (Easy graph). A graph G is easy if d(g) 0. d(g) = c(g) c. (2) Observe that in easy graphs, the F -vector is fully known. In fact, consider a graph G such that d(g) = 1. Then, m n + 1 = c 1. But we know all entries x such that F x c or F x m n + 1, so the F -vector is fully recovered. The same situation occurs when d(g) = 0. In this section, we will fully characterize connected graphs with d(g) { 1, 0}. Let us start with the easiest ones. Theorem 1. The level of difficulty is 1 only in trees and cycles. Proof. We study three possible cases: 1) If c(g) = 0 we have acyclic connected graphs, or trees. They have connectivity c = 1, and thus level of difficulty 1. 2) If c(g) = 1 we must have connectivity c = 2. For sure, the graph has no bridge (otherwise, the bridge disconnects the graph, and c = 1). Therefore, the minimum degree is δ(g) = 2. Since c(g) = 1, we know that m n + 1 = 1, or alternatively that m = n. By Handshaking, we get that 2m = 2n equals the sum of nodedegrees. This implies that all nodes have degree 2, and the connected graph must be a cycle. 3) If c(g) = i 2 we must have connectivity c = i + 1, and the minimum degree is therefore δ(g) i + 1. Since c(g) = i, alternatively m = n + i 1. By Handshaking, we get that 2m = 2n + 2(i 1) = n i=1 deg(v i) nδ(g) = (i + 1)n. If we subtract 2n on both sides, we get that 2(i 1) (i 1)n. Finally, dividing by the factor i 1 we lead to the conclusion that a graph with co-rank c(g) = 2 and level of difficulty 1 must have n 2 nodes. But this is impossible, since the minimum degree must respect n 1 δ(g) 3 in this case. Observe that during the proof of Theorem 2, only Handshaking Theorem was used. As a consequence, cycles and trees are the most elementary graphs under this new concept of difficulty. Let us go one step further, and characterize all graphs with level of difficulty d(g) = 0. The reader can have a try before reading. Indeed, the proofs follows the same spirit of Theorem 2, and Handshaking is the main tool. Before, we provide a hint. In 1990, Clyde Monma et. al. offered to the scientific community a foundational result from topological network design. He proved that the minimum-cost 2-node-connected spanning networks must either be a Hamiltonian tour or contain a special graph as an induced subgraph [9]. This special graph has been called Monma graphs for the first time in [4], to give the corresponding credits. They consist of two nodes connected by independent paths. Monma graphs are sketched in Figure 1. The hint: Monma graphs have the same co-rank and connectivity! It is worth to mention some other graphs before the statement. When all nodes are directly connected, we have a complete graph. Butterflies are two triangles with a January 2014]GRAPH CLASSIFICATION AND EASY RELIABILITY POLYNOMIALS 3
4 Mathematical Assoc. of America American Mathematical Monthly 121:1 November 18, :11 a.m. AMM.tex page 4 l v l u l Figure 1. Monma s graph structure. common vertex, and quasi-trees are graphs such that a tree is obtained once we remove a specific node (trees and cycles are omitted in this definition for convenience). In order to illustrate the concept, let us find the level of difficulty for complete graphs with n nodes, here denoted by K n. The number of edges in K n is the number of ways to choose two nodes out of n. So: d(k n ) = (n n 1 2 n + 1) (n 1) = 1 (n 1)(n 4), 2 which is null if and only if n = 1 (trivial graph) or n = 4. The trivial graph is pathologic, in the sense that its connectivity is not defined. So, the only complete graph with null level of difficulty is K 4. The reader can have fun, finding the level of difficulty of the other graphs defined recently (Butterflies, Monma and Quasi-trees). Yes... they have all level of difficulty 0! We can say more. Theorem 2. The level of difficulty is 0 only in Butterflies, Monma graphs, Quasi-trees and the Complete graph of order four. Proof. We should characterize the graphs such that the connectivity and co-rank are identical: c(g) = c. Since c 1, we divide again the discussion into three possible cases: 1) If c(g) = c = 1, the graph must have at least a cycle and a bridge, leading in quasi-trees. 2) If c(g) = c = 2 we know that the minimum degree respects the inequality δ(g) 2. Since c(g) = 2 we get that m = n + 1. Now, Handshaking Theorem says that 2m = n i=1 deg(v i) = 2n + 2. Therefore, the graph must have either all but one or two nodes with degree two. This is a characterization Monma graphs and Butterflies, respectively. 3) If c(g) = i 3, we have δ(g) i. Since c(g) = i, alternatively m = n + i 1. By Handshaking, we get that 2m = 2n + 2(i 1) = n i=1 deg(v i) nδ(g) = ni. This means that 2(i 1) n(i 2). Rewriting, we get that: n 2 i 1 ( i 2 = ) i 2 2 ( ) 3 2 = 4. (3) So, n 4. But n 1 δ(g) i 3. So, n = 4, and all inequalities are equalities. This is possible only in the complete graph with four nodes. Corollary 1. Easy graphs are Cycles, Trees, Quasi-trees, Monma Graphs, Butterflies and the Complete graph with four nodes. 4 c THE MATHEMATICAL ASSOCIATION OF AMERICA [Monthly 121
5 Mathematical Assoc. of America American Mathematical Monthly 121:1 November 18, :11 a.m. AMM.tex page 5 Corollary 1 is a full characterization of graphs whose F -vector is known a-priori. For completeness, we define easy reliability polynomials. Definition. A polynomial is a reliability polynomial if it can be realized by a graph with Expression (1). Definition. A reliability polynomial is easy if it comes from an easy graph. Corollary 2. The complete list of all easy reliability polynomials is the following: r 1 (p) = p m + mp m 1 (1 p) r 2 (p) = p m r 3 (p) = [p s + sp s 1 (1 p)]p m s r 4 (p) = p m + mp m 1 (1 p) + (l 1 l 2 + l 1 l 3 + l 2 l 3 )p m 2 (1 p) 2 r 5 (p) = p 6 + 6p 5 (1 p) + 9p 4 (1 p) 2 r 4 (p) = p 6 + 6p 5 (1 p) + 15p 4 (1 p) p 3 (1 p) 3 Reliability polynomials were presented in the respective order of the graphs from Corollary 1. A similar discussion can be performed to produce all graphs with a level of difficulty d(g) = 1. In order no to extend the discussion and invite further analysis for the reader, we prefer to draw all such graphs. 4. CONCLUSIONS. We played with counting problems in graphs to address a classical telecommunication problem from an abstract setting. As a corollary, we obtain a natural graph classification, to know, the level of difficulty, which is the difference between co-rank and connectivity. Graphs with a non-positive level of difficulty have the counting problem solved beforehand. They were fully characterized here. A full characterization of graphs with level of difficulty 1 is also feasible playing with Handshaking again, and we restricted to draw them. However, more sophisticated techniques should be developed to characterize graphs (and polynomials) with higher level of difficulty. REFERENCES 1. Michael O. Ball. Computational complexity of network reliability analysis: An overview. IEEE Transactions on Reliability, 35(3): , aug Michael O. Ball and J. Scott Provan. The complexity of counting cuts and of computing the probability that a graph is connected. SIAM J. Computing, 12: , N. Biggs. Algebraic Graph Theory. Cambridge Mathematical Library. Cambridge University Press, Eduardo Canale, Pablo Monzón, and Franco Robledo. Global synchronization properties for different classes of underlying interconnection graphs for kuramoto coupled oscillators. In Future Generation Information Technology, volume 5899 of Lecture Notes in Computer Science, pages Springer Berlin Heidelberg, L. R. Ford and D. R. Fulkerson. Flows in Networks. Princeton University Press, E. N. Gilbert. Random graphs. Annals of Mathematical Statistics, 30: , F. Harary. Graph Theory. Addison-Wesley series in mathematics. Perseus Books, G. Kirchoff. Über die auflösung der gleichungen, auf welche man bei der untersuchung der linearen verteilung galvanischer ströme geführt wird. Ann. Phys. Chem., 72: , ClydeL. Monma, BethSpellman Munson, and WilliamR. Pulleyblank. Minimum-weight two-connected spanning networks. Mathematical Programming, 46(1-3): , Leslie G. Valiant. The complexity of computing the permanent. Theor. Comput. Sci., 8: , January 2014]GRAPH CLASSIFICATION AND EASY RELIABILITY POLYNOMIALS 5
Exponential time algorithms for graph coloring
Exponential time algorithms for graph coloring Uriel Feige Lecture notes, March 14, 2011 1 Introduction Let [n] denote the set {1,..., k}. A k-labeling of vertices of a graph G(V, E) is a function V [k].
V. Adamchik 1. Graph Theory. Victor Adamchik. Fall of 2005
V. Adamchik 1 Graph Theory Victor Adamchik Fall of 2005 Plan 1. Basic Vocabulary 2. Regular graph 3. Connectivity 4. Representing Graphs Introduction A.Aho and J.Ulman acknowledge that Fundamentally, computer
8.1 Min Degree Spanning Tree
CS880: Approximations Algorithms Scribe: Siddharth Barman Lecturer: Shuchi Chawla Topic: Min Degree Spanning Tree Date: 02/15/07 In this lecture we give a local search based algorithm for the Min Degree
Discrete Mathematics & Mathematical Reasoning Chapter 10: Graphs
Discrete Mathematics & Mathematical Reasoning Chapter 10: Graphs Kousha Etessami U. of Edinburgh, UK Kousha Etessami (U. of Edinburgh, UK) Discrete Mathematics (Chapter 6) 1 / 13 Overview Graphs and Graph
Cacti with minimum, second-minimum, and third-minimum Kirchhoff indices
MATHEMATICAL COMMUNICATIONS 47 Math. Commun., Vol. 15, No. 2, pp. 47-58 (2010) Cacti with minimum, second-minimum, and third-minimum Kirchhoff indices Hongzhuan Wang 1, Hongbo Hua 1, and Dongdong Wang
SHARP BOUNDS FOR THE SUM OF THE SQUARES OF THE DEGREES OF A GRAPH
31 Kragujevac J. Math. 25 (2003) 31 49. SHARP BOUNDS FOR THE SUM OF THE SQUARES OF THE DEGREES OF A GRAPH Kinkar Ch. Das Department of Mathematics, Indian Institute of Technology, Kharagpur 721302, W.B.,
Discuss the size of the instance for the minimum spanning tree problem.
3.1 Algorithm complexity The algorithms A, B are given. The former has complexity O(n 2 ), the latter O(2 n ), where n is the size of the instance. Let n A 0 be the size of the largest instance that can
Outline. NP-completeness. When is a problem easy? When is a problem hard? Today. Euler Circuits
Outline NP-completeness Examples of Easy vs. Hard problems Euler circuit vs. Hamiltonian circuit Shortest Path vs. Longest Path 2-pairs sum vs. general Subset Sum Reducing one problem to another Clique
Topology-based network security
Topology-based network security Tiit Pikma Supervised by Vitaly Skachek Research Seminar in Cryptography University of Tartu, Spring 2013 1 Introduction In both wired and wireless networks, there is the
Generalized Induced Factor Problems
Egerváry Research Group on Combinatorial Optimization Technical reports TR-2002-07. Published by the Egrerváry Research Group, Pázmány P. sétány 1/C, H 1117, Budapest, Hungary. Web site: www.cs.elte.hu/egres.
Every tree contains a large induced subgraph with all degrees odd
Every tree contains a large induced subgraph with all degrees odd A.J. Radcliffe Carnegie Mellon University, Pittsburgh, PA A.D. Scott Department of Pure Mathematics and Mathematical Statistics University
P versus NP, and More
1 P versus NP, and More Great Ideas in Theoretical Computer Science Saarland University, Summer 2014 If you have tried to solve a crossword puzzle, you know that it is much harder to solve it than to verify
COMBINATORIAL PROPERTIES OF THE HIGMAN-SIMS GRAPH. 1. Introduction
COMBINATORIAL PROPERTIES OF THE HIGMAN-SIMS GRAPH ZACHARY ABEL 1. Introduction In this survey we discuss properties of the Higman-Sims graph, which has 100 vertices, 1100 edges, and is 22 regular. In fact
Zachary Monaco Georgia College Olympic Coloring: Go For The Gold
Zachary Monaco Georgia College Olympic Coloring: Go For The Gold Coloring the vertices or edges of a graph leads to a variety of interesting applications in graph theory These applications include various
On Integer Additive Set-Indexers of Graphs
On Integer Additive Set-Indexers of Graphs arxiv:1312.7672v4 [math.co] 2 Mar 2014 N K Sudev and K A Germina Abstract A set-indexer of a graph G is an injective set-valued function f : V (G) 2 X such that
Handout #Ch7 San Skulrattanakulchai Gustavus Adolphus College Dec 6, 2010. Chapter 7: Digraphs
MCS-236: Graph Theory Handout #Ch7 San Skulrattanakulchai Gustavus Adolphus College Dec 6, 2010 Chapter 7: Digraphs Strong Digraphs Definitions. A digraph is an ordered pair (V, E), where V is the set
On the k-path cover problem for cacti
On the k-path cover problem for cacti Zemin Jin and Xueliang Li Center for Combinatorics and LPMC Nankai University Tianjin 300071, P.R. China [email protected], [email protected] Abstract In this paper we
A simple criterion on degree sequences of graphs
Discrete Applied Mathematics 156 (2008) 3513 3517 Contents lists available at ScienceDirect Discrete Applied Mathematics journal homepage: www.elsevier.com/locate/dam Note A simple criterion on degree
Euler Paths and Euler Circuits
Euler Paths and Euler Circuits An Euler path is a path that uses every edge of a graph exactly once. An Euler circuit is a circuit that uses every edge of a graph exactly once. An Euler path starts and
Discrete Mathematics Problems
Discrete Mathematics Problems William F. Klostermeyer School of Computing University of North Florida Jacksonville, FL 32224 E-mail: [email protected] Contents 0 Preface 3 1 Logic 5 1.1 Basics...............................
High degree graphs contain large-star factors
High degree graphs contain large-star factors Dedicated to László Lovász, for his 60th birthday Noga Alon Nicholas Wormald Abstract We show that any finite simple graph with minimum degree d contains a
Generating models of a matched formula with a polynomial delay
Generating models of a matched formula with a polynomial delay Petr Savicky Institute of Computer Science, Academy of Sciences of Czech Republic, Pod Vodárenskou Věží 2, 182 07 Praha 8, Czech Republic
Fairness in Routing and Load Balancing
Fairness in Routing and Load Balancing Jon Kleinberg Yuval Rabani Éva Tardos Abstract We consider the issue of network routing subject to explicit fairness conditions. The optimization of fairness criteria
Recall that two vectors in are perpendicular or orthogonal provided that their dot
Orthogonal Complements and Projections Recall that two vectors in are perpendicular or orthogonal provided that their dot product vanishes That is, if and only if Example 1 The vectors in are orthogonal
Computer Algorithms. NP-Complete Problems. CISC 4080 Yanjun Li
Computer Algorithms NP-Complete Problems NP-completeness The quest for efficient algorithms is about finding clever ways to bypass the process of exhaustive search, using clues from the input in order
Large induced subgraphs with all degrees odd
Large induced subgraphs with all degrees odd A.D. Scott Department of Pure Mathematics and Mathematical Statistics, University of Cambridge, England Abstract: We prove that every connected graph of order
A REMARK ON ALMOST MOORE DIGRAPHS OF DEGREE THREE. 1. Introduction and Preliminaries
Acta Math. Univ. Comenianae Vol. LXVI, 2(1997), pp. 285 291 285 A REMARK ON ALMOST MOORE DIGRAPHS OF DEGREE THREE E. T. BASKORO, M. MILLER and J. ŠIRÁŇ Abstract. It is well known that Moore digraphs do
Lecture 15 An Arithmetic Circuit Lowerbound and Flows in Graphs
CSE599s: Extremal Combinatorics November 21, 2011 Lecture 15 An Arithmetic Circuit Lowerbound and Flows in Graphs Lecturer: Anup Rao 1 An Arithmetic Circuit Lower Bound An arithmetic circuit is just like
NP-Completeness. CptS 223 Advanced Data Structures. Larry Holder School of Electrical Engineering and Computer Science Washington State University
NP-Completeness CptS 223 Advanced Data Structures Larry Holder School of Electrical Engineering and Computer Science Washington State University 1 Hard Graph Problems Hard means no known solutions with
Applied Algorithm Design Lecture 5
Applied Algorithm Design Lecture 5 Pietro Michiardi Eurecom Pietro Michiardi (Eurecom) Applied Algorithm Design Lecture 5 1 / 86 Approximation Algorithms Pietro Michiardi (Eurecom) Applied Algorithm Design
Transportation Polytopes: a Twenty year Update
Transportation Polytopes: a Twenty year Update Jesús Antonio De Loera University of California, Davis Based on various papers joint with R. Hemmecke, E.Kim, F. Liu, U. Rothblum, F. Santos, S. Onn, R. Yoshida,
CMPSCI611: Approximating MAX-CUT Lecture 20
CMPSCI611: Approximating MAX-CUT Lecture 20 For the next two lectures we ll be seeing examples of approximation algorithms for interesting NP-hard problems. Today we consider MAX-CUT, which we proved to
Polytope Examples (PolyComp Fukuda) Matching Polytope 1
Polytope Examples (PolyComp Fukuda) Matching Polytope 1 Matching Polytope Let G = (V,E) be a graph. A matching in G is a subset of edges M E such that every vertex meets at most one member of M. A matching
Classification of Cartan matrices
Chapter 7 Classification of Cartan matrices In this chapter we describe a classification of generalised Cartan matrices This classification can be compared as the rough classification of varieties in terms
Orthogonal Projections and Orthonormal Bases
CS 3, HANDOUT -A, 3 November 04 (adjusted on 7 November 04) Orthogonal Projections and Orthonormal Bases (continuation of Handout 07 of 6 September 04) Definition (Orthogonality, length, unit vectors).
The Characteristic Polynomial
Physics 116A Winter 2011 The Characteristic Polynomial 1 Coefficients of the characteristic polynomial Consider the eigenvalue problem for an n n matrix A, A v = λ v, v 0 (1) The solution to this problem
Lecture 1: Course overview, circuits, and formulas
Lecture 1: Course overview, circuits, and formulas Topics in Complexity Theory and Pseudorandomness (Spring 2013) Rutgers University Swastik Kopparty Scribes: John Kim, Ben Lund 1 Course Information Swastik
Practical Guide to the Simplex Method of Linear Programming
Practical Guide to the Simplex Method of Linear Programming Marcel Oliver Revised: April, 0 The basic steps of the simplex algorithm Step : Write the linear programming problem in standard form Linear
Steiner Tree Approximation via IRR. Randomized Rounding
Steiner Tree Approximation via Iterative Randomized Rounding Graduate Program in Logic, Algorithms and Computation μπλ Network Algorithms and Complexity June 18, 2013 Overview 1 Introduction Scope Related
3. Linear Programming and Polyhedral Combinatorics
Massachusetts Institute of Technology Handout 6 18.433: Combinatorial Optimization February 20th, 2009 Michel X. Goemans 3. Linear Programming and Polyhedral Combinatorics Summary of what was seen in the
Linear Programming I
Linear Programming I November 30, 2003 1 Introduction In the VCR/guns/nuclear bombs/napkins/star wars/professors/butter/mice problem, the benevolent dictator, Bigus Piguinus, of south Antarctica penguins
On the Relationship between Classes P and NP
Journal of Computer Science 8 (7): 1036-1040, 2012 ISSN 1549-3636 2012 Science Publications On the Relationship between Classes P and NP Anatoly D. Plotnikov Department of Computer Systems and Networks,
Mathematics for Algorithm and System Analysis
Mathematics for Algorithm and System Analysis for students of computer and computational science Edward A. Bender S. Gill Williamson c Edward A. Bender & S. Gill Williamson 2005. All rights reserved. Preface
Nan Kong, Andrew J. Schaefer. Department of Industrial Engineering, Univeristy of Pittsburgh, PA 15261, USA
A Factor 1 2 Approximation Algorithm for Two-Stage Stochastic Matching Problems Nan Kong, Andrew J. Schaefer Department of Industrial Engineering, Univeristy of Pittsburgh, PA 15261, USA Abstract We introduce
An inequality for the group chromatic number of a graph
Discrete Mathematics 307 (2007) 3076 3080 www.elsevier.com/locate/disc Note An inequality for the group chromatic number of a graph Hong-Jian Lai a, Xiangwen Li b,,1, Gexin Yu c a Department of Mathematics,
About the inverse football pool problem for 9 games 1
Seventh International Workshop on Optimal Codes and Related Topics September 6-1, 013, Albena, Bulgaria pp. 15-133 About the inverse football pool problem for 9 games 1 Emil Kolev Tsonka Baicheva Institute
Cycle transversals in bounded degree graphs
Electronic Notes in Discrete Mathematics 35 (2009) 189 195 www.elsevier.com/locate/endm Cycle transversals in bounded degree graphs M. Groshaus a,2,3 P. Hell b,3 S. Klein c,1,3 L. T. Nogueira d,1,3 F.
Finding and counting given length cycles
Finding and counting given length cycles Noga Alon Raphael Yuster Uri Zwick Abstract We present an assortment of methods for finding and counting simple cycles of a given length in directed and undirected
CS 598CSC: Combinatorial Optimization Lecture date: 2/4/2010
CS 598CSC: Combinatorial Optimization Lecture date: /4/010 Instructor: Chandra Chekuri Scribe: David Morrison Gomory-Hu Trees (The work in this section closely follows [3]) Let G = (V, E) be an undirected
Cycles in a Graph Whose Lengths Differ by One or Two
Cycles in a Graph Whose Lengths Differ by One or Two J. A. Bondy 1 and A. Vince 2 1 LABORATOIRE DE MATHÉMATIQUES DISCRÉTES UNIVERSITÉ CLAUDE-BERNARD LYON 1 69622 VILLEURBANNE, FRANCE 2 DEPARTMENT OF MATHEMATICS
P. Jeyanthi and N. Angel Benseera
Opuscula Math. 34, no. 1 (014), 115 1 http://dx.doi.org/10.7494/opmath.014.34.1.115 Opuscula Mathematica A TOTALLY MAGIC CORDIAL LABELING OF ONE-POINT UNION OF n COPIES OF A GRAPH P. Jeyanthi and N. Angel
A Graph-Theoretic Network Security Game
A Graph-Theoretic Network Security Game Marios Mavronicolas 1, Vicky Papadopoulou 1, Anna Philippou 1, and Paul Spirakis 2 1 Department of Computer Science, University of Cyprus, Nicosia CY-1678, Cyprus.
Analysis of Algorithms, I
Analysis of Algorithms, I CSOR W4231.002 Eleni Drinea Computer Science Department Columbia University Thursday, February 26, 2015 Outline 1 Recap 2 Representing graphs 3 Breadth-first search (BFS) 4 Applications
Lecture 7: NP-Complete Problems
IAS/PCMI Summer Session 2000 Clay Mathematics Undergraduate Program Basic Course on Computational Complexity Lecture 7: NP-Complete Problems David Mix Barrington and Alexis Maciel July 25, 2000 1. Circuit
Graphs without proper subgraphs of minimum degree 3 and short cycles
Graphs without proper subgraphs of minimum degree 3 and short cycles Lothar Narins, Alexey Pokrovskiy, Tibor Szabó Department of Mathematics, Freie Universität, Berlin, Germany. August 22, 2014 Abstract
SEQUENCES OF MAXIMAL DEGREE VERTICES IN GRAPHS. Nickolay Khadzhiivanov, Nedyalko Nenov
Serdica Math. J. 30 (2004), 95 102 SEQUENCES OF MAXIMAL DEGREE VERTICES IN GRAPHS Nickolay Khadzhiivanov, Nedyalko Nenov Communicated by V. Drensky Abstract. Let Γ(M) where M V (G) be the set of all vertices
1 Sets and Set Notation.
LINEAR ALGEBRA MATH 27.6 SPRING 23 (COHEN) LECTURE NOTES Sets and Set Notation. Definition (Naive Definition of a Set). A set is any collection of objects, called the elements of that set. We will most
IE 680 Special Topics in Production Systems: Networks, Routing and Logistics*
IE 680 Special Topics in Production Systems: Networks, Routing and Logistics* Rakesh Nagi Department of Industrial Engineering University at Buffalo (SUNY) *Lecture notes from Network Flows by Ahuja, Magnanti
The Basics of Graphical Models
The Basics of Graphical Models David M. Blei Columbia University October 3, 2015 Introduction These notes follow Chapter 2 of An Introduction to Probabilistic Graphical Models by Michael Jordan. Many figures
Mathematics Course 111: Algebra I Part IV: Vector Spaces
Mathematics Course 111: Algebra I Part IV: Vector Spaces D. R. Wilkins Academic Year 1996-7 9 Vector Spaces A vector space over some field K is an algebraic structure consisting of a set V on which are
1 Introduction. Dr. T. Srinivas Department of Mathematics Kakatiya University Warangal 506009, AP, INDIA [email protected]
A New Allgoriitthm for Miiniimum Costt Liinkiing M. Sreenivas Alluri Institute of Management Sciences Hanamkonda 506001, AP, INDIA [email protected] Dr. T. Srinivas Department of Mathematics Kakatiya
Scheduling Shop Scheduling. Tim Nieberg
Scheduling Shop Scheduling Tim Nieberg Shop models: General Introduction Remark: Consider non preemptive problems with regular objectives Notation Shop Problems: m machines, n jobs 1,..., n operations
The positive minimum degree game on sparse graphs
The positive minimum degree game on sparse graphs József Balogh Department of Mathematical Sciences University of Illinois, USA [email protected] András Pluhár Department of Computer Science University
International Journal of Information Technology, Modeling and Computing (IJITMC) Vol.1, No.3,August 2013
FACTORING CRYPTOSYSTEM MODULI WHEN THE CO-FACTORS DIFFERENCE IS BOUNDED Omar Akchiche 1 and Omar Khadir 2 1,2 Laboratory of Mathematics, Cryptography and Mechanics, Fstm, University of Hassan II Mohammedia-Casablanca,
Single machine parallel batch scheduling with unbounded capacity
Workshop on Combinatorics and Graph Theory 21th, April, 2006 Nankai University Single machine parallel batch scheduling with unbounded capacity Yuan Jinjiang Department of mathematics, Zhengzhou University
Triangle deletion. Ernie Croot. February 3, 2010
Triangle deletion Ernie Croot February 3, 2010 1 Introduction The purpose of this note is to give an intuitive outline of the triangle deletion theorem of Ruzsa and Szemerédi, which says that if G = (V,
Definition 11.1. Given a graph G on n vertices, we define the following quantities:
Lecture 11 The Lovász ϑ Function 11.1 Perfect graphs We begin with some background on perfect graphs. graphs. First, we define some quantities on Definition 11.1. Given a graph G on n vertices, we define
A Study of Sufficient Conditions for Hamiltonian Cycles
DeLeon 1 A Study of Sufficient Conditions for Hamiltonian Cycles Melissa DeLeon Department of Mathematics and Computer Science Seton Hall University South Orange, New Jersey 07079, U.S.A. ABSTRACT A graph
Continuity of the Perron Root
Linear and Multilinear Algebra http://dx.doi.org/10.1080/03081087.2014.934233 ArXiv: 1407.7564 (http://arxiv.org/abs/1407.7564) Continuity of the Perron Root Carl D. Meyer Department of Mathematics, North
Answer: (a) Since we cannot repeat men on the committee, and the order we select them in does not matter, ( )
1. (Chapter 1 supplementary, problem 7): There are 12 men at a dance. (a) In how many ways can eight of them be selected to form a cleanup crew? (b) How many ways are there to pair off eight women at the
Graph Theory Problems and Solutions
raph Theory Problems and Solutions Tom Davis [email protected] http://www.geometer.org/mathcircles November, 005 Problems. Prove that the sum of the degrees of the vertices of any finite graph is
24. The Branch and Bound Method
24. The Branch and Bound Method It has serious practical consequences if it is known that a combinatorial problem is NP-complete. Then one can conclude according to the present state of science that no
arxiv:0909.4913v2 [math.ho] 4 Nov 2009
IRRATIONALITY FROM THE BOOK STEVEN J. MILLER AND DAVID MONTAGUE arxiv:0909.4913v2 [math.ho] 4 Nov 2009 A right of passage to theoretical mathematics is often a proof of the irrationality of 2, or at least
Introduction to Scheduling Theory
Introduction to Scheduling Theory Arnaud Legrand Laboratoire Informatique et Distribution IMAG CNRS, France [email protected] November 8, 2004 1/ 26 Outline 1 Task graphs from outer space 2 Scheduling
The Open University s repository of research publications and other research outputs
Open Research Online The Open University s repository of research publications and other research outputs The degree-diameter problem for circulant graphs of degree 8 and 9 Journal Article How to cite:
A characterization of trace zero symmetric nonnegative 5x5 matrices
A characterization of trace zero symmetric nonnegative 5x5 matrices Oren Spector June 1, 009 Abstract The problem of determining necessary and sufficient conditions for a set of real numbers to be the
U.C. Berkeley CS276: Cryptography Handout 0.1 Luca Trevisan January, 2009. Notes on Algebra
U.C. Berkeley CS276: Cryptography Handout 0.1 Luca Trevisan January, 2009 Notes on Algebra These notes contain as little theory as possible, and most results are stated without proof. Any introductory
Graph theoretic techniques in the analysis of uniquely localizable sensor networks
Graph theoretic techniques in the analysis of uniquely localizable sensor networks Bill Jackson 1 and Tibor Jordán 2 ABSTRACT In the network localization problem the goal is to determine the location of
Community Detection Proseminar - Elementary Data Mining Techniques by Simon Grätzer
Community Detection Proseminar - Elementary Data Mining Techniques by Simon Grätzer 1 Content What is Community Detection? Motivation Defining a community Methods to find communities Overlapping communities
Complexity Theory. IE 661: Scheduling Theory Fall 2003 Satyaki Ghosh Dastidar
Complexity Theory IE 661: Scheduling Theory Fall 2003 Satyaki Ghosh Dastidar Outline Goals Computation of Problems Concepts and Definitions Complexity Classes and Problems Polynomial Time Reductions Examples
Numerical Analysis Lecture Notes
Numerical Analysis Lecture Notes Peter J. Olver 5. Inner Products and Norms The norm of a vector is a measure of its size. Besides the familiar Euclidean norm based on the dot product, there are a number
Part 2: Community Detection
Chapter 8: Graph Data Part 2: Community Detection Based on Leskovec, Rajaraman, Ullman 2014: Mining of Massive Datasets Big Data Management and Analytics Outline Community Detection - Social networks -
ON THE COMPLEXITY OF THE GAME OF SET. {kamalika,pbg,dratajcz,hoeteck}@cs.berkeley.edu
ON THE COMPLEXITY OF THE GAME OF SET KAMALIKA CHAUDHURI, BRIGHTEN GODFREY, DAVID RATAJCZAK, AND HOETECK WEE {kamalika,pbg,dratajcz,hoeteck}@cs.berkeley.edu ABSTRACT. Set R is a card game played with a
2.3 Convex Constrained Optimization Problems
42 CHAPTER 2. FUNDAMENTAL CONCEPTS IN CONVEX OPTIMIZATION Theorem 15 Let f : R n R and h : R R. Consider g(x) = h(f(x)) for all x R n. The function g is convex if either of the following two conditions
NP-Completeness I. Lecture 19. 19.1 Overview. 19.2 Introduction: Reduction and Expressiveness
Lecture 19 NP-Completeness I 19.1 Overview In the past few lectures we have looked at increasingly more expressive problems that we were able to solve using efficient algorithms. In this lecture we introduce
POLYNOMIAL RINGS AND UNIQUE FACTORIZATION DOMAINS
POLYNOMIAL RINGS AND UNIQUE FACTORIZATION DOMAINS RUSS WOODROOFE 1. Unique Factorization Domains Throughout the following, we think of R as sitting inside R[x] as the constant polynomials (of degree 0).
Discrete Applied Mathematics. The firefighter problem with more than one firefighter on trees
Discrete Applied Mathematics 161 (2013) 899 908 Contents lists available at SciVerse ScienceDirect Discrete Applied Mathematics journal homepage: www.elsevier.com/locate/dam The firefighter problem with
MATH10212 Linear Algebra. Systems of Linear Equations. Definition. An n-dimensional vector is a row or a column of n numbers (or letters): a 1.
MATH10212 Linear Algebra Textbook: D. Poole, Linear Algebra: A Modern Introduction. Thompson, 2006. ISBN 0-534-40596-7. Systems of Linear Equations Definition. An n-dimensional vector is a row or a column
INDISTINGUISHABILITY OF ABSOLUTELY CONTINUOUS AND SINGULAR DISTRIBUTIONS
INDISTINGUISHABILITY OF ABSOLUTELY CONTINUOUS AND SINGULAR DISTRIBUTIONS STEVEN P. LALLEY AND ANDREW NOBEL Abstract. It is shown that there are no consistent decision rules for the hypothesis testing problem
How To Solve A Minimum Set Covering Problem (Mcp)
Measuring Rationality with the Minimum Cost of Revealed Preference Violations Mark Dean and Daniel Martin Online Appendices - Not for Publication 1 1 Algorithm for Solving the MASP In this online appendix
Introduction to computer science
Introduction to computer science Michael A. Nielsen University of Queensland Goals: 1. Introduce the notion of the computational complexity of a problem, and define the major computational complexity classes.
1 Solving LPs: The Simplex Algorithm of George Dantzig
Solving LPs: The Simplex Algorithm of George Dantzig. Simplex Pivoting: Dictionary Format We illustrate a general solution procedure, called the simplex algorithm, by implementing it on a very simple example.
