Algorithm Design and Analysis
|
|
|
- Rudolf Harris
- 10 years ago
- Views:
Transcription
1 Algorithm Design and Analysis LECTURE 27 Approximation Algorithms Load Balancing Weighted Vertex Cover Reminder: Fill out SRTEs online Don t forget to click submit Sofya Raskhodnikova 12/6/2011 S. Raskhodnikova; based on slides by E. Demaine, C. Leiserson, A. Smith, K. Wayne
2 11.1 Load Balancing
3 Load Balancing Input. m identical machines; n jobs, job j has processing time t j. Job j must run contiguously on one machine. A machine can process at most one job at a time. Def. Let J(i) be the subset of jobs assigned to machine i. The load of machine i is L i = j J(i) t j. Def. The makespan is the maximum load on any machine L = max i L i. Load balancing. Assign each job to a machine to minimize makespan. Hardness. Load Balancing is NP-complete even for 2 machines. Exercise. Prove this statement. Hint: to prove NP-hardness, reduce from Number Partitioning. Today: approximation algorithms for Load Balalncing. 3
4 Load Balancing: List Scheduling List-scheduling algorithm. Consider n jobs in some fixed order. Assign job j to machine whose load is smallest so far. List-Scheduling(m, n, t 1,t 2,,t n ) { for i = 1 to m { L i 0 load on machine i J(i) jobs assigned to machine i } } for j = 1 to n { i = argmin k L k J(i) J(i) {j} L i L i + t j } return J machine i has smallest load assign job j to machine i update load of machine i Implementation. O(n log n) using a priority queue. 4
5 Load Balancing: List Scheduling Analysis Theorem. [Graham, 1966] Greedy algorithm is a 2-approximation. First worst-case analysis of an approximation algorithm. Need to compare resulting solution with optimal makespan L*. Lemma 1. The optimal makespan L* max j t j. Pf. Some machine must process the most time-consuming job. Lemma 2. The optimal makespan Pf. The total processing time is j t j. L * m 1 j t j. One of m machines must do at least a 1/m fraction of total work. 5
6 Load Balancing: List Scheduling Analysis Theorem. Greedy algorithm is a 2-approximation. Pf. Consider load L i of bottleneck machine i. Let j be last job scheduled on machine i. When job j assigned to machine i, i had smallest load. Its load before assignment is L i - t j L i - t j L k for all 1 k m. blue jobs scheduled before j machine i j 0 L i - t j L = L i 6
7 Load Balancing: List Scheduling Analysis Theorem. Greedy algorithm is a 2-approximation. Pf. Consider load L i of bottleneck machine i. Let j be last job scheduled on machine i. When job j assigned to machine i, i had smallest load. Its load before assignment is L i - t j L i - t j L k for all 1 k m. Sum inequalities over all k and divide by m: Now L i (L i t j ) t j 2L *. L* Lemma 1 L i t j m 1 k L k 1 m k t k L * L* Lemma 2 7
8 Load Balancing: List Scheduling Analysis Q. Is our analysis tight? A. Essentially yes. Ex: m machines, m(m-1) jobs length 1 jobs, one job of length m machine 2 idle machine 3 idle machine 4 idle m = 10 machine 5 idle machine 6 idle machine 7 idle machine 8 idle machine 9 idle machine 10 idle list scheduling makespan = 19 8
9 Load Balancing: List Scheduling Analysis Q. Is our analysis tight? A. Essentially yes. Ex: m machines, m(m-1) jobs length 1 jobs, one job of length m m = 10 optimal makespan = 10 9
10 Load Balancing: LPT Rule Longest processing time (LPT). Sort n jobs in descending order of processing time, and then run list scheduling algorithm. LPT-List-Scheduling(m, n, t 1,t 2,,t n ) { Sort jobs so that t 1 t 2 t n for i = 1 to m { L i 0 J(i) } load on machine i jobs assigned to machine i } for j = 1 to n { i = argmin k L k J(i) J(i) {j} L i L i + t j } return J machine i has smallest load assign job j to machine i update load of machine i 10
11 Load Balancing: LPT Rule Observation. If at most m jobs, then list-scheduling is optimal. Pf. Each job put on its own machine. Lemma 3. If there are more than m jobs, L* 2 t m+1. Pf. Consider first m+1 jobs t 1,, t m+1. Since the t i 's are in descending order, each takes at least t m+1 time. There are m+1 jobs and m machines, so by pigeonhole principle, at least one machine gets two jobs. Theorem. LPT rule is a 3/2 approximation algorithm. Pf. Same basic approach as for list scheduling. L i (L i t j ) L* t j 3 L *. 2 1 L* 2 Lemma 3 ( by observation, can assume number of jobs > m ) 11
12 Load Balancing: LPT Rule Q. Is our 3/2 analysis tight? A. No. Theorem. [Graham, 1969] LPT rule is a 4/3-approximation. Pf. More sophisticated analysis of same algorithm. Q. Is Graham's 4/3 analysis tight? A. Essentially yes. Ex: m machines, n = 2m+1 jobs, 2 jobs of length m+1, m+2,, 2m-1 and one job of length m. Exercise: Understand why. 12
13 Load Balancing: State of the Art Polynomial Time Approximation Scheme (PTAS). (1 + )-approximation algorithm for any constant > 0. [Hochbaum-Shmoys 1987] Consequence. PTAS produces arbitrarily high quality solution, but trades off accuracy for time.
14 11.4 The Pricing Method: Vertex Cover
15 Weighted Vertex Cover Weighted vertex cover. Given a graph G with vertex weights, find a vertex cover of minimum weight weight = weight = 2+9=11 15
16 Weighted Vertex Cover Pricing method. Each edge must be covered by some vertex. Edge e pays price p e 0 to get covered. Fairness. Edges incident to vertex i should pay w i in total for each vertex i : e ( i, j) p e w i Fairness Lemma. For any vertex cover S and any fair prices p e : e p e w(s). Proof. ee p e is e( i, j) p e is w i w( S). each edge e covered by at least one node in S sum fairness inequalities for each node in S 16
17 Big Ideas Push prices up Start with all prices set to 0 Increase gradually Maintain fairness: for each vertex i : A vertex v becomes tight when sum of prices equals weight: e ( i, j) p e w i e(i, j ) p e w i At the end of the algorithm, tight vertices form a vertex cover within a factor 2 of optimal How do we increase weights? Find some edge for which neither end is tight Increase as much as you can
18 Pricing Method: Example price of edge a-b vertex weight Figure 11.8
19 Pricing Method: Algorithm Pricing method. Set prices and find vertex cover simultaneously. Weighted-Vertex-Cover-Approx(G=(V,E), w) { foreach e in E p e 0 foreach v in V total v 0 total i = w i while ( edge (i,j) such that neither i nor j is tight) select such an edge e \\give p e maximum increase without violating fairness increase max(w i -total i,w j -total j ) p e p e + increase total i total i + increase total j total j + increase } S set of all tight nodes return S
20 Pricing Method: Analysis Theorem. Pricing method gives a 2-approximation. Pf. Algorithm terminates since at least one new node becomes tight after each iteration of while loop. Let S = set of all tight nodes upon termination of algorithm. S is a vertex cover: if some edge i-j is uncovered, then neither i nor j is tight. But then while loop would not terminate. Let S* be an optimal vertex cover. We show w(s) 2w(S*). w(s) w i i S i S p e e(i,j) iv p e e(i,j) 2 p e 2w(S*). e E fairness lemma all nodes in S are tight S V, each edge counted twice prices 0 Running time: O(m).
21 11.6 LP Rounding: Vertex Cover
22 Weighted Vertex Cover: IP Formulation Weighted vertex cover. Given an undirected graph G = (V, E) with vertex weights w i 0, find a minimum weight subset of nodes S such that every edge is incident to at least one vertex in S. Integer programming formulation. Model inclusion of each vertex i using a 0/1 variable x i. x i 0 if vertex i is not in vertex cover 1 if vertex i is in vertex cover Vertex covers in 1-1 correspondence with 0/1 assignments: S = {i V : x i = 1} Objective function: minimize i w i x i. Constraints for each edge (i,j): must take either i or j: x i + x j 1. 22
23 Weighted Vertex Cover: IP Formulation Weighted vertex cover. Integer programming formulation. (ILP) min w i x i i V s. t. x i x j 1 (i, j) E x i {0,1} i V Observation. If x* is optimal solution to (ILP), then S = {i V : x* i = 1} is a min weight vertex cover. 23
24 Weighted Vertex Cover: LP Relaxation Weighted vertex cover. Linear programming formulation. (LP) min w i x i i V s. t. x i x j 1 (i, j) E x i 0 i V Observation. Optimal value of (LP) is optimal value of (ILP). Pf. LP has fewer constraints. Note. LP is not equivalent to vertex cover. ½ ½ Q. How can solving LP help us find a small vertex cover? A. Solve LP and round fractional values. ½ 24
25 Weighted Vertex Cover Theorem. If x* is optimal solution to (LP), then S = {i V : x* i ½} is a vertex cover whose weight is at most twice the min possible weight. Pf. [S is a vertex cover] Consider an edge (i, j) E. Since x* i + x* j 1, either x* i ½ or x* j ½ (i, j) covered. Pf. [S has desired cost] Let S* be optimal vertex cover. Then w i i S* * w i x i 1 w 2 i i S i S LP is a relaxation x* i ½ 25
26 Weighted Vertex Cover Theorem. 2-approximation algorithm for weighted vertex cover. Theorem. [Dinur-Safra 2001] If P NP, then no -approximation for < , even with unit weights Open research problem. Close the gap. 26
Chapter 11. 11.1 Load Balancing. Approximation Algorithms. Load Balancing. Load Balancing on 2 Machines. Load Balancing: Greedy Scheduling
Approximation Algorithms Chapter Approximation Algorithms Q. Suppose I need to solve an NP-hard problem. What should I do? A. Theory says you're unlikely to find a poly-time algorithm. Must sacrifice one
! Solve problem to optimality. ! Solve problem in poly-time. ! Solve arbitrary instances of the problem. !-approximation algorithm.
Approximation Algorithms Chapter Approximation Algorithms Q Suppose I need to solve an NP-hard problem What should I do? A Theory says you're unlikely to find a poly-time algorithm Must sacrifice one of
! Solve problem to optimality. ! Solve problem in poly-time. ! Solve arbitrary instances of the problem. #-approximation algorithm.
Approximation Algorithms 11 Approximation Algorithms Q Suppose I need to solve an NP-hard problem What should I do? A Theory says you're unlikely to find a poly-time algorithm Must sacrifice one of three
11. APPROXIMATION ALGORITHMS
11. APPROXIMATION ALGORITHMS load balancing center selection pricing method: vertex cover LP rounding: vertex cover generalized load balancing knapsack problem Lecture slides by Kevin Wayne Copyright 2005
Applied Algorithm Design Lecture 5
Applied Algorithm Design Lecture 5 Pietro Michiardi Eurecom Pietro Michiardi (Eurecom) Applied Algorithm Design Lecture 5 1 / 86 Approximation Algorithms Pietro Michiardi (Eurecom) Applied Algorithm Design
Approximation Algorithms
Approximation Algorithms or: How I Learned to Stop Worrying and Deal with NP-Completeness Ong Jit Sheng, Jonathan (A0073924B) March, 2012 Overview Key Results (I) General techniques: Greedy algorithms
Scheduling Shop Scheduling. Tim Nieberg
Scheduling Shop Scheduling Tim Nieberg Shop models: General Introduction Remark: Consider non preemptive problems with regular objectives Notation Shop Problems: m machines, n jobs 1,..., n operations
Guessing Game: NP-Complete?
Guessing Game: NP-Complete? 1. LONGEST-PATH: Given a graph G = (V, E), does there exists a simple path of length at least k edges? YES 2. SHORTEST-PATH: Given a graph G = (V, E), does there exists a simple
Topic: Greedy Approximations: Set Cover and Min Makespan Date: 1/30/06
CS880: Approximations Algorithms Scribe: Matt Elder Lecturer: Shuchi Chawla Topic: Greedy Approximations: Set Cover and Min Makespan Date: 1/30/06 3.1 Set Cover The Set Cover problem is: Given a set of
5 INTEGER LINEAR PROGRAMMING (ILP) E. Amaldi Fondamenti di R.O. Politecnico di Milano 1
5 INTEGER LINEAR PROGRAMMING (ILP) E. Amaldi Fondamenti di R.O. Politecnico di Milano 1 General Integer Linear Program: (ILP) min c T x Ax b x 0 integer Assumption: A, b integer The integrality condition
5.1 Bipartite Matching
CS787: Advanced Algorithms Lecture 5: Applications of Network Flow In the last lecture, we looked at the problem of finding the maximum flow in a graph, and how it can be efficiently solved using the Ford-Fulkerson
Computer Algorithms. NP-Complete Problems. CISC 4080 Yanjun Li
Computer Algorithms NP-Complete Problems NP-completeness The quest for efficient algorithms is about finding clever ways to bypass the process of exhaustive search, using clues from the input in order
Distributed Computing over Communication Networks: Maximal Independent Set
Distributed Computing over Communication Networks: Maximal Independent Set What is a MIS? MIS An independent set (IS) of an undirected graph is a subset U of nodes such that no two nodes in U are adjacent.
Outline. NP-completeness. When is a problem easy? When is a problem hard? Today. Euler Circuits
Outline NP-completeness Examples of Easy vs. Hard problems Euler circuit vs. Hamiltonian circuit Shortest Path vs. Longest Path 2-pairs sum vs. general Subset Sum Reducing one problem to another Clique
Classification - Examples
Lecture 2 Scheduling 1 Classification - Examples 1 r j C max given: n jobs with processing times p 1,...,p n and release dates r 1,...,r n jobs have to be scheduled without preemption on one machine taking
Single machine parallel batch scheduling with unbounded capacity
Workshop on Combinatorics and Graph Theory 21th, April, 2006 Nankai University Single machine parallel batch scheduling with unbounded capacity Yuan Jinjiang Department of mathematics, Zhengzhou University
Triangle deletion. Ernie Croot. February 3, 2010
Triangle deletion Ernie Croot February 3, 2010 1 Introduction The purpose of this note is to give an intuitive outline of the triangle deletion theorem of Ruzsa and Szemerédi, which says that if G = (V,
CSC2420 Spring 2015: Lecture 3
CSC2420 Spring 2015: Lecture 3 Allan Borodin January 22, 2015 1 / 1 Announcements and todays agenda Assignment 1 due next Thursday. I may add one or two additional questions today or tomorrow. Todays agenda
THE PROBLEM WORMS (1) WORMS (2) THE PROBLEM OF WORM PROPAGATION/PREVENTION THE MINIMUM VERTEX COVER PROBLEM
1 THE PROBLEM OF WORM PROPAGATION/PREVENTION I.E. THE MINIMUM VERTEX COVER PROBLEM Prof. Tiziana Calamoneri Network Algorithms A.y. 2014/15 2 THE PROBLEM WORMS (1)! A computer worm is a standalone malware
Discuss the size of the instance for the minimum spanning tree problem.
3.1 Algorithm complexity The algorithms A, B are given. The former has complexity O(n 2 ), the latter O(2 n ), where n is the size of the instance. Let n A 0 be the size of the largest instance that can
Why? A central concept in Computer Science. Algorithms are ubiquitous.
Analysis of Algorithms: A Brief Introduction Why? A central concept in Computer Science. Algorithms are ubiquitous. Using the Internet (sending email, transferring files, use of search engines, online
ONLINE DEGREE-BOUNDED STEINER NETWORK DESIGN. Sina Dehghani Saeed Seddighin Ali Shafahi Fall 2015
ONLINE DEGREE-BOUNDED STEINER NETWORK DESIGN Sina Dehghani Saeed Seddighin Ali Shafahi Fall 2015 ONLINE STEINER FOREST PROBLEM An initially given graph G. s 1 s 2 A sequence of demands (s i, t i ) arriving
8.1 Min Degree Spanning Tree
CS880: Approximations Algorithms Scribe: Siddharth Barman Lecturer: Shuchi Chawla Topic: Min Degree Spanning Tree Date: 02/15/07 In this lecture we give a local search based algorithm for the Min Degree
Duplicating and its Applications in Batch Scheduling
Duplicating and its Applications in Batch Scheduling Yuzhong Zhang 1 Chunsong Bai 1 Shouyang Wang 2 1 College of Operations Research and Management Sciences Qufu Normal University, Shandong 276826, China
JUST-IN-TIME SCHEDULING WITH PERIODIC TIME SLOTS. Received December May 12, 2003; revised February 5, 2004
Scientiae Mathematicae Japonicae Online, Vol. 10, (2004), 431 437 431 JUST-IN-TIME SCHEDULING WITH PERIODIC TIME SLOTS Ondřej Čepeka and Shao Chin Sung b Received December May 12, 2003; revised February
Small Maximal Independent Sets and Faster Exact Graph Coloring
Small Maximal Independent Sets and Faster Exact Graph Coloring David Eppstein Univ. of California, Irvine Dept. of Information and Computer Science The Exact Graph Coloring Problem: Given an undirected
Lecture 7: NP-Complete Problems
IAS/PCMI Summer Session 2000 Clay Mathematics Undergraduate Program Basic Course on Computational Complexity Lecture 7: NP-Complete Problems David Mix Barrington and Alexis Maciel July 25, 2000 1. Circuit
Proximal mapping via network optimization
L. Vandenberghe EE236C (Spring 23-4) Proximal mapping via network optimization minimum cut and maximum flow problems parametric minimum cut problem application to proximal mapping Introduction this lecture:
CSC 373: Algorithm Design and Analysis Lecture 16
CSC 373: Algorithm Design and Analysis Lecture 16 Allan Borodin February 25, 2013 Some materials are from Stephen Cook s IIT talk and Keven Wayne s slides. 1 / 17 Announcements and Outline Announcements
Problem Set 7 Solutions
8 8 Introduction to Algorithms May 7, 2004 Massachusetts Institute of Technology 6.046J/18.410J Professors Erik Demaine and Shafi Goldwasser Handout 25 Problem Set 7 Solutions This problem set is due in
1 Approximating Set Cover
CS 05: Algorithms (Grad) Feb 2-24, 2005 Approximating Set Cover. Definition An Instance (X, F ) of the set-covering problem consists of a finite set X and a family F of subset of X, such that every elemennt
Approximability of Two-Machine No-Wait Flowshop Scheduling with Availability Constraints
Approximability of Two-Machine No-Wait Flowshop Scheduling with Availability Constraints T.C. Edwin Cheng 1, and Zhaohui Liu 1,2 1 Department of Management, The Hong Kong Polytechnic University Kowloon,
Linear Programming. Widget Factory Example. Linear Programming: Standard Form. Widget Factory Example: Continued.
Linear Programming Widget Factory Example Learning Goals. Introduce Linear Programming Problems. Widget Example, Graphical Solution. Basic Theory:, Vertices, Existence of Solutions. Equivalent formulations.
Fairness in Routing and Load Balancing
Fairness in Routing and Load Balancing Jon Kleinberg Yuval Rabani Éva Tardos Abstract We consider the issue of network routing subject to explicit fairness conditions. The optimization of fairness criteria
Combinatorial Algorithms for Data Migration to Minimize Average Completion Time
Combinatorial Algorithms for Data Migration to Minimize Average Completion Time Rajiv Gandhi 1 and Julián Mestre 1 Department of Computer Science, Rutgers University-Camden, Camden, NJ 0810. Research partially
NP-Completeness. CptS 223 Advanced Data Structures. Larry Holder School of Electrical Engineering and Computer Science Washington State University
NP-Completeness CptS 223 Advanced Data Structures Larry Holder School of Electrical Engineering and Computer Science Washington State University 1 Hard Graph Problems Hard means no known solutions with
Introduction to Scheduling Theory
Introduction to Scheduling Theory Arnaud Legrand Laboratoire Informatique et Distribution IMAG CNRS, France [email protected] November 8, 2004 1/ 26 Outline 1 Task graphs from outer space 2 Scheduling
Complexity Theory. IE 661: Scheduling Theory Fall 2003 Satyaki Ghosh Dastidar
Complexity Theory IE 661: Scheduling Theory Fall 2003 Satyaki Ghosh Dastidar Outline Goals Computation of Problems Concepts and Definitions Complexity Classes and Problems Polynomial Time Reductions Examples
Tutorial 8. NP-Complete Problems
Tutorial 8 NP-Complete Problems Decision Problem Statement of a decision problem Part 1: instance description defining the input Part 2: question stating the actual yesor-no question A decision problem
Scheduling Home Health Care with Separating Benders Cuts in Decision Diagrams
Scheduling Home Health Care with Separating Benders Cuts in Decision Diagrams André Ciré University of Toronto John Hooker Carnegie Mellon University INFORMS 2014 Home Health Care Home health care delivery
Near Optimal Solutions
Near Optimal Solutions Many important optimization problems are lacking efficient solutions. NP-Complete problems unlikely to have polynomial time solutions. Good heuristics important for such problems.
Bicolored Shortest Paths in Graphs with Applications to Network Overlay Design
Bicolored Shortest Paths in Graphs with Applications to Network Overlay Design Hongsik Choi and Hyeong-Ah Choi Department of Electrical Engineering and Computer Science George Washington University Washington,
Definition 11.1. Given a graph G on n vertices, we define the following quantities:
Lecture 11 The Lovász ϑ Function 11.1 Perfect graphs We begin with some background on perfect graphs. graphs. First, we define some quantities on Definition 11.1. Given a graph G on n vertices, we define
Load Balancing. Load Balancing 1 / 24
Load Balancing Backtracking, branch & bound and alpha-beta pruning: how to assign work to idle processes without much communication? Additionally for alpha-beta pruning: implementing the young-brothers-wait
Improved Algorithms for Data Migration
Improved Algorithms for Data Migration Samir Khuller 1, Yoo-Ah Kim, and Azarakhsh Malekian 1 Department of Computer Science, University of Maryland, College Park, MD 20742. Research supported by NSF Award
Approximated Distributed Minimum Vertex Cover Algorithms for Bounded Degree Graphs
Approximated Distributed Minimum Vertex Cover Algorithms for Bounded Degree Graphs Yong Zhang 1.2, Francis Y.L. Chin 2, and Hing-Fung Ting 2 1 College of Mathematics and Computer Science, Hebei University,
Page 1. CSCE 310J Data Structures & Algorithms. CSCE 310J Data Structures & Algorithms. P, NP, and NP-Complete. Polynomial-Time Algorithms
CSCE 310J Data Structures & Algorithms P, NP, and NP-Complete Dr. Steve Goddard [email protected] CSCE 310J Data Structures & Algorithms Giving credit where credit is due:» Most of the lecture notes
Minimizing the Number of Machines in a Unit-Time Scheduling Problem
Minimizing the Number of Machines in a Unit-Time Scheduling Problem Svetlana A. Kravchenko 1 United Institute of Informatics Problems, Surganova St. 6, 220012 Minsk, Belarus [email protected] Frank
NP-complete? NP-hard? Some Foundations of Complexity. Prof. Sven Hartmann Clausthal University of Technology Department of Informatics
NP-complete? NP-hard? Some Foundations of Complexity Prof. Sven Hartmann Clausthal University of Technology Department of Informatics Tractability of Problems Some problems are undecidable: no computer
Approximating Minimum Bounded Degree Spanning Trees to within One of Optimal
Approximating Minimum Bounded Degree Spanning Trees to within One of Optimal ABSTACT Mohit Singh Tepper School of Business Carnegie Mellon University Pittsburgh, PA USA [email protected] In the MINIMUM
School Timetabling in Theory and Practice
School Timetabling in Theory and Practice Irving van Heuven van Staereling VU University, Amsterdam Faculty of Sciences December 24, 2012 Preface At almost every secondary school and university, some
Transportation Polytopes: a Twenty year Update
Transportation Polytopes: a Twenty year Update Jesús Antonio De Loera University of California, Davis Based on various papers joint with R. Hemmecke, E.Kim, F. Liu, U. Rothblum, F. Santos, S. Onn, R. Yoshida,
SIMS 255 Foundations of Software Design. Complexity and NP-completeness
SIMS 255 Foundations of Software Design Complexity and NP-completeness Matt Welsh November 29, 2001 [email protected] 1 Outline Complexity of algorithms Space and time complexity ``Big O'' notation Complexity
Social Media Mining. Graph Essentials
Graph Essentials Graph Basics Measures Graph and Essentials Metrics 2 2 Nodes and Edges A network is a graph nodes, actors, or vertices (plural of vertex) Connections, edges or ties Edge Node Measures
Scheduling to Minimize Power Consumption using Submodular Functions
Scheduling to Minimize Power Consumption using Submodular Functions Erik D. Demaine MIT [email protected] Morteza Zadimoghaddam MIT [email protected] ABSTRACT We develop logarithmic approximation algorithms
The Goldberg Rao Algorithm for the Maximum Flow Problem
The Goldberg Rao Algorithm for the Maximum Flow Problem COS 528 class notes October 18, 2006 Scribe: Dávid Papp Main idea: use of the blocking flow paradigm to achieve essentially O(min{m 2/3, n 1/2 }
Weighted Sum Coloring in Batch Scheduling of Conflicting Jobs
Weighted Sum Coloring in Batch Scheduling of Conflicting Jobs Leah Epstein Magnús M. Halldórsson Asaf Levin Hadas Shachnai Abstract Motivated by applications in batch scheduling of jobs in manufacturing
Private Approximation of Clustering and Vertex Cover
Private Approximation of Clustering and Vertex Cover Amos Beimel, Renen Hallak, and Kobbi Nissim Department of Computer Science, Ben-Gurion University of the Negev Abstract. Private approximation of search
. P. 4.3 Basic feasible solutions and vertices of polyhedra. x 1. x 2
4. Basic feasible solutions and vertices of polyhedra Due to the fundamental theorem of Linear Programming, to solve any LP it suffices to consider the vertices (finitely many) of the polyhedron P of the
Introduction to Logic in Computer Science: Autumn 2006
Introduction to Logic in Computer Science: Autumn 2006 Ulle Endriss Institute for Logic, Language and Computation University of Amsterdam Ulle Endriss 1 Plan for Today Now that we have a basic understanding
An Approximation Algorithm for Bounded Degree Deletion
An Approximation Algorithm for Bounded Degree Deletion Tomáš Ebenlendr Petr Kolman Jiří Sgall Abstract Bounded Degree Deletion is the following generalization of Vertex Cover. Given an undirected graph
Lecture 15 An Arithmetic Circuit Lowerbound and Flows in Graphs
CSE599s: Extremal Combinatorics November 21, 2011 Lecture 15 An Arithmetic Circuit Lowerbound and Flows in Graphs Lecturer: Anup Rao 1 An Arithmetic Circuit Lower Bound An arithmetic circuit is just like
CMSC 858T: Randomized Algorithms Spring 2003 Handout 8: The Local Lemma
CMSC 858T: Randomized Algorithms Spring 2003 Handout 8: The Local Lemma Please Note: The references at the end are given for extra reading if you are interested in exploring these ideas further. You are
A2 1 10-Approximation Algorithm for a Generalization of the Weighted Edge-Dominating Set Problem
Journal of Combinatorial Optimization, 5, 317 326, 2001 c 2001 Kluwer Academic Publishers. Manufactured in The Netherlands. A2 1 -Approximation Algorithm for a Generalization of the Weighted Edge-Dominating
Adaptive Linear Programming Decoding
Adaptive Linear Programming Decoding Mohammad H. Taghavi and Paul H. Siegel ECE Department, University of California, San Diego Email: (mtaghavi, psiegel)@ucsd.edu ISIT 2006, Seattle, USA, July 9 14, 2006
Max Flow, Min Cut, and Matchings (Solution)
Max Flow, Min Cut, and Matchings (Solution) 1. The figure below shows a flow network on which an s-t flow is shown. The capacity of each edge appears as a label next to the edge, and the numbers in boxes
ARTICLE IN PRESS. European Journal of Operational Research xxx (2004) xxx xxx. Discrete Optimization. Nan Kong, Andrew J.
A factor 1 European Journal of Operational Research xxx (00) xxx xxx Discrete Optimization approximation algorithm for two-stage stochastic matching problems Nan Kong, Andrew J. Schaefer * Department of
CMPSCI611: Approximating MAX-CUT Lecture 20
CMPSCI611: Approximating MAX-CUT Lecture 20 For the next two lectures we ll be seeing examples of approximation algorithms for interesting NP-hard problems. Today we consider MAX-CUT, which we proved to
Algorithms and Data Structures
Algorithms and Data Structures CMPSC 465 LECTURES 20-21 Priority Queues and Binary Heaps Adam Smith S. Raskhodnikova and A. Smith. Based on slides by C. Leiserson and E. Demaine. 1 Trees Rooted Tree: collection
The Generalized Assignment Problem with Minimum Quantities
The Generalized Assignment Problem with Minimum Quantities Sven O. Krumke a, Clemens Thielen a, a University of Kaiserslautern, Department of Mathematics Paul-Ehrlich-Str. 14, D-67663 Kaiserslautern, Germany
Discrete Mathematics & Mathematical Reasoning Chapter 10: Graphs
Discrete Mathematics & Mathematical Reasoning Chapter 10: Graphs Kousha Etessami U. of Edinburgh, UK Kousha Etessami (U. of Edinburgh, UK) Discrete Mathematics (Chapter 6) 1 / 13 Overview Graphs and Graph
On the Unique Games Conjecture
On the Unique Games Conjecture Antonios Angelakis National Technical University of Athens June 16, 2015 Antonios Angelakis (NTUA) Theory of Computation June 16, 2015 1 / 20 Overview 1 Introduction 2 Preliminary
Online Adwords Allocation
Online Adwords Allocation Shoshana Neuburger May 6, 2009 1 Overview Many search engines auction the advertising space alongside search results. When Google interviewed Amin Saberi in 2004, their advertisement
Steiner Tree Approximation via IRR. Randomized Rounding
Steiner Tree Approximation via Iterative Randomized Rounding Graduate Program in Logic, Algorithms and Computation μπλ Network Algorithms and Complexity June 18, 2013 Overview 1 Introduction Scope Related
Common Approaches to Real-Time Scheduling
Common Approaches to Real-Time Scheduling Clock-driven time-driven schedulers Priority-driven schedulers Examples of priority driven schedulers Effective timing constraints The Earliest-Deadline-First
ON THE COMPLEXITY OF THE GAME OF SET. {kamalika,pbg,dratajcz,hoeteck}@cs.berkeley.edu
ON THE COMPLEXITY OF THE GAME OF SET KAMALIKA CHAUDHURI, BRIGHTEN GODFREY, DAVID RATAJCZAK, AND HOETECK WEE {kamalika,pbg,dratajcz,hoeteck}@cs.berkeley.edu ABSTRACT. Set R is a card game played with a
THE SCHEDULING OF MAINTENANCE SERVICE
THE SCHEDULING OF MAINTENANCE SERVICE Shoshana Anily Celia A. Glass Refael Hassin Abstract We study a discrete problem of scheduling activities of several types under the constraint that at most a single
9th Max-Planck Advanced Course on the Foundations of Computer Science (ADFOCS) Primal-Dual Algorithms for Online Optimization: Lecture 1
9th Max-Planck Advanced Course on the Foundations of Computer Science (ADFOCS) Primal-Dual Algorithms for Online Optimization: Lecture 1 Seffi Naor Computer Science Dept. Technion Haifa, Israel Introduction
Solutions to Homework 6
Solutions to Homework 6 Debasish Das EECS Department, Northwestern University [email protected] 1 Problem 5.24 We want to find light spanning trees with certain special properties. Given is one example
MapReduce and Distributed Data Analysis. Sergei Vassilvitskii Google Research
MapReduce and Distributed Data Analysis Google Research 1 Dealing With Massive Data 2 2 Dealing With Massive Data Polynomial Memory Sublinear RAM Sketches External Memory Property Testing 3 3 Dealing With
Nan Kong, Andrew J. Schaefer. Department of Industrial Engineering, Univeristy of Pittsburgh, PA 15261, USA
A Factor 1 2 Approximation Algorithm for Two-Stage Stochastic Matching Problems Nan Kong, Andrew J. Schaefer Department of Industrial Engineering, Univeristy of Pittsburgh, PA 15261, USA Abstract We introduce
Optimal Monitoring in Multi-Channel Multi-Radio Wireless Mesh Networks
Optimal Monitoring in Multi-Channel Multi-Radio Wireless Mesh Networks Dong-Hoon Shin and Saurabh Bagchi Dependable Computing Systems Lab School of Electrical and Computer Engineering Purdue University
Online Scheduling with Bounded Migration
Online Scheduling with Bounded Migration Peter Sanders, Naveen Sivadasan, and Martin Skutella Max-Planck-Institut für Informatik, Saarbrücken, Germany, {sanders,ns,skutella}@mpi-sb.mpg.de Abstract. Consider
